用户名: 密码: 验证码:
泌阳凹陷高精度三维地震勘探技术研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
泌阳凹陷位于河南省南部,是在秦岭褶皱带之上发育起来的一个中、新生代陆相湖泊断陷,面积约1000 km2,以“小而肥”而著称。据三次资源评价:泌阳凹陷的总资源量为3.38×108t,探明率为59.2%,仍剩余有1.38×108t的资源量可供勘探。但是,泌阳凹陷经过三十多年的油气勘探,目前已进入高成熟勘探阶段,勘探难度越来越大,面临的勘探对象越来越复杂。要继续凹陷的深化勘探,必须解决技术瓶颈问题,而地震老资料品质差是影响凹陷深化勘探的技术瓶颈之一,分析认为高精度三维地震勘探技术是改善地震资料品质的有效途径。
     作者以泌阳凹陷为攻关试验区,本着生产之所需,科研与生产相结合,针对泌阳凹陷的构造沉积特点,试图发现、研究和解决泌阳凹陷二次勘探以来所面临的三维地震勘探技术难点和方法问题。论文首先对国内外高精度三维地震勘探技术及其应用现状进行了述评;接着讨论了高精度三维地震勘探技术的技术内涵与技术关键;在此基础上,论文详细阐述了高精度三维地震勘探技术的研究思路与实践过程;结合泌阳凹陷勘探实例,论文对高精度三维地震勘探技术在泌阳凹陷勘探中应用效果进行了分析;最后作者对今后进一步工作提出了建议与设想。论文的取得的主要成果:
     1、以高精度三维地震勘探技术内涵为理论基础,结合泌阳凹陷构造沉积特点,针对本区浅、中、深层系的技术难点,研究总结了三大技术系列:泌阳凹陷北部复杂断块群高精度三维地震勘探技术系列;泌阳凹陷中部深层系高精度三维地震勘探技术系列;泌阳凹陷南部陡坡带高精度三维地震勘探技术系列。
     2、论文在强调高精度三维地震勘探不同技术环节的质量控制的同时,特别强调了高精度三维地震勘探必须建立新的理念。在高精度三维地震勘探实践中,需建立“交互地震勘探”和“一体化”的理念,即高精度三维地震勘探设计论证、采集、处理与地质目标的有机结合,以及三维地震采集、处理、解释一体化。
     3、作者在实践过程中,研究应用了一批新的方法和技术:首次采用基于成像效果新理念和散射技术的采集参数论证技术,以及基于表层结构精细调查的逐点设计井深技术,大幅度提高野外地震资料采集的品质;研究应用了剔除拟合法压制多次波技术,有效地提高了地震资料的信噪比和分辨率;应用了基于敏感性及可行性分析的属性分析技术及叠前纵横波联合反演技术,极大地提高了探区内砂泥岩薄互层预测精度。
     4、通过技术攻关,高精度地震资料的主频比原来提高10-15Hz,信噪比提高到5-6,能识别断距大于15m的各类断层,圈闭面积大于0.05km2,构造幅度大于20m的各类低幅度构造圈闭;可预测出厚度大于15m的岩性体。
     5、研究成果推广应用后取得了显著的勘探成果。新发现与重新落实圈闭421个,圈闭资源量15265×104t,探井成功率达49%,探明储量5060.09×104t。取得了良好的经济效益和社会效益。
     论文成果不仅能够进一步推动河南油田泌阳凹陷下步的深化勘探,更对国内同类型陆相断陷盆地的地震勘探具有积极的借鉴意义和一定的指导作用。
Biyang depression locates in the south part of Henan province, It’s a Mesozoic and Cenozoic terrestrial facies lake fault depression which grows on Qinling folded zone, it is about 1000 1000 km2 and famous for“small and abundant”. According to the third resource evaluation: the total resource in Biyang depression is 3.38×108t,its 59.2% is ascertained, still there is 1.38×108t resource remained for exploring. But after thirty years of petroleum and gas exploration, the exploration in Biyang depression enters high mature exploration period, difficulty of exploration becomes more serious, the exploration targets become more complex. To continue the exploration deeply, we have to resolve the choke points, and the unfavorable quality of seismic data having been collected is one of the choke points which affects continuing the exploration in Biyang depression deeply, By analyzing it is considered that high accuracy 3D seismic ex
     The author makes the Biyang depression as the research and test area, bases on the needs of exploration production, combines scientific research and exploration production, aims at the structure sediment feature, attempts to discover, research and resolve 3D seismic exploration technological difficulty and methods meeting after the second exploration in Biyang depression. First the thesis describes home and abroad high accuracy 3D seismic exploration technology and its present application situation; Then discusses high accuracy 3D seismic exploration technology connotation and technology key; on base of that, the thesis expounds the research clue and practice procedure of high accuracy 3D seismic exploration technology; adopting the instance exploration in Biyang depression, it analyzes the application effect of high accuracy 3D seismic exploration technology in exploration of Biyang depression; Finally the author gives suggestion and supposition for the next work. The achievement of this thesis is listed below.
