用户名: 密码: 验证码:
华南陡山沱组四段含胶黄铁矿碳酸盐结核岩石磁学研究及其环境意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湖北宜昌震旦系陡山沱组四段黑色页岩中发育大量以白云石为主的碳酸盐结核,扫描电镜和岩石磁学方法发现结核中的磁性矿物以胶黄铁矿为主。结核由自生碳酸盐胶结原始沉积碎屑而成,而胶黄铁矿作为一种自生矿物,常形成于早期还原成岩环境,其形成伴随着原有含铁碎屑矿物的溶解。因此研究结核的生长演化及其磁学性质对揭示早期埋藏和成岩环境具有重要意义。
     碳酸盐结核的矿物成分和微观组构分析表明,结核与围岩中含有相似的碎屑矿物成分,结核通过碳酸盐胶结原始沉积碎屑生长而成。围页岩中的高有机质含量和草莓状黄铁矿揭示了缺氧沉积环境。结核中保存很好的纸房状构造(card-house)和白云石球状构造暗示结核形成于沉积早期沉积物-水界面下0-3米处。在硫酸盐还原带通过有机质分解和甲烷厌氧氧化可产生大量碳酸盐,其充填由有机质分解或发酵产生的气泡或孔洞可形成白云石球状构造。陡山沱组结核的块状构造以及其中透入性分布的球状构造揭示了结核以透入性模式生长,碳酸盐胶结在整个结核中同时成核结晶并生长。
     扫描电镜和岩石磁学方法发现结核与围岩中都含有胶黄铁矿,且结核中的磁性矿物以胶黄铁矿为主,另含少量磁铁矿。磁化率各向异性测量显示,结核与围岩具有完全不同的磁组构特征。围岩磁化率各向异性为扁球状且磁面理与层面平行的正常沉积磁组构,结核磁化率各向异性为长球状且磁线理与层面垂直的反转磁组构。为了解释结核中反转磁组构的成因机制,除磁化率各向异性外还测量了等温剩磁各向异性。测量结果显示,围岩与结核的等温剩磁各向异性具有与磁化率各向异性相似的磁组构特征。岩石磁学分析表明胶黄铁矿控制了结核的反转磁组构特征。与围岩相比,结核并未受到强烈的压实作用,而是通过结核生长保存了原始的沉积组构,表明结核的反转磁组构在早期沉积时就已存在。结核的反转磁组构由胶黄铁矿微晶晶轴定向排列而成,并推测这可能与生长环境有关。在早期还原成岩时,垂向上的化学环境变化以及流体流动使胶黄铁矿的[100]轴垂直层面生长。这种原始沉积磁组构通过结核生长被保存下来,而围岩却由于压实作用使[100]轴平行层面排列,从而形成正常沉积压实磁组构。
Abundant carbonate concretions are distributed in the black shale of the upper Ediacaran Doushantuo Formation in South China. Scanning Electron Microscope (SEM) and rock magnetism studies reveal that the predominant magnetic minerals in the concretions are greigites. Concretion grows through authigenic carbonates cementing detrital materials, and greigite usually forms authigenically in anoxic sedimentary environments in association with dissolution of reactive detrital iron-bearing minerals. So the study of growth and magnetic property of concretions are significant in revealing the early burial and diagenetic environment.
     Mineralogical and textural characteristics reveal the detrital components in concretions are similar to that of the host rocks, which suggest concretions were formed by authigenic carbonate cementation of detrital materials. High organic carbon content and abundance of framboidal pyrites in the hosting shale suggest an anoxic depositional environment. Well-preserved cardhouse clay fabrics in the comcretions suggest their formation at 0-3 m burial depth, likely associated with microbial decomposition of organic matter and anaerobic oxidation of methane. Gases through decomposition of organic matter and/or from methanogenesis created bubbles and cavities, and anaerobic methane oxidation at the sulfate reduction zone resulted in carbonate precipitation, filling in bubbles and cavities to form spherical structures of the concretions. Massive textures and pervasive spherical structures of the Doushantuo concretions suggest the pervasive model of the concretionary growth. Isolated carbonate crystals in the concretions are nucleated and crystallized simultaneously.
     Observation of SEM and results of rock magnetic study all indicate greigite exists in the concretions and host rocks. Especially in the concretions, the magnetic minerals are dominated by greigite, with trace magnetite. The measurement of anisotropy of magnetic susceptibility (AMS) reveals concretions have different magnetic fabric from host rocks. The host rocks show oblate AMS shape with magnetic foliation parallel to the bedding plane, which is referred to as a normal sedimentary magnetic fabric. The concretions show prolate AMS shape with magnetic lineation perpendicular to the bedding plane, which is referred to as an inverse magnetic fabric. Besides AMS, anisotropy of isothermal magnetic remanence (AIRM) are also measured to the sample of concretions and host rocks. The orientation of the principal axes of the AIRM ellipsoid is very similar to those of the AMS ellipsoid. Rock magnetism studies show that greigite contribute to the inverse magnetic fabric of the concretions. As compared with host rocks, concretions had resisted compaction through concretionary growth and preserved primary sedimentary fabric. This evidences that the inverse magnetic fabric have occurred at early sediment. Preferred crystallographic orientation of the greigite produces inverse magnetic fabric of the concretions, which is possibly related with early sedimentary environment. During early reductive diagenesis, vertical change of geochemistry in the sediment column and fluid flow possibly cause [100] axis perpendicular to the bedding plane. This primary magnetic fabric was preserved in the concretions during concretionary growth and change into normal sedimentary-compaction magnetic fabric in the host rocks being greigite [100] axis parallel to the bedding plane by compaction.
