用户名: 密码: 验证码:
青藏高原通天河盆地中新世早期五道梁组沉积特征及与高原隆升的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中新世是青藏高原整体隆升和环境变化的关键时期。可可西里盆地是青藏高原北部最大的陆相新生代沉积盆地,盆地中新世早期发育了分布面积广泛的五道梁组淡水湖相灰岩,表明这里曾经发育了面积巨大的古大湖。将其称为“五道梁古大湖”。五道梁古大湖存在期间恰逢青藏高原的快速隆升关键时期,研究该湖泊的环境演化能够为深入了解青藏隆升与气候环境演化关系提供重要信息。
     本文选择通天河盆地五道梁组剖面作为研究对象,在该剖面进行系统采样,用沉积学、岩相及相分析及介形虫壳体微量元素和氧碳同位素地球化学等方法研究湖泊的沉积特征及沉积环境的演变。
     岩石学和岩相学分析结果可知,通天河盆地五道梁组记录了五道梁古大湖由最初的浅湖、演变为盐湖中间有短暂的浅湖环境相间分布,随后水体加深成为深湖环境,之后水体下降成滨湖环境,之后再次成为浅湖后再次加深,最后变浅逐渐加深。反映在通天河盆地区域是位于整个五道梁古大湖由深水向浅水过渡带,使湖泊相变较为频繁的地区。
     通过对五道梁组中介形虫壳体化石丰度的研究认为五道梁古大湖发育初期湖泊生产力较低,而随着湖泊的扩张和加深,生产力逐渐提高;介形虫壳体氧碳同位素分析结果认为,总体上来讲五道梁古大湖不属于典型的封闭型湖泊;介形虫微量元素地球化学特征反映了从整体上湖水的盐度随着湖泊的发展变小,水温升高。中间有多次盐度和水温的变化。
     综合五道梁组沉积特征恢复古湖泊的盐度和湖水面的变化特点,反映了23.8~21.8 Ma前该湖泊区域气候由湿润-干旱-暖湿的演化趋势。气候两次明显的变化是区域性事件,可能是同时期青藏高原中部和北部的快速隆升的结果。该研究为进一步了解青藏高原北部的古环境探索了一条新的途径。
Early Miocene is the key period of Tibetan Plateau uplift.HXL is the largest nonmarine deposit basin in northern Tibet. Wudaoliang Group greatly distribute in this basin Early Miocene,which shows that large paleolake exist,the paleolake named Wudaoliang paleolake.The study of paleoenvironment evolution of the paleolake will provide more useful information for the relation of Plateau uplift and environment change. Wudaoliang Group in Tongtianhe Basin has been chosen in this paper.The samples has been collected by the numbers.The methods of sedimentology,petrology and geochemistry are used to study the deposit characteristic and paleoenvironment evolution of Wudaoliang Group.
     The results of petrology and sedimentology show that Wudaoliang Group in Tongtianhe Basin record the development of Wudaoliang paleolake,first is shallow lake environment to a long period saltlake environment ,in which exist a short period of shallow lake environment,and then the depth of the lake increased .After the lake level change shallow again, the depth of the lake increased continuously
     The preserve condition of ostracod shell show that Wudaoliang Group in Tongtianhe Basin record Wudaoliang paleolake initially paleoproductivity is poor,and then together with the development of the lake, paleoproductivity of the lake rising .The geochemisty of Oxygen and Carbon isotopics of ostracod shell indicate that generally Wudaoliang paleolake is not a typical closed lake. The characteristic of Mg/Ca and Sr/Ca of ostracod shell geochemistry show that the salinity of Wudaoliang paleolake increased followed the development of the lake,at the meantime the temperature of the lake also increased.At the process the salinity and temperature of the lake change many times.
     Intergration the deposit characteristic of Wudaoliang Group reconstruct the paleosalinity and paleolake level of Wudaoliang paleolake,which reflect that during 23.8-21.8 Ma B.P. the evolution of climate in the area experience the course from west and west to dry ,at last to warm and west .The climate change should be the result of the tectonic reactive after the Tibetan Plateau uplift to denudation and planation. This work explores a new method to study the paleoenvironment in the hinter of the Tibetan Plateau further.
引文
1.蔡雄飞,刘德民,魏启荣,等.古新世—中新世以来青藏高原北缘隆升的特征—来自可可西里盆地的报告.地质学报,2008,8 2(2):194-203.