     1) Putting high accuracy 3D seismic exploration technology connotation as the theory foundation, combing the structure sediment feature in Biyang depression, aiming at shallow, medium and deep series of strata, researching and summing up three technology series: series of complex fault block group high accuracy 3D seismic exploration technology in north Biyang depression; series of deep series of strata high accuracy 3D seismic exploration technology in middle Biyang depression; series of actic region high accuracy 3D seismic exploration technology in south Biyang depression.
     2) This thesis emphasizes quality control of different high accuracy 3D seismic exploration technology segments, and especially that new concept must be established for high accuracy 3D seismic exploration. In the practice of high accuracy 3D seismic exploration, it is essential to build the concept of“interactive seismic exploration”and“integration, that is high accuracy 3D seismic exploration design and demonstration, acquisition, data process integrated with geology targets, and integration of 3D acquisition, data process and interpretation.
     3)In the process of practicing, the author researches and utilizes a series of new methods and technologies: for the first time adopting acquisition technology of new concept about base on imaging effect and dispersion technology, and each point designing well depth method base on fine surface structure investigation, the quality of the field acquisition data are improved to an extent; researches and applies depressing multiples through deleting and fitting method,the resolution and S/N of seismic data are improved effectively; applies attribute analyzing technology base on sensitivity and feasibility analyzing, the siltstone interbeds prediction accuracy greatly.
     4)By developing technology, the domain frequency of high accuracy seismic data is improved 10 to 15 Hz comparing the old data’s, the ratio of signal to noise is improved to 5 to 6, the faults whose magnitude of fault are more than 15 meters, traps more than 0.05km2, all kinds of structure which the amplitude are more than 20 meters can be distinguished; the lithology bodies which the thickness are more than 15 meters can be predicted.
     5)After generalizing and implementing the achievement new exploration achievement was gained. 421 new traps are discovered and re-carried out, trap reserves is 15265×104t,the rate of successful prospecting well reaches 49%, the proven reserves is 5060.09×104t. upstanding economic benefit and social benefit are obtained.
     The achievement of this thesis not only can promote the next step exploration in Biyang depression, Henan Oil Field, but also can provided seismic exploration references and directions for the same kind of domestic landing facies fault depression basins.
引文
[1].王敏,秦伟军等,南襄盆地泌阳凹陷油气藏形成条件及聚集规律,石油与天然气地质,2001,22(2):169-172
    [2].孙永传,李纯菊等,泌阳断陷盐湖盆地的沉积体系及演化[J] .地球科学-中国地质大学学报; 1991, 16(4):419-428
    [3].邱荣华;林社卿;涂阳发.泌阳凹陷油气成藏特征及勘探潜力分析[J].石油天然气学报,2005,27(2):32-35
    [4].林社卿等,泌阳凹陷复杂断块群油藏特征及勘探技术,河南石油, 2002,16(3):12-14
    [5].邱荣华陈祥伏卫东等,泌阳凹陷安棚深层系储层特征及油气分布规律,江汉石油学院学报,2001,23(3):13-15;
    [6].李庆忠走向精确的勘探道路,石油工业出版社,1996;
    [7].李正文,励宝恒,高分辨率浅层地震勘探及应用,物探化探计算技术.1991,13(4):282-288
    [8].刘建华,彭向峰,孙智峰.高分辨率地震技术探测采空区研究——以贾汪煤矿区为例[J].高校地质学报, 1996,04:94-98.
    [9].徐佩芬.高分辨率地震勘探确定隐伏地质构造方法研究[J].地球物理学进展, 1998,02:42-46.
    [10].胡中平,高精度地震勘探问题思考及对策分析.石油地球物理勘探.2002,37(5):530-536.
    [11].宋玉龙,谭绍泉.胜利油田高精度地震勘探采集技术及应用实例[J].石油物探,2004,43(4):359-368;
    [12].涂齐催,刘怀山,张进等,地震资料曲流河辫状河油气储层识别与预测[J].西北地质,2004,37(4):79-84;
    [13].陆基孟.地震勘探原理〔M〕.山东:石油大学出版社,1993.
    [14].[美]R.E.谢里夫[加]L.P.吉尔达特编,初英等译.勘探地震学[M].石油工业出版社,1999.