引文
[1] Allison P A. The role of anoxia in the decay and mineralization of proteinaceous macro-fossils. Paleobiology, 1988, 14: 139-154
    [2] Astin T R. Septarian crack formation in carbonate concretions from shales and mudstones. Clay Minerals, 1986, 21: 617-631
    [3] Averbuch O, Frizon de Lamotte D, Kissel C. Magnetic fabric as a structural indicator of the deformation path within a fold thrust structure: a test case from the Corbieres (NE Pyrenees, France). Journal of Structural Geology, 1992, 14: 461-474
    [4] Baker P A, Kastner M. Constraints on the formation of sedimentary dolomite. Science, 1981, 213: 215-216
    [5] Baldwin B, Butler C O. Compaction curves. American Association of Petroleum Geologists Bulletin, 1985, 69: 622-626
    [6] Bazylinski D A, Heywood B R, Mann S, et al. Fe3O4 and Fe3S4 in a bacterium. Nature, 1993, 366: 218
    [7] Bennett R H, Bryant W R, Keller G H. Clay fabric of selected submarine sediments: fundamental properties and models. Journal of Sedimentary Petrology, 1981, 51: 217-232
    [8] Berner R A. Calcium carbonate concretions formed by the decompostion of organic matter. Science, 1968, 159: 195-197
    [9] Berner R A. A new geochemical classification of sedimentary environments. Journal of Sedimentary Petrology, 1981, 51: 359-365
    [10] Berner R A. Sedimentary pyrite formation: an update. Geochimmica et Cosmochimica Acta, 1984, 48: 605-615
    [11] Borradaile G J,Tarling D. The influence of deformation mechanisms on magnetic fabrics in weakly deformed rock. Tectonophysics, 1981, 77: 151-168
    [12] Borradaile G. Anisotropy of magnetic susceptibility: rock composition versus strain.Tectonophysics, 1987, 138: 327-329
    [13] Borradaile G J. Magnetic susceptibility, petrofabrics and strain. Tectonophysics, 1988, 156: 1-20
    [14] Borradaile G J. Correlation of strain with anisotropy of magnetic susceptibility (AMS). Pure and Applied Geophysics, 1991, 135: 15-29
    [15] Borradaile G J, Henry B. Tectonic applications of magnetic susceptibility and its anisotropy. Earth-Science Reviews, 1997, 42:49-93
    [16] Borradaile G J. Magnetic fabrics and petrofabrics: their orientation distributions and anisotropies. Journal of structural geology, 2001, 23: 1581-1596
    [17] Canfield D E, Berner R A. Dissolution and pyritization of magnetite in anoxic marine sediments. Geochimmica et Cosmochimica Acta, 1987, 51: 645-659
    [18] Chang L, Roberts A P, Muxworthy A R, et al. Magnetic characteristics of synthetic pseudo-single-domain and multidomain greigite (Fe3S4). Geophysical Research Letters, 2007, 34, L24304, doi: 10.1029/2007GL032114
    [19] Chang L, Roberts A P, Tang Y, et al. Fundamental magnetic parameters from pure synthetic greigite (Fe3S4). Journal of Geophysical Research, 2008, 113, B06104, doi: 10.1029/2007JB005502
    [20] Chang L, Roberts A P. Low-temperature magnetic properties of greigite (Fe3S4). Geochemistry Geophysics Geosystems, 2009, 10, Q01Y04, doi: 10.1029/2008GC002276
    [21] Chen J Y, Bottjer D J, Oliveri P, et al. Small bilaterian fossils from 40-50 million years before the Cambrian. Science, 2004, 305: 218-222
    [22] Chilingarian G V. Compactional diagenesis. In: Parker A, Sellwood B W, eds. Sediment diagenesis. Holland: D Reidel Publishing Company, 1983. 57-167
    [23] Cogne J P, Perroud H. Anisotropy of magnetic susceptibility as a strain gauge in the Flamanville granite, NW France. Physics of the Earth and Planetary Interiors, 1988, 51: 264-270
    [24] Cogne J P, Perroud H, Texier M P, et al. Strain reorientation of hematite and its bearingupon remanent magnetization. Tectonics, 1986, 5:753-767
    [25] Collombat H, Rochette P, Vialon P. Magnetic fabric as a strain indicator in unconsolidated sediments of the Chile Triple Junction area. Lewis S D, Behrmann J H, Musgrave R J, et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results, 1995, 141: 29-49
    [26] Coleman M L, Raiswell R. Carbon, oxygen and sulphur isotope variation in carbonate concretions from the Upper Lias of NE England. Geochimica et Cosmochimica Acta, 1981, 45: 329-340
    [27] Coleman M L, Raiswell R. Microbial mineralization of organic matter: Mechanisms of self-organization and inferred rates of precipitation of diagenetic minerals. Philosophical Transactions of Royal Society, 1993, 344: 69-87
    [28] Compton J S. Degree of supersaturation and precipitation of organogenic dolomite. Geology, 1988, 16: 318-321
    [29] Condon D, Zhu M, Bowring S, et al. U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science, 2005, 308: 95-98
    [30] Criss R E, Cooke G A, Day S D. An organic origin for the carbonate concretions of the Ohio shale. US Geological Survey, Bulletin, 1988, 1836: 1-21
    [31] Curtis C D, Petrowski C, Oertel G. Stable carbon isotope ratios within carbonate concretions: A clue to place and time of formation. Nature, 1972, 235: 98-100