    2.郝诒纯,茅绍智,微体古生物学教程.武汉:中国地质大学出版社,1993.1-330.
    3.李勇,Allen P.,周荣军,等..青藏高原东缘中新生代龙门山前陆盆地动力学及其与大陆碰撞作用的耦合关系.地质学报, 2006,80(8): 1101-1108.
    4.李吉均,文世宣,张青松等.青藏高原隆升的时代、幅度和形式探讨.中国科学(B辑), 1979,9(6): 608~616.
    5.刘志飞,王成善.可可西里盆地早渐新世雅西措群沉积环境分析及古气候意义.沉积学报, 2000, 18 (3): 355~361.
    6.刘志飞,王成善,伊海生,等.可可西里盆地新生代沉积演化历史重建.地质学报, 2001, 75 (2): 250 ~258.
    7.刘志飞,王成善,伊海生,等.青藏高原北部可可西里盆地早新生代沉降史及其高原隆升意义.见:陈毓川.中国地质学会80周年学术文集.北京:地质出版社, 2002. 111 ~119.
    8.刘志飞,王成善.青藏高原北部可可西里盆地第三纪风火山群沉积环境分析.沉积学报, 2001, 19(1): 28~36.
    9.刘志飞,Lachlan K Stewart.图形显示和比较古水流数据的一种软件(PC99):以青藏高原北部可可西里盆地新生代古水流数据为例.沉积学报, 2002, 20(2): 354~358.
    10.刘志飞,王成善,金玮.可可西里盆地早渐新世雅西措群爬升沙纹层理及其沉积环境意义.沉积学报, 2004, 22 (4): 560~565.
    11.刘志飞,王成善,金玮,等.青藏高原沱沱河盆地渐新—中新世沉积环境分析.沉积学报,2005,23(2):210-217.
    12.齐文,郑绵平.西藏扎布耶盐湖30.0KaB.P.以来水位与古降水量变化.地球学报.2005,26(1):53-60.
    13.青海省地质矿产局.青海省区域地质志.北京:地质出版社,1991. 1~662.
    14.青海省地质矿产局.青海省岩石地层.武汉:中国地质大学出版社, 1997. 287~292.
    15.王成善,朱利东,刘志飞.青藏高原北部盆地构造沉积演化与高原向北生长过程.地球科学进展,2004,19(3):373-381.
    16.王苏民,张振克.中国湖泊沉积与环境演变研究的新进展.科学通报, 1999, 44(6) : 579-587
    17.王云飞.青海湖、岱海的湖泊碳酸盐化学沉积与气候环境变化.海洋与湖泊,1993,24(1):31-36.
    18.温志峰,钟建华,李勇,等..叠层石成因和形成条件的研究综述.高校地质学报, 2004a ,10(3): 418-428.
    19.温志峰,钟建华,王冠民,等..柴达木盆地古近纪—新近纪湖相叠层石与藻礁的沉积组合特征与意义.地质学报, 2004b,79(4):444-453.
    20.吴珍汉,吴中海,胡道功,赵逊,叶培盛. 2006a.青藏高原腹地中新世早期古大湖的特征及其构造意义.地质通报,25 (7) :782~791.
    21.吴珍汉,吴中海,叶培盛,胡道功,彭华. 2006b.青藏高原晚新生代孢粉组合与古环境演化.中国地质,33 (5) :966~979.
    22.吴珍汉,赵逊,叶培盛,等.根据湖相沉积碳氧同位素估算青藏高原古海拔高度.地质学报,2007a,81(9):1277-1288.
    23.吴珍汉,吴中海,胡道功,等.青藏高原渐新世晚期隆升的地质证据.地质学报,2007b,81(5):577-587.
    24.肖序常,李廷栋.青藏高原的构造演化与隆升机制.广州:广东科学出版社, 2000,237~270.
    25.徐仁.1981.大陆漂移与喜马拉雅山上升的古植物学证据.见:中国科学院青藏高原综合考察队编,青藏高原隆升的时代、幅度和形式.北京:科学出版社,8~18.
    26.阎同生,孙黎明,邸明慧,等.河北省头泉叠层石与古地理探讨.地理与地理信息科学. 2006,22(4): 108-111.
