用户名: 密码: 验证码:
BSO基光寻址空间光调制器的特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子的并行运算能力及玻色子特性使得并行光计算成为未来取代电子计算的新型高性能计算技术之一。在并行光计算系统、光学目标识别系统等二维并行光信息处理系统中,高性能的光寻址空间光调制器是系统的核心组成单元。
     BSO为代表的光折变晶体具有独特的光电及电光效应特性,融体全息存储、多波耦合及混频、全光开关、波长转换、非相干—相干转换等多种功能为一体。以此类材料为单一工作介质的光寻址空间光调制器,可兼有光电探测及电光调制功能运用于二维光信息处理系统。BSO晶体具有很好的光谱灵敏度及响应速度,以及独特的晶格结构和电光/光电参数,三个主轴方向上相等的线性电光系数便于简化分析,基于该晶体的光寻址空间光调制器的研究结果对于基于其它光折变晶体的光寻址空间光调制器的研究具有很重要的参考价值。
     在二维并行光信息处理的实际应用中,光寻址空间光调制器调制传递函数的空间频率响应及工作速度两个特性至关重要。本文以BSO基非对称反射式光寻址空间光调制器作为研究对象,着重对密切关系其调制传递函数空间频率响应特性及工作速度的部分影响因素进行深入的理论及实验分析。
     采用制备的BSO基非对称反射式光寻址空间光调制器进行了图像写入和读出实验分析,在此基础上结合带传输理论模型,对所获得的BSO晶体薄片光电损伤进行分析,获得在写入过程中BSO晶体薄片内的电荷迁移及最终电荷分布基本规律。结合理论数值模拟及实验分析,对BSO基非对称反射式光寻址空间光调制器调制传递函数的空间频率响应进行了深入的分析和讨论,得到部分材料特性、结构参数及工作条件等因素对调制传递函数空间频率响应的内在影响原理和规律。对光电损伤的研究还获得了有关晶体生长的部分重要信息,发现了电荷迁移时晶体内出现的类趋肤效应现象。
     本文还对BSO基非对称反射式光寻址空间光调制器在实际应用中的光致电流特性进行了实验研究,其中特别是对光致电流的离散脉冲特性进行了较详细的分析讨论,获得了光致电流脉冲基本参数受到部分材料的电学特性、空间光调制器的结构参数以及部分工作条件影响的一些基本规律。通过光致电流离散脉冲特性的研究,还能帮助合理解释造成较弱写入光强下出现的光电损伤以及电荷迁移的类趋肤效应现象的原因。
     本文最后对分析讨论结果进行综合,总结出在结构设计、材料选择、工作模式和工作条件等方面对BSO基非对称反射式光寻址空间光调制器进行优化的基本指导原则。
The parallel computing capability and the boson property of the photon enables the optical parallel computing to be one of the late-model high-performance computing which will probably substitute the electrical computing in the future. The optically addressed spatial light modulators with high performance will be the cores of the two-dimension optical parallel information processing ststems, such as optical parallel computing systems and the optical pattern recognition systems.
     With some particular photo-electric and electro-optical properties, the photorefractive crystals, such as the bismuth silicate, have the functions of holographic memory, lightwaves coupling, all optical switch, wavelength conversion and incoherent-coherent conversion. When used the two-dimension optical parallel information processing ststems, the optically addressed spatial light modulators with the photorefractive crystals can work as a light detector and an electro-optical modulator at the same time. Furthermore, with excellent spectrum sensitivity and response speed, as well as the particular crystal lattice and photo-electric / electro-optical parameters, the bismuth silicate can make the research of the bismuth silicate spatial light modulators more convenient. Above all, the research results are useful for the research of the spatial light modulators based on other photorefractive crystals.
     When used in the two-dimension optical parallel information processing ststems, the spatial frequency response of the modulation transform function and the operation speed are the two key characteristices of the spatial light modulators. Some factors, which influence the spatial frequency response of the modulation transform function and the operation speed of the asymmetric reflective bismuth silicate spatial light modulator, are analysed in theory and experiment.
     Besides researching the image writing and reading of the asymmetric reflective bismuth silicate spatial light modulators, based on the band transport model, and the photoelectric damage of the BSO film obtained in the experiments is analyzed to achieve the transfer process and the final distribution of the charges inside the BSO film. Furthermore, the spatial frequency response of the modulation transform function of the asymmetric reflective bismuth silicate spatial light modulator is analysed and discussed in theory and experiment to achieve the intrinsic influence of the material properties, the structure parameters and the operation conditions on the spatial frequency response of the modulation transform function. The photoelectric damage can also provide some information of the growth of the bismuth silicate, and also indicate that the similar skin effect which usually occurs in the ac circuits and some ultrafast electric circuits have occurred in the BSO film while the charges are transferring.