    [32] Curtis C D, Coleman M L, Love L G. Pore water evolution during sediment burial from isotopic and mineral chemistry of calcite, dolomite and siderite concretions. Geochimica et Cosmochimica Acta, 1986, 50: 2321-2334
    [33] Day R, Fuller M D, Schmidt V A. Hysteresis properties of titanomagnetites: grain size and composition dependence. Physics of the Earth and Planetary Interiors, 1977, 13: 260-267
    [34] Dekkers M J. Magnetic properties of natural pyrrhotiteⅡ. High- and low-temperature behaviour of Jrs and TRM as a function of grain size. Physics of the Earth and Planetary Interiors, 1989a, 57: 266-283
    [35] Dekkers M J, Mattei J L, Fillion G, et al. Grain-size dependence of the magnetic behavior ofpyrrhotite during its low-temperature transition at 34K. Geophysical Research Letters, 1989b, 16: 855-858
    [36] Dekkers M J, Passier H F, Schoonen M A A. Magnetic properties of hydrothermally synthesized greigite. PartⅡ: High- and low- temperature characteristics. Geophysical Journal International, 2000, 141: 809-819
    [37] Dong J, Zhang S H, Jiang G Q, et al. Early diagenetic growth of carbonate concretions in the upper Doushantuo Formation in South China and their significance for the assessment of hydrocarbon source rock. Science in China (Earth Sciences), 2008, 51(9): 1330-1339
    [38] Duck R W. SEM study of clastic fabrics preserved in calcareous concretions from the late-Devensian Errol Beds, Tayside. Scottish Journal of Geology, 1990, 27: 333-339
    [39] Duck R W. Subaqueous shrinkage cracks and early sediment fabrics preserved in Pleistocene calcareous concretions. Journal of the Geological Society, London, 1995, 152: 151-156
    [40] Dunlop D J. Superparamagnetic and single-domain threshold sizes in magnetite. Journal of Geophysical Research, 1973, 78: 1780-1793
    [41] Dunlop D. Theory and application of t he Day plot (Mrs/ Ms versus Hcr/ Hc), 1: Theoretical curves and test s using titanomagnetite data. Journal of Geophysical Research, 2002, 107(B3): 2056, doi: 10. 1029/ 2001JB000486
    [42] Dunlop D. Theory and application of the Day plot (Mrs/ Ms versus Hcr/ Hc), 2: Application to data for rocks , sediments , and soils. Journal of Geophysical Research, 2002, 107(B3): 2057, doi: 10.1029/ 2001JB000487
    [43] Espitalie J. Rapid method for the characterization of source rocks - their petroleum potential and degree of evolution. Rev Inst Fr Petr, 1977, 32: 23-42
    [44] Espitalie J, Madea M, Tissot B. Role of mineral matrix in kerogen pyrolysis: influence on petroleum generation and migration. American Association of Petroleum Geologists Bulletin, 1980, 64: 59-66
    [45] Fisher R A. Dispersion on a sphere. Proceeding of the Royal Society of London, 1953,A217: 295-305
    [46] Fisher Q J, Raiswell R, Marshall J D. Siderite concretions from non-marine shales (Westphalian A) of the Pennines, England: controls on their growth and composition. Journal of Sedimentary Research, 1998, 68: 1034-1045
    [47] Florindo F, Sagnotti L. Palaeomagnetism and rock magnetism in the upper Pliocene Valle Ricca (Rome, Italy) section. Geophysical Journal International, 1995, 123: 340-354
    [48] Fuller M D. Magnetic anisotropy and paleomagnetism. Journal of Geophysical Research, 1963, 68: 293-309
    [49] Gauthier D L. Siderite concretions: indicators of early diagenesis in the Gammon shale (Cretaceous). Journal of Sedimentary Petrology, 1982, 52: 859-871
    [50] Gehmen H M. Organic matter in limestone. Geochim Cosmochim Acta, 1962, 26: 885-897
    [51] Goldstein A G. Magnetic susceptibility anisotropy of mylonites form the Lake Char mylonite zone, southeastern New England. Tectonophysics, 1980, 66: 197-211
    [52] Graham J W. Magnetic susceptibility anisotropy, an unexploited petrofabric element. Geo. Soc. Am. Bull. , 1954, 65: 1257-1258
    [53] Hamilton N, Rees A I. The use of magnetic fabric in palaeocurrent estimation. In: Palaeogeophysics. Runcorn S K, eds. London: Academic Press, 1970
    [54] Hayter E J. Estuarial sediment bed model. In: Mehta A J, eds. Estuarine Cohesive Sediment Dynamics. Berlin: Springer-Verlag, 1986. 326-359
    [55] Hedley I G. The weak ferromagnetism of goethite (αFeOOH). Journal of Geophysical, 1971, 37: 409-420
    [56] Henry B, Daly L. From qualitative to quantitative magnetic anisotropy analysis: the prospect of finite strain calibration. Tectonophysics, 1983, 98: 327-336
    [57] Hendry J P, Pearson M J, Trewin N H. Jurassic septarian concretions from NW Scotland record interdependent bacterial, physical and chemical processes of marine mudrock diagenesis. Sedimentology, 2006, 53: 537-565
    [58] Hirt A M, Lowrie W, Pfiffner O A. A paleomagnetic study of tectonically deformed redbedsof lowe glarus nappe complex, eastern Switzerland. Tectonics, 1986, 5: 723-731