    27.伊海生,林金辉,王成善,等.藏北可可西里地区中新世湖相油页岩的生物分子标识及碳同位素异常.成都理工学院学报, 2002.29(5): 473-480.
    28.伊海生,Zhao Xixi,林金辉,等.藏北乌兰乌拉湖地区第三纪陆相红层古地磁研究的初步结果及地质意义.地球学报, 2004,25(6):633-638.
    29.伊海生,林金辉,周恳恳,等.青藏高原北部新生代湖相碳酸盐岩的碳氧同位素特征及古环境意义.古地理学报, 2007,9(3):303-312.
    30.伊海生,张小青,朱迎堂.羌塘地区中部湖泊岩芯记录的第四纪湖面变化及气候意义.地学前缘, 2006,13(5):300-307.
    31.伊海生,林金辉,周恳恳,等.青藏高原北部新生代湖相碳酸盐岩的碳氧同位素特征及古环境意义.古地理报,2007,9(3):303-312.
    32.伊海生,时志强,朱印堂,等.利用泥质岩硼含量重建过去湖泊古盐度和湖面变化历史[J].湖泊科学,2009,21(1):79-85.
    33.张青松,李炳元,景可,等..青藏地区上新世古地理和高原隆起.见:中国科学院青藏高原综合科学考察队编,青藏高原隆升的时代、幅度和形式问题.北京:科学出版社,1981,26~29.
    34.朱大岗,孟宪刚,邵兆刚,等.青藏高原古近纪—新近纪古湖泊的特征及分布.地质通报,2006,25(1-2):34-42.
    35.钟大赉,丁林.青藏高原的隆起过程及其机制探讨.中国科学(D辑), 1996,26(4):289~295.
    36. An Z.,Kutzbach J.,Prell W.,et al., Evolution of Asian monsoons and phased uplift of the Himalaya-Tibentan Plateau since Late Miocene times.Nature,2001,411:62-66.
    37. Anadon P., Utrilla R.,Julia R..Palaeoenvironment reconstruction of a Pleistocene lacustrine sequence from faunal assemblages and ostracode shell geochemistry,Baza Basin,SE spain. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994,111:191-205.
    38. Anadon P, Moscariello A, Rodriguez-Lazaro J, et al. Holocene environmental changes of Lake Geneva (Lac Leman) from stable isotopes (δ13C,δ18O) and trace element records of ostracod and gastropod carbonatesJournal of Paleolimnology, 2006,35(3):593-616.
    39. Anadon P,Utrilla R, Vazquez A, et al. Paleoenvironmental evolution of the Pliocene Villarroya Lake, northern Spain, from stable isotopes and trace-element geochemistry of ostracods and mollusksJournal of Paleolimnology , 2008,39(3):399-419.
    40. Benson L,Meyers P.,Spencer R..Change in the sides of Walker Lake during the past 5000 years. Palaeogeography, Palaeoclimatology, Palaeoecology,1991,81:189-194.
    41. Benson L, White L , Rye R. Carbonate deposition, Pyramid Lake Subbasin, Nevada: Comparison of the stable isotope values of carbonate deposits (tufas) and the Labontan lake-level record. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996,122: 45-76.
    42. Blisniuk M P, Hacker R B, Glodny J, Ratschbacher L, Bi Siwen,Wu Zhenhan, McWilliams O M, Calvert A. 2001. Normal faulting in central Tibet since at least 13.5Ma ago. Nature,412: 628~632.
    43. Bodergat, A.,Rio M.,Andreani A..Composition chemique et ornamentation de Cypridis torosa(Crustacea Ostracoda)dans le domaine paralique.Oceanologica Acta,1991,14(5):505-514.
    44. Cande SC, KentD V. Revised calibration of the geomagnetic polarity time-scale for the Late Cretaceous and Cenozoic. Journal ofGeophysicsResearch, 1995, 100: 6093~6095.
    45. Carbonel P, Colin J P, Danielopol D L et al. Paleoecology of limnic ostracodes: A review of some major topics.Palaeogeography Palaeoclimatology Palaeoecology, 1988, 62: 418-461
    46. Chivas, A., De Deckker, P., Shelley, J.. Magnesium, strontium and barium partitioning in non marine ostracod shells and their use in paleoenvironment reconstructions—a preliminary study[M]. In Applications of Ostracoda (ed. Maddocks R.F.), Houston: University of Houston. 1983,238–249.