     The characteristics of the photoinduced current, especially the characteristics of the discrete photoinduced current pulses of the asymmetric and reflective bismuth silicate spatial light modulator when in writing process are investigated in detail. How some of the electrical properties of the materials, the structure parameters and the operation conditions have influences on the current pulses are achieved. Fuethermore, the discrete photoinduced current pulses may also contribute to the photoelectric damage of the BSO film obtained under low light power, and the similar skin effect when the charges are transferring.
     Finally, based on the research results, the guide to optimize the asymmetric reflective bismuth silicate spatial light modulator by structure design, materials selection and the setup of operation modes and conditions is proposed.
引文
[1]苏显渝,李继陶编著,信息光学,科学出版社,2006.1.
    [2]Francis T.S.Yu,Suganda Jutamulia,Shi Zhuo Yin等著,冯国英,陈建国,李大义等译,光信息技术及应用,电子工业出版社,2006.7.
    [3]宋丰华编著,现代空间光电信息处理技术及应用,国防工业出版社,2004.2.
    [4]宋丰华编著,现代光电器件技术及应用,国防工业出版社,2004.7.
    [5]赵达尊,张怀玉编著,空间光调制器,北京理工大学出版社,1992.2.
    [6][美]杨振寰,陈树源等.光学信号处理、计算和神经网络.新时代出版社.1997.
    [7]李育林,赵明君,王昭.两维实时空间光调制器.光电子.激光,1993,4(4):220-229.
    [8]李育林,傅晓理,空间光调制器及其应用,北京:国防工业出版社,1996年第一版.
    [9]D.McGloin,G.C.Spalding,H.Melville,etal.Applications of spatial light modulators in atom optics.OPTICS EXPRESS,2003,11(2):158-166.
    [10]David Engstrom,Sverker Hard,Per Rudquist,etal.Beam steering experiment with two cascaded ferroelectric liquid-crystal spatial light modulators.APPLIED OPTICS,2004,43(7):1559-1569.
    [11]Alexander Jesacher,Severin Furhapter,Stefan Bernet,etal.Diffractive optical tweezers in the Fresnel regime.OPTICS EXPRESS,2004,12(10):2243-2250.
    [12]Chris Chatwin,Maria Farsari,Shiping Huang,etal.UV microstereolithography system that uses spatial light modulator technology.APPLIED OPTICS,1998,37(32):7514-7522.
    [13]Zoltan Gorocs,Gabor Erdei,Tamas Sarkadi,etal.Hybrid multinary modulation using a phase modulating spatial light modulator and a low-pass spatial filter.Optics Letters,2007,32(16):2336-2338.
    [14]Hidetomo Takahashi,Satoshi Hasegawa,Yoshio Hayasaki.Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator.Applied Optics,2007,46(23):5917-5923.
    [15]Richard James,F.Anibal Fernandez,Sally E.Day,etal.Modeling of the diffraction efficiency and polarization sensitivity for a liquid crystal 2D spatial light modulator for reconfigurable beam steering.JOSAA,24(8):2464-2473.
    [16]Hideki Funamizu,Jun Uozumi.Generation of fractal speckles by means of a spatial light modulator.Optics Express,2007,15(12):7415-7422.
    [17]E.Frumker,Y.Silberberg.Femtosecond pulse shaping using a two-dimensional liquid-crystal spatial light modulator.Optics Letters,2007,32(11):1384-1386.
    [18]F.K.Fatemi,M.Bashkansky,Z.Dutton.Dynamic high-speed spatial manipulation of cold atoms using acousto-optic and spatial light modulation.Optics Express,2007,15(6):3589-3596.
    [19]Gal Shohet,Zeev Zalevsky,Emanuel Marom.Realization of an optical communication tunable filter using a diffraction-based optical system.JOSA A,2007,24(1):179-187.
    [20]Eric Yao,Sonja Franke-Arnold,Johannes Courtial.Observation of quantum entanglement using spatial light modulators.Optics Express,2007,14(26):13089-13094.
    [21]Peter John Rodrigo,Ivan R.Perch-Nielsen,Carlo Amadeo Alonzo,etal.GPC-based optical micromanipulation in 3D real-time using a single spatial light modulator.Optics Express,2006,14(26):13107-13112.
    [22] Joby Joseph, David A. Waldman. Homogenized Fourier transform holographic data storage using phase spatial light modulators and methods for recovery of data from the phase image. Applied Optics, 2006,45(25): 6374-6380.