    [59] Hirt A M, Lowrie W, Clendenen W S, et al. The correlation of magnetic anisotropy with stain in the Chelmsford Formation of the Sudbury Basin, Ontario. Tectonophysics, 1988, 145: 177-189
    [60] Hirt A, Julivert M, Soldevila J. Magnetic fabric and deformation in the Navia-Alto Sil slate belt, northwestern Spain. Tectonophysics, 2000, 320: 1-16
    [61] Hoffmann V. Greigite (Fe3S4), magnetic properties and first domain observation. Physics of the Earth and Planetary Interiors, 1992,70: 288-301
    [62] Horng C S, Torri M, Shea K S, et al. Inconsistent magnetic polarities between greigite- and Pyrrhotite/magnetite-bearing marine sediments from the Tsailiaochi section, southwestern Taiwan. Earth and Planetary Science Letters, 1998, 164: 467-481
    [63] Hounslow M W. Significance of localized pore pressure to the genesis of septarian concretions. Sedimentology, 1997, 44: 1133-1147
    [64] Housen B, Richter C, van der Pluijm B A. Composite magnetic anisotropy fabrics: experiments, numerical models, and implications for the quantification of rock fabrics. Tectonophysics, 1993, 200: 1-12
    [65] Housen B, van der Pluijm B A, Essene E J. Plastic behavior of magnetite and high strains obtained from magnetic fabrics in the Parry Sound shear zone, Ontario Grenville Province. Journal of Structural Geology, 1995, 17: 265-278
    [66] Hrouda F. The origin of cleavage in the light of magnetic anisotropy investigations. Physics of the Earth and Planetary Interiors, 1976 ,13: 132-142
    [67] Hrouda F. Magnetic anisotropy of rocks and its application in geology and geophysics. Geophysical Surveys, 1982, 5: 37-82
    [68] Hudson J D. Concretions, isotopes and the diagenetic history of the Oxford Clay (Jurassic) of central England. Sedimentology, 1978, 25: 339-370
    [69] Hunger S, Benning L G. Greigite : a true intermediate on the polysulfide pathway to pyrite. Geochem. Trans. 2007, 8(1). Doi: 10.1186/1467-4866-8-1
    [70] Ihmle P F, Hirt A, Lowrie W, et al. Inverse magnetic fabric in deformed limestones of the Morcles nappe, Switzerland. Geophysical Research Letters, 1989, 16: 1383-1386
    [71] Irwin H, Curtis C D, Coleman M L. Isotopic evidence for source of diagenetic carbonates formed during of organic rich sediments. Nature, 1977, 269: 209-213
    [72] Ising G. On the magnetic properties of varved clay. Ark. Mat. Astron. Fys., 1942, 29a: 1-37
    [73] Jackson M, Tauxe L. Anisotropy of magnetic susceptibility and remanence: developments in the characterization of tectonic, sedimentary, and igneous fabric. Geophysical Research Letters, 1991, 29: 371-376
    [74] Jackson, M. Anisotropy of magnetic remanence: a brief review of mineralogical sources, physical origins, and geological applications, and comparison with susceptibility anisotropy. Pure and Applied Geophysics, 1991, 136: 1-28
    [75] Jacobs I S. Metamagnetism of siderite (FeCO3). J. Appl. Phys., 1963, 34: 1106-1107
    [76] Jelinek V. Statistical processing of anisotropy of magnetic susceptibility measured on groups of specimens. Studia Geoph. et Geodetica., 1978, 22: 50-62
    [77] Jelinek V. Characterization of the magnetic fabrics of rocks. Tectonophysics, 1981, 79: 63-67
    [78] Jelinek V. Theory and measurement of the anisotropy of isothermal remanent magnetization of rocks. Travaux geophysiques, 1993, 37: 124-134
    [79] Jenkins R J, Cooper J A, Compston W. Age and biostratigraphy of Early Cambrian tuffs from SE Australia and southern China. J. Geol. Soc. (Londn.), 2002, 159:645-658
    [80] Jiang G, Kennedy M J, Christie-Blick N. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature, 2003a, 426: 822-826
    [81] Jiang G, Sohl L E, Christie-Blick N. Neoproterozoic stratigraphic comparison of the Lesser Himalaya (India) and Yangtze Block (South China): paleogeographic implications. Geology, 2003b, 31: 917-920
    [82] Jiang G Q, Kennedy M J, Christie-Blick N, et al. Stratigraphy, sedimentary structures, and textures of the late Neoproterozoic Doushantuo cap carbonate in South China. JournalSediment Res, 2006a, 76: 978-995
    [83] Jiang G Q, Shi X Y, Zhang S H. Methane seeps, methane hydrate destabilization, and the late Neoproterozoic postglacial cap carbonates, Chin Sci Bull, 2006b, 51: 1152-1173
    [84] Jiang G, Kaufman A J, Christie-Blick N, et al. Carbon isotope variability across the Ediacaran Yangtze platform in South China: Implications for a large surface-to-deep oceanδ13C gradient. Earth and Planetary Science Letter, 2007, 261: 303-320
    [85] Jiang W T, Horng C S, Roberts A P, et al. Contradictory magnetic polarities in sediments and variable timing of neoformation of authigenic greigite. Earth and Planetary Science Letters, 2001, 193:1-12
    [86] Kao S J, Horng C S, Roberts A P, et al. Carbon-sulfur-iron relationships in sedimentary rocks from southwestern Taiwan: influence of geochemical environment on greigite and pyrrhotite formation . Chem. Geol., 2004, 203: 153-168