    47. Chivas A., De Deckker P..Shelley J.. Strontium content of ostracods indicates lacustrine palaeosalinity. Nature,1985, 316: 251–253.
    48. Chivas A., De Deckker P..Shelley J.. Magnesium and strontium in non-marine ostracod shells as indicators of palaeosalinity and palaeotemperature. Hydrobiologia,1986a, 143:135–142.
    49. Chivas A., De Deckker P. .Shelley J.. Magnesium content of non-marine ostracod shells: a new palaeosalinometer and palaeothermometer. Palaeogeography Palaeoclimatology.Palaeoecology. 1986b ,54, 43–61.
    50. Chivas A., De Deckker P.,Cali J.,et al,. Coupled stable-isotope and trace-element measurements of lacustrine carbonate as paleoclimatic indicators. In: P.K. Swart,K.C. Lohmann,J. McKenzie and S.Savin(eds), Climate Change in Cotinental Isotopic Records.Am.Geophys.Union,Geophys. Monogr., 1993,8:113-121.
    51. Chung SL, et al. Diachronous uplift of the Tibetan Plateau starting 40 myr ago. Nature,1998,394: 769–773.
    52. Clark MK, et al. Late Cenozoic uplift of southern Tibet. Geology,2005, 33:525–528.
    53. Coleman M, Hodges K. Evidence for Tibetan Plateau uplifted before 14Myr ago from a new minimal age for east-west extension. Nature, 1995,374: 49~52.
    54. Coward W P, Kidd W S F,潘耘,等.拉萨至格尔木的构造.见:中英青藏高原综合地质考察队.青藏高原地质演化.北京:科学出版社,1990. 321~347.
    55. Currie B S, Rowley D B, Tabor N J. Middle Miocene paleoaltimetry of southern Tibet: Implications for the role of mantle thickening and delamination in the Himalayan orogen. Geology , 2005, 33: 181 -184.
    56. Curry B..Late Pleistocene lithofacies, paleolimnology and ostracode fauna of kettles on the Illinoian Till Plain ,Illinois ,U.S.A. PhD thesis ,University of Illinois at Urbana-Champaign,1995:1-511.
    57. Curry B.B. An environmental tolerance index for ostracodes as indicators of physical and chemical factors in aquatic habitats. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999,148: 51–63.
    58. Cyr A J. Geochemical and stable isotopic evaluation of Fenghuoshan Group lacustrine carbonates,north-central Tibet: implications for the paleoaltimetry of the mid-Tertiary Tibetan Plateau[D]. MS thesis, Oxford OH:Miami University, 2004,35 pp.
    59. Cyr A J, Currie B S, Rowley D B. 2005.ochemical and stable isotopic evaluation of fenghuoshan Group lacustrine carbonates, north-central Tibet:Implications for the paleoaltimetry of Late Eocene Tibetan Plateau. Geology, 2005,113:517-533.
    60. Dansgaard W.Stable isotopes in precipitation.Tellus,1964,436-468.
    61. De Deckker P., Chivas A.., Shelley J.,et al.. Ostracod shell chemistry—a new palaeoenvironmental indicator applied to a regressive–transgressive record from the Gulf of Carpentaria, Australia. Palaeogeography Palaeoclimatology.Palaeoecology. 1988,66:231–241.
    62. De Deckker, P., Forester, R.M..The use of ostracods to reconstruct continental palaeoenvironmental records. In: De Deckker, P., Colin, J.P., Peypouquet, J.P. (Eds.), Ostracoda in the Earth Sciences.Amsterdam: Elsevier, 1988 175–199.
    63. Dettman D L,Fang X M, Garzione C N. Uplift-driven climate change at 12Ma: a longδ18O record from the NE margin of the Tibetan Plateau. Earth Planet Science Letter,2003,214:267-277.
    64. Dewey J F, Shackleton R M, Chang C.,et al.. Thetectonic evolution of the Tibetan Plateau. Phil. Trans. R. Soc.Lond, 1988,A327, 379~413.
    65. Drummond C, Wilkinson B, Lohmam K,et al . Effect of regional topography and hydrology on the lacustrine isotopic record of Miocene paleoclimate in the Rocky Mountains. Palaeogeography Palaeoclimatology Palaeoecology, 1993,101: 67-79.