    [15].何樵登.地震勘探原理和方法M].北京:地质出版社,1986.
    [16].胡中平,朱成宏,杨贵祥,等.各向异性及复杂构造条件下三维地震采集设计[J].勘探地球物理进展,2005,28(6):397-400
    [17].杨红霞.地震数据采集技术进展[J].勘探地球物理进展,2003,26(5):463-468
    [18].Andreas, Cordsen与John W.Peirce著,俞寿朋等译,陆上三维地震勘探的设计与施工,石油工业出版社,1996,16-46.
    [19].吕公河.高精度地震勘探采集技术探讨[J].石油地球物理勘探,2005,40(3):261-267
    [20].谭胜章,杜惠平,宋国良,等.高精度三维地震资料采集技术——以官渡地区山地地震勘探为例[J].石油物探,2007,46(1):74-80
    [21].王德志,贾烈明.三江盆地地震地质条件及采集技术研究[J].石油物探,2006,45(4):423-426
    [22].邸志欣,谭绍泉,姜维才,等.川东北地区山地三维高分辨率地震采集技术[J].石油物探,2005,44(5):517-524
    [23].王增明.地震采集中检波器自然频率的试验分析[J].石油地球物理勘探,2003,38(3):308-316 
    [24].郭栋.胜利油田高精度地震勘探技术[J].石油天然气学报,2005,27(6):865-867 
    [25].王彦春,余钦范,段云卿等,折射波静校正方法在复杂地表地区的应用,物探与化探,1999, 06.
    [26].林伯香等,层析成像低速带速度反演和静校正方法,石油物探,2002,41(2).
    [27].高少武,周兴元,蔡加铭.反射波地表一致性相位校正[J].石油地球物理勘探,2001,36(4):480-487
    [28].贾丽华,吴长江,罗炎鑫,等.地震资料高分辨率处理技术[J].石油物探,2002,41(4):102-106
    [29].胡天跃,地震资料叠前去噪技术的现状与未来,地球物理学进展,2002,17(2).
    [30].周锦民等,地震数据精细处理,北京,石油工业出版社2003
    [31].董臣强宋志强.Kirchhoff积分法叠前深度偏移技术在孤岛地区的应用[J].石油地球物理勘探,2002,37(2):180-184
    [32].陈宝书等,地震资料叠前偏移处理技术应用,中国海上油气,2001,15(5):361-365.
    [33].陈树文等,三维叠前深度偏移的准三维算法研究,地球物理学进展,2001,16(4):23-28
    [34].毕民,基于三维叠前深度偏移的深层构造成像与应用,大庆石油地质与开发,2002,21(2):69-70.
    [35].马在田.论反射地震偏移成像.勘探地球物理进展,2002,25(3):1-5.
    [36].李玲等全三维解释方法探讨与实践,石油地球物理勘探,1996,31(4):495—508.
    [37].袁秉衡什么是全三维地震解释,石油地球物理勘探,1996,31(6):751—754.
    [38].陈遵德储层地震属性优化方法,石油工业出版社,1998;
    [39].徐伯勋,白旭滨,于常青编著.地震勘探信息技术—提取、分析和预测.北京:地质出版社,2001,22-65.
    [40].朱光明.垂直地震剖面法〔M〕.北京:石油工业出版业,1988
    [41].马义忠等,高精度三维地震采集观测系统设计在南阳凹陷的应用石油物探2008,47(5):498-504
    [42].曹务祥;高空间密度采样资料分析[J];勘探地球物理进展; 2006年03期,
    [43].喜双,谢文导,邓志文;高密度空间采样地震技术发展与展望[J];中国石油勘探; 2007年01期
    [44].曲寿利,高密度三维地震技术——老油区二次勘探的关键技术之一[J].石油物探,2006, 45(6):557-562
    [45].魏嘉.定量地震解释离我们有多远[J].勘探地球物理进展,2006,29(6):433-437
    [46].杨道庆等,泌阳凹陷隐蔽油气藏类型及分布规律,地球科学,2001(增刊)
    [47].闫福旺、葛晖、刘桂兰等,2002,中国石油化工股份有限公司河南油田新增油气控制储量报告,(内部资料);
    [48].罗家群、涂阳发、李辉等,2002,中国石油化工股份有限公司河南油田新增油气预测储量报告,(内部资料)。
    [49].赵殿栋,吕公河等.高精度三维地震采集技术及应用效果.石油物探.2001,40(1)
    [50].张永华,罗家群,田小敏.高精度三维地震在泌阳凹陷北部复杂断块群勘探中的应用[J].石油物探2005,44(3):280-283
    [51].张永华、马义忠,田小敏等,泌阳凹陷新庄地区浅层复杂断块群成像研究[J].石油物探,2008,47(4):376-380
    [52].马义忠、张付生等,泌阳凹陷核三下段高精度三维地震观测系统设计与采集效果大庆石油地质与开发,2008,27 ( 3):139-142
    [53].邹才能、张颖等编著,油气勘探开发应用地震新技术,北京:石油工业出版社,2002
    [54].邱荣华,泌阳富油凹陷北部斜坡带浅层复杂断块群油气勘探[J].石油与天然气地质,2006,27(6):813-819
    [55].程建远,三维地震资料微机解释性处理技术,石油工业出版社,2002
    [56].范文红,林涨年,曾海东,梁尚勇.高邮凹陷深层地震勘探技术研究[J].石油物探, 2004, 43(6):573-577
    [57].毛树礼,胡斌,刘小明,曹冰.苏北盆地深层综合勘探技术研究及应用[J].勘探地球物理进展, 2004,03:48-54.