    [87] Karlin R, Levi S. Diagenesis of magnetic minerals in recent haemipelagic sediments. Nature, 1983, 303: 327-330
    [88] Karlin R. Magnetic mineral diagenesis in suboxic sediments at Bettis site W-N, NE Pacific Ocean. Journal of Geophysical Research, 1990a, 95:4421-4436
    [89] Karlin R. Magnetite diagenesis in marine sediments from the Oregon continental margin. Journal of Geophysical Research, 1990b, 95: 4405-4419
    [91] Kasten S, Freudenthal T, Gingele F X, et al. Simultaneous formation of iron-rich layers at different redox boundaries in sediments from the Amazon deepsea fan. Geochim. Cosmochim. Acta, 1998, 62,2253-2264
    [92] Kasten S, Zabel M, Heuer V, et al. Processes and signals of nonsteady-state diagenesis in deep-sea sediments and their pore waters, in: Wefer G, Mulitza S, Ratmeyer V, eds. The South Atlantic in the Late Quaternary: Reconstruction of Material Budgets and Current Systems. Springer-Verlag, Berlin, 2003, 431-459
    [93] Khan M A. Anisotropy of magnetic susceptibility of some igneous and metamorphic rocks. Journal of Geophysical Research, 1962, 67:2873-2885
    [94] King J, Banerjee S K, Marvin J, et al. A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials. Earth and Planetary Science Letters, 1982, 59: 404-419
    [95] Kligfield R, Lowrie W, Dalziel I W D. Magnetic susceptibility anisotropy as a strain indicator in the Sudbury basin, Ontario. Tectonophysics, 1977,40: 287-308
    [96] Kligfield R, Lowrie W, Hirt A, et al . Effect of progressive deformation on remanent magnetization of Permian redbeds from the Alpes Maritimes (France). Tectonophysics, 1983, 97: 59-85
    [97] Knoll A H, Walter M R, Narbonne G M, et al. A new period for the geologic time scale. Science, 2004, 305: 621-622
    [98] Kodama, K P, Sun W W. SEM and magnetic fabric study of a compacting sediment. Geophysical Research Letters, 1990, 17: 795-798
    [99] Krs M, Krsova M, Pruner P. et al. A petromagnetic study of Miocene rocks bearing micro-organic material and the magnetic mineral greigite (Sokolov and Cheb basins, Czechoslovakia). Physics of the Earth and Planetary Interiors, 1990,63: 98-112
    [100] Lamarche G, Rochette P. Microstructural analysis and origin of lineations in the magnetic fabric of some Alpine slates. Tectonophysics, 1987, 139: 285-293
    [101] Larrasoana J C, Roberts A P, Musgrave R J, et al. Diagenetic formation of greigite and pyrrhotite in gas hydrate marine sedimentary systems. Earth and Planetary Science Letters, 2007, 261: 350-366
    [102] Lash G G, Blood D R. Origin of shale fabric by mechanical compaction of flocculated clay: evidence from the upper Devonian Rhinestreet Shale, Western New York, U.S.A. Journal of Sedimentary Research, 2004a, 74: 110– 116
    [103] Lash G G, Blood D R. Geochemical and textural evidence for early (shallow) diagenetic growth of stratigraphically confined carbonate concretions, Upper Devonian Rhinestreet black shale, western New York. Chemical Geology, 2004b, 206:407-424
    [104] Li C W, Chen J Y, Hua T E. Precambrian sponges with cellular structures. Science, 1998,279: 879-882
    [105] Li Z X, Li X H, Kinny P D, et al. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: evidence for a mantle superplume that broke up Rodinia. Precambrain Res, 2003, 122: 85-109
    [106] Liu J, Zhu R X, Roberts A P, et al. High-resolution analysis of early diagenetic effects on magnetic minerals in post-middle-Holocene continental shelf sediments from the Korea Strait. Journal of Geophysical Research, 2004, 109, B03103, doi:10. 1029/2003JB002813
    [107] Lowrie W, Hirt A M, Kligfield R. Effects of tectonic deformation on the remanent magnetization of rocks. Tectonics, 1986, 5: 713-722
    [108] Lowrie W. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophysical Research Letters, 1990, 17: 159-162
    [109] Ma G, Lee H, Zhang Z. An investigation of the age limits of the Sinian System in south China. Bull. Yichang Inst. Geol. Miner. Resour., 1984, 8: 1-19
    [110] Martill D M, Hudson J D. Injection clastic dykes in the Lower Oxford Clay (Jurassic) of central England: relationship to compaction and concretion formation. Sedimentology, 1989, 36: 1127-1133
    [111] Mazzullo S J. Organogenic dolomitization in peritidal to deep-sea sediments. Journal of Sedimentary Research, 2000, 70: 10-23
    [112] Mothersill J, Borradaile G. Tectonic strain and paleomagnetism: experimental investigation. Physics of the Earth and Planetary Interiors, 1989, 56: 254-265
    [113] Moon C F. The microstructure of clay sediments. Earth-Science Review, 1972, 8: 303-321
    [114] Mozley P S. Complex zonation in concretionary siderite: implications for geochemical studies. Journal of Sedimentary Petrology, 1989, 59: 815-818
    [115] Mozley P S, Burns S J. Oxygen and carbon isotopic composition of marine carbonate concretions: an overview. Journal of Sedimentary Petrology, 1993, 63: 73-83