    66. Epstein S.,Buchsbaum R.,Lowenstan H.,et al..Revised carbonate-water isotopic temperature scale. Bulletin Geology Society America,1953,64:1315-1326.
    67. Epstein S.,Mayeda T.Variations in 18O content of waters from natural sources. Geochimica et Cosmochimica Acta,1953,27:213-224
    68. Forester, R.M.,. Determination of the dissolved anion composition of ancient lakes from fossil ostracodes. Geology, 1986,14, 796–798.
    69. Forester RM. Paleoclimate records of deglaciation from lacustrine records.North America and adjacent oceans during the last deglaciation DNAG(eds,Ruddiman WF and Wright HE).1987,vol.K-3:261-276.
    70. Garzione C N, Dettman D L, Horton B K. Carbonate oxygen isotope paleoaltimetry: evaluating the effect of diagenesis on paleoelevation estimates for the Tibetan Plateau[J]. Palaeogeogragy Palaeoclimatology Palaeolecology. 2004, 212:119-140.
    71. Garzione C N, Quade J, DeCelles P G, et al. Predicting paleoelevation of Tibet and the Himalaya fromδ18O vs. altitude gradients in meteoric water across the Nepal Himalaya. Earth Planet.Science Letter, 2000,183:215-229.
    72. Gasse F, Fontes J. Paleoenvironments and paleohydrology of a tropical closed lake (Lake Asal, Djibouti) since 10,000 yr B.P. Palaeogeography Palaeoclimatology Palaeoecology. 1987,69:67-102.
    73. Gasse F., Arnold M.,Fontes, J.C.,et al..A 13,000-year climate record from western Tibet.Nature ,1991,353:742-745.
    74. Grafenstein U, Erlenkeuser H, Trimborn P, et al. Oxygen and·carbon isotopes in the modern fresh-water ostracod valves:assessing vital offsets and autoecological effect of interest for palaeoclimate studies. Palaeogeography, Palaeoclimatology, Palaeoecology,1999a, 284: 1654 - 1657.
    75. Grafenstein U, Erlenkeuser H, Brauer A , et al..A mid-European decadal isotope-climate record from 15,500 to 5000 year B.P..Science,1999b,284:1654-1657.
    76. Graham S, Chamberlain P,Yue Y,et al. Stable isotope records of Cenozoic climate and topography, Tibetan Plateau and Tarim Basin. American Journal Science. 2005, 305: 101-118.
    77. Harrison T, Copeland P, Kidd W. Activation of the Nyainqentanghla shear zone: implications foruplift of the southern Tibetan Plateau.Tectonics, 1995,14(3): 658~676.
    78. Harris N The elevation history of the Tibetan Plateau and its implications for the Asian monsoon. Palaeogeogr Palaeoclimatol Palaeoecol,2006 ,241:4–15.
    79. Hays P.,Grossman E.. Oxygen isotopes in meteoric calcite cements as indicater of continental paleoclimate.Geology,1991,19:441-444.
    80. Holmes, J., Hales, P., Street-Perrott, F.. Trace-element chemistry of non-marine ostracods as a means of palaeolimnological reconstruction: an example from the Quaternary of Kashmir, northern India. Chemistry. Geology. 1992a,95, 177–186.
    81. Holmes J.Trace-element chemistry of non-marine ostracod shells: a preliminary evaluation of cleaning methods.Journal of Micropalaeontology,1992b,11(1):36.
    82. Holmes J.. Street-Perrott F. A., Ivanovich M.et al.. A late Quaternary palaeolimnological record from Jamaica based on trace-element chemistry of ostracod shells. Chemical Geology. 1995,124, 143–160.
    83. Holmes J., Street-Perrott F., Allen M.et al. Holocene palaeolimnology of Kajemarum Oasis, Northern Nigeria: an isotopic study of ostracodes, bulk carbonate and organic carbon. Journal of the Geological Society,1997, 154, 311–319.
    84. Holmes J, Chivas A R. Ostracod shell chemistry—overview.in. Holmes J A, Chivas A R ed, The Ostracoda: Applications in Quaternary Research. Washington: D.C.:American Geophysical Union Geophysical Monograph 131, American Geophysical Union, 2002:183–204.
    85. Holmes J..ample-size implications of the trace-element variability of ostracod shells. Geochimica et Cosmochimica Acta, 2008,72 :2934–2945.