    [58].邬达理,复杂条件下三维地震资料处理中的几个关键问题,石油物探,2002, 41(2):179-185
    [59].阎世信,刘怀山,姚雪根.山地地球物理勘探技术[M].北京:石油工业出版社,2000
    [60].罗肇,倪宇东,梁桂美等,胜金口西山地三维地震采集与处理技术[J].石油地球物理勘探, 2004,01:95-99+134+7.
    [61].华伟,刘建芳.高邮凹陷南部断阶带复杂区圈闭识别[J].勘探地球物理进展, 2003,03:47-50.
    [62].曾忠,阎世信,魏修成等,苏里格气田地震预测技术效果分析及对策[J].石油勘探与开发, 2003,06:64-68.
    [63].P.M.Duncan ,白振瑞. 3D地震数据采集、处理、解释一体化[J].勘探地球物理进展, 1997,02:65-69.
    [64].温森来.福山凹陷地震资料处理──论采集、处理和解释人员一起参与处理的重要性[J].石油地球物理勘探, 1998,S1:61-71+177.
    [65].冯兵,蒋进勇,一体化解释在塔河油田三叠系油藏预测中的应用[J],石油物探, 2003, 42(3):384-388
    [66].居春荣.GY凹陷XF地区复杂断块处理解释一体化.石油地球物理勘探.2001,36(6):740-744
    [67].宋长青,全书进,葛晖,姜春明,李磊,周扬新.一体化解释技术在泌阳凹陷栗园地区三维地震资料解释中的应用[J].河南石油, 2001,05:20-21+24+61.
    [68].马义忠,影响新一轮三维地震勘探成本因素分析,石油地质与工程, 2009,23(2):43-45
    [69].伏卫东等,泌阳凹陷湖相白云岩油气储集性能及勘探潜力,江汉石油学院学报,2002,24(1):8-10
    [70]. Vermeer G J O. 3-D seismic survey design[J]. Expanded Abstracts of 72nd Annual Internat SEG Mtg, 2002, 19~32
    [71].Yilmaz O, Seismic Data Analysis—Processing, Inversion, and Interpretation of Seismic Data,Society of Exploration Geophysicists. 2001.
    [72].Cross T A, Stratigraphic controls on reservoir attributes in continental strata(地层因素对陆相特征的控制),地学前缘,2000,7(4):322-350
    [73].Dale A.fritz,Terry W.Belsher, New Exploration Concept for the Edwards and Sligo Margins of Cretaceous of Onshore Texas, AAPG Bulletin, 2000,No.7,P905-922
    [74].Gerald D.Kidd, Fundamentals of 3D seismic volume visualization, The Leading Edge,1999,No.6,P702-710
    [75].Watney,W.L., Oil exploration and reservoirs,ELK city field,Oklahoma, Journal of petroleum Technology ,1983,V29,P851-866
    [76].Guillaume Cambois, How to obtain reliable S-impedance from P-wave data, World Oil, 2001,No.9,P37-41
    [77].Victor Linari and Marcelo Santiago, Seismic facies analysis based on 3D multiattribute volume classification,La Palma Field,Maracaibo,Venezuela, The Leading Edge,2003,No.1,P32-36
    [78].Cross T A, 1994, Stratigraphy architecture, correlation concepts, volumetric partitioning, facies differentiation, and reservoir compartmentalization from the perspective of high resolution sequence stratigraphy. Genetic stratigraphy research group, Colorado School of Mines, 1994 annual report: 28-41
    [79].Daniel J M & Kenneth A E, 2000, Sequence stratigraphy of upper Mississippian strata in the central appalachians: a record of glacioeustasy and tectonoeustasy in a foreland basin setting, AAPG Bulletin, 84 (2): 210-233
    [80].Ehrenberg S N et al., 2001, A depositional and sequence stratigraphic model for cold water, spiculitic strata based on the Kapp Starostin Formation (Permian) of Spitsbergen and equivalent deposits from the Barents Sea, AAPG Bulletin, 85 (12): 2061-2087
    [81].Hilterman F J . Seismic Amplitude Interpretation . Sponsored by Society of Exploration Geophysicists European Association of Geoscientists & Engineers .Distinguished Instructor Short Course, No.4,2001
    [82].Wyllie M RJ ,Gregory A R and Gardner L W .Elastic wave velocities in heterogeneous and porousmedia.Geophysics,19 56,21 :4 1-70
    [83].Berryman J and Milton G . Exact results for generalized Gassmann's equation in composite porous media with two constituents . Geophysics,1991,66 :1950-1960.