    [116] Mozley P S. The internal structure of carbonate concretions in mudrocks: acritical evaluation of the conventional concentric model of concretion growth. Sedimentary Geology, 1996,103: 85-91
    [117] Musgrave R J, Collombat H, Didenko A N. Magnetic sulfide diagenesis, thermal overprinting, and paleomagnetism of accretionary wedge and convergent margin sediments from the Chile Triple Junction region. Lewis S D, Behrmann J H, Musgrave R J, Cande S C. (Eds.). Proceedings of the Ocean Drilling Program, Scientific Results., 1995, 141: 59-76
    [118] Muxworthy A R, Dunlop D J, Williams W. High-temperature magnetic stability of small magnetite particles. Journal of Geophysical Research, 2003, 108(B5), 2281, doi: 10.1029/2002JB002195
    [119] Neretin L N, Bottcher M E, Jorgensen B B, et al. Pyritization processes and greigite formation in the advancing sulfidization front in the Upper Pleistocene sediments of the Black Sea. Geochim. Cosmochim. Acta, 2004, 68: 2081-2093
    [120] Oertel G, Curtis C D. Clay ironstone concretion preserving fabrics due to progressive compaction. Geological Society of America Bulletin, 1972, 83: 2597-2606
    [121] Owens W H. Mathematical model studies on factors affecting the magnetic anisotropy of deformed rocks. Tectonophysics, 1974, 24: 115-131
    [122] Ozdemir O, Dunlop D J. Thermoremanence and Neel temperature of goethite. Geophysical Research Letters, 1996, 23: 921-924
    [123] Ozdemir O, Dunlop D J, Moskowitz B M. Changes in remanence, coercivity and domain state at low temperature in magnetite. Earth and Planetary Science Letters, 2002, 194: 343-358
    [124] Pantin H M. Rate of formation of a diagenetic calcareous concretion. J. Sediment. Petrol., 1958, 28: 366-371
    [125] Pares J P, van der Pluijm B A, Dinares-Turrell J. Evolution of magnetic fabric during incipient deformation of mudrocks (Pyrennees, Northern Spain). Tectonophysics, 1999, 307: 1-14
    [126] Pares J M, Van der Pluijm B A. Evaluating magnetic lineations (AMS) in deformed rocks. Tectonophysics, 2002, 350: 283-298
    [127] Pearson M J. Geochemistry of the Hepworth Carboniferous sediment sequence and the origin of diagenetic iron minerals and concretions. Geochimica et Cosmochimica Acta, 1979, 43: 927-941
    [128] Peters C, Dekkers M J. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Physics and Chemistry of the Earth, 2003, 28: 659-667
    [129] Potter D K, Stephenson A. Single-domain particles in rocks and magnetic fabric analysis. Geophysical Research Letter, 1988, 15: 1097-1100
    [130] Raiswell R. The growth of Cambrian and Liassic concretions. Sedimentology, 1971, 17: 141-171
    [131] Raiswell R. The microbiological formation of carbonate concretions in the Upper Lias of N.E. Englan. Chemical Geology, 1976, 18: 227-244
    [132] Raiswell R. Pyrite texture, isotopic composition and availability of iron. American Journal of Science, 1982, 82: 1244-1263
    [133] Raiswell R. Non-steady state microbial diagenesis and the origin of carbonate concretions and nodular limestones. In: Marshall J D, eds. Diagenesis of sedimentary sequences. Geol Soc London, Spec Publ, 1987, 36: 41-54
    [134] Raiswell R. A chemical model for the origin of minor limestone-shale cycles by anaerobic methane oxidation. Geology, 1988, 16: 641-644
    [135] Raiswell R, Fisher Q J. Mudrock-hosted carbonate concretions: a review of growth mechanisms and their influence on chemical and isotopic composition. Journal of the Geological Society, London, 2000, 157: 239-251
    [136] Ramsay J G, Huber M I. The techniques of Modern Structural Geology, Volume 1: Strain Analysis. New York: Academic Press, 1983
    [137] Rathore J S, Courrioux G, Choukroune P. Study of ductile shear zones (Galicia, Spain) using texture goniometry and magnetic fabric methods. Tectonophysics, 1983, 98: 87-109
    [138] Reynolds R L, Tuttle M L, Rice C A, et al. Magnetization and geochemistry ofgreigite-bearing Cretaceous strata, North Slope basin, Alaska. Am. J. Sci., 1994, 294: 485-528
    [139] Richardson W A. On the origin of septarian structure. Mineral Mag, 1919, 56: 327-337
    [140] Rieke H H, Chilingarian G V. Compaction of argillaceous sediments. Developments in Sedimentology. Elsevier, Amsterdam, 1974, 16
    [141] Roberts A P, Turner G M. Diagenetic formation of ferromagnetic iron sulphide minerals in rapidly deposited marine sediments, South Island, New Zealand, Earth and Planetary Science Letters, 1993, 115, 257-273
    [142] Roberts A P. Magnetic characteristics of sedimentary greigite (Fe3S4). Earth and Planetary Science Letters, 1995, 134, 227-236
    [143] Roberts A P, Stoner J S, Richter C. Diagenetic magnetic enhancement of sapropels from the eastern Mediterranean Sea. Marine Geology, 1999, 153: 103-116