    86. Horton BK, et al. Paleocene-Eocene syncontractional sedimentation in narrow,lacustrine-dominated basins of east-central Tibet. Bull Geol Soc Am, 2002,114:771–786
    87. Jin Z.Bickle M.Chapman H, et al..n experimental evaluation of cleaning methods for fossil ostracod Mg/Ca and Sr/Ca determination. Journal of Paleolimnology, 2006,36(2):211-218.
    88. Keatings K., Heaton T.. Holmes J. The effects of diagenesis on the trace element and stable isotope geochemistry of non-marine ostracod valves. Journal of Paleolimnology,2002a ,28, 245–252.
    89. Keatings K., Heaton T.,Holmes J..Carbon and oxygen isotope fractionation in non-marine ostracods: Results from a‘natural culture’environment. Geochimica et Cosmochimica Acta, 2002b, 66(10), 1701–1711.
    90. Keatings K ., Holmes J., Heaton T.. Effects of pre-treatment on ostracod valve chemistry. Chemical Geology, 2006, 235:250–261.
    91. Kelts K.,Talbot M. Lacustrine carbonates as geochemical archives of environmental change and bioic/abiotic interactions.In:Tilzer M and Serruya.C.(eds).Ecological Structure and Function in Large Lakes.Berlin:Springer-Verlag.1990.288-315
    92. Kilenyi, T.I.. Some basic questions in the palaeoecology of ostracods. Bulletin du Centre de Recherches de Pau-SNPA 5, 1971,31– 44 (Suppl.).
    93. Li H.,Ku T.δ13C-δ18O covariance as a paleohydrological indicator for closed-basin lakes. Palaeogeography, Palaeoclimatology, Palaeoecology,1997,133:69-80.
    94. Lister G. Stable isotopes from lacustrine ostracoda as tracers for continental palaeoevironment.In: Dekker P.,Colin J.,Peypouquet J(eds.).Ostracod in Earth Sciences.Amsterdam:Elsevier,1988.201-218.
    95. Lister G., Kelts K., Zao C, et al..Lake Qinghai, China: Closed-basin lake levels and the oxygen isotope record for ostracoda since the latest Pleistocene. Palaeogeography, Palaeoclimatology, Palaeoecology 1991 84:141–162.
    96. Liu Z, Wang C. Facies analysis and depositional systems ofCenozoic sediments in theHoh Xilbasin, northern Tibet. SedimentaryGeology,2001, 140: 251~270.
    97. Liu Z, Zhao X, Wang C,et al. Magnetostratigraphy ofTertiary sediments from the Hoh Xil Basin: implications for the Cenozoic tectonic history of the Tibetan plateau. Geophysical Journal Internationa,2003, 154: 233~252.
    98. Liu Z, Wang C, YiH. Evolution and mass-balance in the Cenozoic Hoh Xil basin, northern Tibet. Journal of Sedimentary Research,2001, 71: 971~984.
    99. Liu Z, Wang C, ZhaoX,et al. Oligo-Miocene evolution of the Tuotuohe Basin (headwaters of theYangtzeRiver) and its significance for the uplifthistory of the centralTibetan Plateau. Abstracts of the 19th Himalaya-Karakoram-TibetWorkshop, 2004, Niseko, Japan. Hima-layan Journal ofSciences, 2004, 2: 201.
    100. Kapp P, Yin A, Harrison TM, Ding L (2005) Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Bull Geol Soc Am 117:865–878
    101. McKenzie J. Carbon-13 cycle in lake Greifen:A model for restricted ocean basins In:Schlanger S and Cita M.(eds).Nature and Origin of Creataceous Carbon Rich Facies.London:Academic Press,1982,197-207.
    102. McKenzie J. Carbon isotopes and productivity in the lacustrine and marine environment .In: Stumm W(ed.).Chemical Processes in Lakes.New York:Wiley,1985,99-118.
    103. Meisch C..Freshwater Ostracoda of Western and Cetral Europe.Spektrum,Gustav Fischer,2000.1-522.
    104. Metivier F, Gaudemer Y, Tapponnier P, et al..Northeastward growth of the Tibet Plateau deduced from balanced reconstruction of two depositional areas: the Qaidam and Hexi Corridor basins, China. Tectonics, 1998, 17(6): 823~842.