    [84].Geertsma J, and Smit D C. Some aspects of elastic wave propagation in fluid-saturated porous solids .Geophysics,1961,26 :169-181.
    [85].O'Connell R ,and Budiansky B .Viscoelastic properties of fluid-saturated cracked solids .J. Geophys.Res.,1977,82 :5719-5735.
    [86].Mavko G ,and Jizba D .Estimating grain-scale fluid effects on velocity dispersion in rocks. Geophysics,1991,56:1940-1949.
    [87].Sengupta M .Integrating rock physics and flow simulation to reduce uncertainties in seismic reservoir monitoring, Ph .D.thesis, Stanford University,2000
    [88].White J .Computed seismic speeds and attenuation in rocks with partial gass saturation .Geophysics,1975,40 :224-232.
    [89].Mavko G ,and Muke T .Bounds on low-frequency seismic velocities in partially saturated rocks.Geophysics,1998,63:918-924.
    [90].Simmons J L ,Backus M M. AVO modeling and the locally converted shear wave.Geophysics,1994,59:1237-1248.
    [91].Frasier C W. Discrete time solution of plane P-SV waves in a plane layered medium. Geophysics,1970,35:197-219.
    [92].Kennett B .Theoretical reflection seismograms for elastic media . Geophysical Prospecting,1979,27:301-321.
    [93].Kennett B .1980. Seismic waves in a stratified half space-II .Theoretical seismograms .Geophysical Journal of the Royal Astronomical Society,61:1-10.
    [94].Connolly P .Elastic impedance. The Leading Edge , 1999,18(4):438-452.
    [95].Mallick S ,HuangX ,Laure J,et al. Hybrid seismic inversion: A reconnaissance tool for deep water exploration.The Leading Edge,2000,19:1230-1237.
    [96].Whitcombe D N ,Connolly P N ,Reagan R L ,et al. Extended elastic impedance for fluid and lithology prediction.Geophysics,2002,67 (1):63-67.
    [97].Whitcombe D N.Elastic impedance normalization. Geophysics,2002,67(1):60-62 .
    [98]Shiba, S., Graham, A. and Walden, D. (1993). A new American TQM. Portland, Ore.: Productivity Press.
    [99]Lee, T.H. (1994, Fall) A systemic approach to management TQM and planning. Centre for Quality Management Journal.
    [100]Constance,P.E., Holland,M.B., Roche,S.L., Biquart,P., Byrans,B., Gelinsky,S., Ralph,J.G. and Bloor,R.I., 1999, Simultaneous Acquisition of 3D Surface Seismic Data and 3C,3D VSP data, 69th Ann. Int’l SEG Mtg. Expand Abst. P104-107.
    [101]Chopra, S.,Blias,E., Chavina,L.,Alexeev, V, 2002,Simultaneous acquisition of 3D surface seismic and 3D VSP data– processing and integration, This issue.
    [102]Chen, G., 1998, 3D VSP CDP mapping with interactive reflection traveltime display: Presented at 68th Ann. Intl. SEG Mtg., Expand. Abst., 361-364.
    [103]Clochard, V., Compte, P., Nicoletis, L., Lucas-Svay, J. and Dillon, P.B., 1997, 3D walk-away imaging in the overthrust model: Presented at the 57th Ann. EAGE Mtg., E047.
    [104]Clochard, V., Nicoletis, L., Svay-Lucas, J., Mendes, M. and Anjos, L., 1998, 3-C imaging of 3D walkaway data in regard to preprocessing: Presented at 68th Ann. Intl. SEG Mtg., Expand. Abst., 377-380.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700