    [144] Roberts A P, Weaver R. Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4). Earth and Planetary Science Letters, 2005, 231: 263-277
    [145] Roberts A P, Liu Q S, Rowan C J, et al. Characterization of hematite (α-Fe2O3), goethite (α-FeOOH), greigite (Fe3S4), and pyrrhotite (Fe7S8) using first-order reversal curve diagrams. Journal of Geophysical Research, 2006, 111, B12S35, doi: 10.1029/2006JB004715
    [146] Rochette P. Inverse magnetic fabric in carbonate-bearing rocks, Earth and Planetary Science Letters, 1988, 90: 229-237
    [147] Rochette P, Fillion G, Mattei J L, et al. Magnetic transition at 30-34K Kelvin in pyrrhotite: Insight into a widespread occurrence of this mineral in rocks. Earth Planet. Sci. Lett., 1990, 98: 319-328
    [148] Rochette P, Jackson M, Aubourg C. Rock magnetism and the interpretation of the anisotropy of magnetic susceptibility. Rev. Geophys., 1992, 30: 209-226
    [149] Rochette P, Scaillet B, Guillot S, et al. Magnetic properties of the High Himalayan leucogranites: structural implications. Earth and Planetary Science Letters, 1994, 126:217-234
    [150] Rochette P, Aubourg C, Perrin M. Is this magnetic fabric normal? A review and case studies in volcanic formations. Tectonophysics, 1999, 307: 219-234
    [151] Rowan C J, Roberts A P. Tectonic and geochronological implications of variably timed magnetizations carried by authigenic greigite in marine sediments from New Zealand. Geology, 2005, 33: 553-556
    [152] Rowan C J, Roberts A P. Magnetite dissolution, diachronous greigite formation, and secondary magnetizations from pyrite oxidation: Unravelling complex magnetizations in Neogene marine sediments from New Zealand. Earth and Planetary Science Letters, 2006, 241: 119-137
    [153] Rowan C J, Roberts A P. Widespread remagnetizations and a new view of tectonic rotations within the Australia-Pacific plate boundary zone, New Zealand. Journal of Geophysical Research, 2008a, 113 (B03103)
    [154] Rowan C J, Roberts A P, Broadbent T. Reductive diagenesis, magnetite dissolution, greigite growth and paleomagnetic smoothing in marine sediments: A new view. Earth and Planetary Science Letters, 2008b, doi: 10.1016/j.epsl.2008.10.016
    [155] Ruf A S, Naruk S J, Butler R F, et al. Strain and magnetic fabric in the Santa Catalina and Pinaleno mountains metamorphic core complex mylonite zones, Arizona. Tectonics, 1988, 7: 235-248
    [156] Sagnotti L, Speranza F. Magnetic fabric analysis of the Plio-Pleistocene clayey units of the Sant’Arcangelo basin, southern Italy. Physics of the Earth and Planetary Interiors, 1993, 77: 165-176
    [157] Sagnotti L, Speranza F, Winkler A, et al. Magnetic fabric of clay sediments from the external northern Apennines (Italy). Physics of the Earth and Planetary Interiors, 1998, 105: 73-93
    [158] Sagnotti L, Winkler A. Rock magnetism and paleomagnetism of greigite bearing mudstones in the Italian peninsula. Earth and Planetary Science Letters, 1999, 165:67-80
    [159] Sagnotti L, Winkler A, Alfonsi L, et al. Paleomagnetic constrains on the Plio-Pleistocene geodynamic evolution of the external central-northern Apennines (Italy). Earth and Planetary Science Letters, 2000, 180: 243-257
    [160] Sagnotti L, Winkler A, Weaver R, et al. Apparent magnetic polarity reversals due to remagnetization resulting from late diagenetic growth of greigite from siderite. Geophysical Journal International, 2005, 160: 89-100
    [161] Scotchman I C. The geochemistry of concretions from the Kimmeridge Clay Formation of southern and eastern England. Sedimentology, 1991, 38: 79-106
    [162] Selles-Martinez J. Concretion morphology, classification and genesis. Earth Science Review, 1996, 41: 177-210
    [163] Skinner B J, Erd R C, Grimaldi F S. Greigite, the thio-spinel of iron: a new mineral, Am. Mineral. 1964, 49: 543-555
    [164] Spender M R, Coey M D, Morrish A H. The magnetic properties and Mossbauer spectra of synthetic samples of Fe3S4. Can. J. Phys., 1972, 50: 2313-2326
    [165] Stephenson A, Sadikun S, Potter D K. A theoretical and experimental comparison of the anisotropies of magnetic susceptibility and remanence in rocks and minerals. Geophys. J. R., 1986, 84: 185-200
    [166] Tarling D H, Hrouda F. The Magnetic Anisotropy of Rocks. London: Chapman and Hall, 1993
    [167] Tarr W A. Syngenetic origin of concretions in shale. Bull Geol Soc Am, 1921, 32: 373-384
    [168] Tauxe L, Butler R, Banerjee S K, et al. Essentials of Paleomagnetism, University of California Press, 2009
    [169] Tissot B, Espitalie J. Thermal evolution of organic matter in sediments: a mathematical simulation model. Rev Inst Fr Petr, 1975, 30: 743-777
    [170] Tang Y Q, Chen W, Xiong Y, et al. Magnetic field-induced increse in conversion rate of Fe3S4 toFeS2. Chin. J. Inorg. Chem., 2007, 23, 941-947
    [171] Torri M, Fukuma K, Horng C S, et al. Magnetic discrimination of pyrrhotite- andgreigite-bearing sediment samples. Geophysical Research Letters, 1996, 23: 1813-1816