    105. Miall A.. Lithofacies types and verticalprofilemodels in braided river deposits: a summary. In: MiallA D. Fluvial Sedimentology. CanSoc PetroGeolMem 5, 1978. 597~604.
    106. Miall A. Principles of sedimentary basin analysis. New York:Springer-Verlag, 1984. 1~668.
    107. Molnar P, England P, Martinod, J. Mantle dynamics, uplift of the Tibetan plateau, and the Indian Monsoon. Review Geophysics, 1993,31:357-396.
    108. Muller G.,Wargner F..Holocene Carbonate Evolution in Lake Balaton(Hungary):A Response to Climate and Impact of Man.Int. Assoc. Sediment.Spec.Publ.,1978.No 2:57-81.
    109. Oana S.,Deevey E..carbon-13 in lake waters and its possiblebearing on paleolimnology.America Journal of Science.1960.258A:253-272.
    110. Palacios-Fest M. Comparative paleoclimatic interpretations from nonmarine-ostracodes using faunal assemblages,trace elements shell chemistry and stable isotope data. In: Swart P., Lohmann K., McKenzie J. and Savin S. (eds), Climate Change in Cotinental Isotopic Records. Washington :AmericanGeophysical.Union.GeophysicalMonography78,1993,78:179-190
    111. Ramstein G, Fluteau F, Besse J, et al Effect of orogeny,plate motion and land-sea distribution on Eurasian climate change over the past 30 million years.Nature,1997, 366:788-795.
    112. Ratschbacher L, Frisch W,Liu G.. Distributed deformation in southern and western Tibet during and after the Indus-Asia collision. Journal of Geophysical Research, 1994,99: 19917~19946.
    113. Rhodes, T.E., Gasse, F., Ruifen, L.,et al. A late Pleistocene–Holocene lacustrine record from Lake Manas, Zunggar (northern Xinjiang, western China). Palaeogeography. Palaeoclimatology. Palaeoecology. 1996,120, 105–121.
    114. Rowley D., Brian S .,Currie. Paleo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature, 2006,439:677~681.
    115. Sahagian D., Maus J . Basalt vesicularity as a measure of atmospheric pressure and paleoelevation . Nature,1994,372:449-551.
    116. Schackleton NJ.Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region.Nature,1984,307:620-623.
    117. Schwalb A., Lister G. and Kelts K. Ostracode carbonate 18O and 13C-signatures of hydrological and climate changes affecting Lake Neuchatel, Switzerland, since the latest Pleistocene: J. Paleolim.1994,11: 3–17.
    118. Schwalb A., Locke S.M. Dean W.E. Ostracodeδ18O andδ13C evidence of Holocene environmental changes in the sediments of two Minnesota lakes. J. Paleolim. 1995,14: 281–196.
    119. Schwalb A.,Dean W.E. Stable isotopes and sediments from Pickerel Lake, South Dakota, USA: a 12 kyr record of environmental changes. Journal of Paleolimnology, 1998, 20: 15–30.
    120. Schwalb A., Burns S.J. Kelts K.. Holocene environments from stable isotope stratigraphy of ostracodes and authigenic carbonates in Chilean Altiplano Lakes. Palaeogeogr. Palaeoclim. Palaeoecol. 1999,148: 153–168.
    121. Schwalb A. Dean W.E. Reconstruction of hydrological changes and response to effective moisture variations from North-Central USA lake sediments. Quat. Sci. Rev. 2002a,21: 1541–1554.
    122. Schwalb A., Burns S., Cusminsky G.et al..Patagonian Lake Drilling Team Assemblage diversity and isotopic signals of modern ostracodes and host waters from Patagonia, Argentina. Palaeogeogr. Palaeoclim. Palaeoecol. 2002b,187: 323–339.
    123. Schwarcz H.,Eyles N..Laurentide ice sheet extent inferred from stable isotopic compositon(O,C) of ostracodes at Toronto Canada.Quartenary Research, 1991.35:3305-320.
    124. Schof T. Palaeooceanography. Cambridgeshire:Harvard:University Press,1980.1-341.
    125. Shlesinger W., Marion G.,Fonteyn P.. Stable isotopes ratios and the dynamics of caliche in desert soils.In:Rundel P.,Ehleringer J.,Nagy K(eds). Stable isotope in ecology research .Berlin:Springer-Verlag.1988,308-317.
    126. Siegenthaler U.,Eicher U..Stable oxygen and carbon isotopic analyses.In:Berglund B(ed.). Handbook of Palaeoeocology and Palaeohydrology. New York:J. Wiley&Sons,1986.407-422.
    127. Spicer R A, Harris N B W, Widdowson M, et al.,. Constant elevation of southern Tibet over the past 15 Million years. Nature, 2003,421:622~624.
    128. Stiller M.,Hutchinson G..The water of Merom: a study of lake Huleh BI.Stable isotopic composition of carbonates of a 54m core: Paleoclimatic and paleotrophic implication.Arch Hydrobiol,1980, 89:275-302.
    129. Stuiver M. Oxygen and carbon isotopic ratios of freshwater carbonates as climate indicator. Journal of Geophysical Research,1970,75:5247-5257
    130. Talbot M .. A review of the paleohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chemical Geology, 1990, 80:261-279.
    131. Talbot M.,Kelts K. Paleolimnological signatures from carbon and oxygen isotopic ratios in carbonates from organic carbon-rich lacustrine sediments. In Katz, B., R.Rosendahl B. (eds). Lacustrine Basin Exploration: Case Studiesand Modern Analogs, 1990,99–112.
    132. Talbot M, Allen P.. Limnology. In : Reanding H ( 3rd , ed. ) , Sedimentary environment s : processes , facies ,and stratigraphy. Oxford : Oxford Blackwell Science,1997.
    133. Tapponnier P, Xu Zhiqin, Roger F, et al. Oblique stepwise rise and growth of the Tibet plateau.Science, 2001,294:1671-1677 .
    134. Teranes J, McKenzie J, Bernasconi S, et al. A study of isotopic fractionation during bio-induced calcite precipitation in eutrophic Baldeggersee. Geochimica et Cosmochimica Acta, 1999,63:1981-1989.
    135. Turner S, Arnaud N, Liu L.,et al. Post-collision, shoshonitic volcanism on the Tibetan Plateau:implications for convective thinning of the lithosphere and the source of ocean island basalts. J. Petrol., 1996, 37: 45~71
    136. Turpen J. B. and Angell R. W. Aspects of molting and calcification in the ostracode Heterocypris.Biol. Bull. Mar. Biol.Lab. (Woods Hole, Massachusetts),1971,140:331–338.
    137. Urey H. The thermodynamic properties of isotopic substances.Journal of the Chemical Society(London),1947,562-581.
    138. Vance R., Last W.,Smith A..Hydrological and climate implication of multidisciplinary study of late Holocene lake sediment from southeastern Saskatchwan, Canada.Journal of Paleolimnology.1997,18:365-393.
    139. Wang C, Liu Z, Yi H,etal. Tertiary crustal shortening and peneplanation in the HohXil region: implications for the tectonic history of thenorthern Tibetan plateau. Journal of Asian Earth Sciences, 2002, 20:211~223.
    140. Wang C, Zhao X, Liu Z, et al., Constraints on the early uplift history of the Tibetan Plateau, PNAS ,2008 ,105 :4987-4992.
    141. Wu Z, Patrick J, Wu Z,et al., Vast early Miocene lakes of the central Tibetan Plateau. GSA Bulletin; 2008, 120(9-10): 1326–1337.
    142. Xia J., Engstrom D. Geochemistry of ostracode calcite: Part 1.An experimental determination of oxygen isotopic fractionation. Geochim. Cosmochim. Acta 1997,61, 377–382.
    143. Xia J., Engstrom D. R. and Ito E. () Geochemistry of ostracode calcite: Part 2. The effect of water chemistry and seasonal temperature variation on Candona rawsoni. Geochim. Cosmochim. Acta.1997 ,61, 383–391.
    144. Yin A,Harrison T M,Reyerson FJ,et al.Tertiary structural evolution of the Gangdese thrust system in Southern Tibet.Journal of Geophysical Research, 1994,99(B9):18175-18201.
    145. Yin A, Harrison T M.. Geologic evolution of the Himalayan-Tibetan orogen. Ann. Rev. Earth Planet. Sci. Lett., 2000,28: 211~280.
    146. Zhang H.,Ma Y.,Li J.,et al. A Holocene climatic record from arid northwestern China. Palaeogeography Palaeoclimatology Palaeoecology,2000,162:389-401.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700