    [172] Tric E, Laj C, Jehanno C, et al. High-resolution record of the upper Olduvai transition from Po Valley (Italy) sediments: support for dipolar transition geometry? Physics of the Earth and Planetary Interiors, 1991, 65: 319-336
    [173] van den Berghe R E, de Grave E, de Bakker P M A, et al. Mossbauer effect study of natural greigite. Hyperfine Interact., 1991, 68: 319-322
    [174] Verwey E J W. Electronic conduction of magnetite (Fe3O4) and its transition point at low temperature. Nature, 1939, 144: 327-328
    [175] Vetter J R, Kodama K P, Goldstein A. Reorientation of remanent magnetism during tectonic fabric development: an example from the Waynesboro Formation Pennsylvania, USA. Tectonophysics, 1989, 165: 29-39
    [176] Wang Q, Morse J W. Pyrite formation under conditions approximating those in anoxic sediments I. Pathway and morphology. Mar. Chem., 1996, 52: 99-121
    [177] Wang S M, Hu S Y, Appel E, et al. Incursion of Sea Water into Gucheng Lake Detected by Magnetic, Biologic and Chemical Data. Phys. Chem. Earth, 1999, 24 (9): 805-809
    [178] Weeks L G. Environment and mode of origin and facies relationships of carbonate concretions in shales. J. Sediment. Petrol., 1953, 23(3): 162-173
    [179] Wignall P B, Newton R. Pyrite framboid diameter as a measure of oxygen deficiency in ancient mudrocks. Am J Sci, 1998, 298: 537-552
    [180] Wilkin R T, Barnes H L, Brantley S L. The size distribution of framboidal pyrite in modern sediments: an indicator of redox conditions. Geochim Cosmochim Acta, 1996, 60: 3897-3912
    [181] Wilkin R T, Barnes H L. Formation processes of framboidal pyrite. Geochim. Cosmochim. Acta, 1997, 61: 323-339
    [182] Xiao S H, Zhang Y., Knoll A H. Three-dimentional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 1998, 391: 516-519
    [183] Xiao S H, Yuan X L, Steiner M, et al. Macroscopic carbonaceous compressions in a terminalProterozoic shale: a systematic reassessment of the Miaohe biota, South China. J Paleontol, 2002, 76: 347-376
    [184] Xiao S H. New multicellular algal fossils and acritarchs in Doushantuo chert nodules (Neoproterozoic; Yangtze Gorges area, South China). J Paleontol, 2004, 78: 393-401
    [185] Yamaguchi S, Wada H. Magnetic anisotropy of Fe3S4 as revealed by electron diffraction. J. Appl. Phys., 1970, 41:1873-1874
    [186] Yin C, Liu D, Gao L, et al. Lower boundary age of the Nanhua System and the Gucheng glacial stage: evidence from SHRIMP dating. Chin. Sci. Bull., 2003, 48, 1657-1662
    [187] Yin C. Microfossils from the Upper Sinian (Late Neoproterozoic) Doushantuo Formation in Changyang, western Hubei, China. Continental Dynamics, 1999, 4: 1-18
    [188] Yin L, Zhu M, Knoll A H, et al. Doushantuo embryos preserved inside diapause egg cysts. Nature, 2007, 446: 661-663
    [189] Yuan X L, Xiao S H, Taylor T N. Lichen-like symbiosis 600 million years ago. Science, 2005, 308: 1017-1020
    [190] Zabawa C F. Microstructure of agglomerated suspended sediments in Northern Chesapeake Bay Estuary. Science, 1978, 202: 49-51
    [191] Zhang S H, Jiang G Q, Zhang J, et al. U-Pb sensitive high-resolution ion microprobe ages from the Doushantuo Formation in south China: Constraints on late Neoproterozoic glaciations. Geology, 2005, 33: 473-476
    [192] Zhang S H, Jiang G Q, Han Y G, et al. The age of Nantuo Formation and Nantuo glaciation in South China. Terra Nova, 2008, 20(4): 289-294
    [193] Zhang Y, Yin L M, Xiao S H, et al. Permineralized fossils from the terminal Proterozoic Doushantuo Formation, South China. Plaeontol Soc Mem, 1998, 50: 1-52
    [194] Zhou C M, Brasier M D, Xue Y S. Three-dimensional phosphatic preservation of giant acritarch from the Terminal Proterozoic Doushantuo Formation in Guizhou and Hubei provinces, south China. Palaeontology, 2001, 44: 1157-1178
    [195] Zhou C, Tucker R, Xiao S, et al. New constraints on the ages of Neoproterozoic glaciationsin south China. Geology, 2004, 32: 437-440
    [196] Zhou C M, Xiao S H. Ediacaranδ13C chemostratigraphy of South China. Chem Geol, 2007, 237: 89-108
    [197] Zhu M, Strauss H, Shields G A. From snowball earth to Cambrian bioradiation: Calibration of Ediacaran-Cambrian earth history in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254: 1-6
    [198]丁莲芳,李勇,胡夏嵩等.震旦纪庙河生物群.北京:地质出版社. 1996
    [199]傅家谟,刘德汉.碳酸盐岩有机质演化特征与油气评价.石油学报, 1982, 1: 1-9
    [200]刘宝珺.沉积岩石学.北京:地质出版社, 1980
    [201]刘万洙,王璞珺.松辽盆地嫩江组白云岩结核的成因及其环境意义.岩相古地理, 1997, 17: 22-27
    [202]全国地层委员会.中国地层指南及中国地层指南说明书(修订版).北京:地质出版社. 2001
    [203]全国地层委员会.中国区域年代地层(地质年代)表说明书.北京:地质出版社. 2002.
    [204]王璞珺,王东坡,常平等.油页岩中生物及有机质与金属元素富集的关系及机理探讨.长春地质学院学报, 1996, 26: 47-53
    [205]张水昌,童箴言.海相碳酸盐岩中矿物结合有机质的组成及成烃演化.沉积学报, 1992, 10: 76-82
    [206]周中毅,叶继荪,盛国英等.碳酸盐矿物的包裹有机质及其生油意义.地球化学, 1983, 3: 276-284

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700