    [23] Charley J. Henderson, Diego Gil Leyva, Timothy D. Wilkinson. Free Space Adaptive Optical Interconnect at 1.25 Gb/s, With Beam Steering Using a Ferroelectric Liquid-Crystal SLM. Journal of Lightwave Technology, 2006,24(5): 1989-.
    [24] Liping Zhao, Nan Bai, Xiang Li, etal. Efficient implementation of a spatial light modulator as a diffractive optical microlens array in a digital Shack-Hartmann wavefront sensor. Applied Optics, 2006,45(1): 90-94.
    [25] Diego Gil Leyva, Brian Robertson, Charley J. Henderson, etal. Cross-talk analysis in a telecentric adaptive free-space optical relay based on a spatial light modulator. Applied Optics, 2006,45(1): 63-75.
    [26] Sotaro Kawata, Akira Hirose. Frequency-multiplexed logic circuit based on a coherent optical neural network. Applied Optics, 2005,44(19): 4053-4059.
    [27] Joshua C. Vaughan, Thomas Hornung, T. Feurer, etal. Diffraction-based femtosecond pulse shaping with a two-dimensional spatial light modulator. Optics Letters, 2005, 30(3):323-325.
    [28] Kevin L. Baker, Eddy A. Stappaerts, Don Gavel, etal. Breadboard Testing of a Phase-Conjugate Engine with an Interferometric Wave-Front Sensor and a Microelectromechanical Systems-Based Spatial Light Modulator. Applied Optics, 2004,43(30): 5585-5593.
    [29] G. Moagar-Poladian. Spatial light modulators based on structures containing photo-electrets and electrooptic materials: key devices for optical computing. Journal of Optical Technology, 2004, 71(7): 478-486.
    [30] Domim'c C. OaeBrien, Grahame E. Faulkner, Timothy D. Wilkinson, etal. Design and Analysis of an Adaptive Board-to-Board Dynamic Holographic Interconnect. Applied Optics, 2004,43(16): 3297-3305.
    [31] Alexander Jesacher, Severin Farhapter, Stefan Bernet, etal. Diffractive optical tweezers in the Fresnel regime. Optics Express, 2004,12(10): 2243-2250.
    [32] Ghang-Ho Lee, Shijun Xiao, Andrew M. Weiner. Programmable, Polarization-Independent, and DWDM-Capable Chromatic Dispersion Compensator Using a Virtually-Imaged Phased-Array and Spatial Light Modulator. Optical Fiber Communication Conference (OFC) 2006, paper OThE5.
    [33] Anthony L. Lentine, John N. Lee, Sing H. Lee, etal. Spatial light modulators and their applications: Introduction to the feature issue. Applied Optics, 1994, 33(14): 2767-.
    [34] Hirofumi Yamazaki, Tohru Matsunaga. Estimation of Insertion Loss of a Holographic Switch with an Optically Addressed Spatial Light Modulator. Applied Optics, 1999,38(26):5613-5620.
    [35] Toshikazu Sakano, Kazuhiro Noguchi, Kazuo Kimura, etal. 256 x256 Turnover-type free-space multichannel optical switch based on polarization control using liquid-crystal spatial light modulators. Applied Optics, 1995, 34(14): 2581-.
    [36] Hirofumi Yamazaki, Tohru Matsunaga, Seiji Fukushima, etal. 4x1204 holographic switching with an optically addressed spatial light modulator. Applied Optics, 1997, 36(14):3063-3069.
    [37] Ting-Chung Poon, Richard Juday, Tsutoma Hara. Spatial Light Modulators Research, Development, and Applications: Introduction to the Feature Issue. Applied Optics, 1998,37(32): 7471-.
    [38] GModdel, K.M.Johnson, W.Li, etal. High-speed binary optically addressed spatial light modulator. Appl. Phys. Lett, 1989, 55(6): 537-539.
    [39] K. Komorowska, A. Miniewicz, J. Parka, etal. Self-induced nonlinear Zernike filter realized with optically addressed liquid crystal spatial light modulator. JOURNAL OF APPLIED PHYSICS, 2002, 92(10): 5635-5641.
    [40] Jennifer E. Curtis and David G. Grier. Structure of Optical Vortices. 2003, 90(13):133901-1-4.
    [41] T. SZOPLIK, M. GEDZIOROWSKI. Optical-digital processors for morphological and rank order filtering. Optics & Laser Technology, 1996, 28(2): 13-82.
    [42] Patrick Naulleau. A coherence encoding method for optical switching, encryption, and arithmetic. Optica Communications, 2001,189: 55-61.
    [43] R. Giust, Jean-Pierre Goedgebuer, Nadia Butterlin. digital processor formed by cascaded spatial light modulators. Optics Communications, 2000,181: 279-285.
    [44] Paul C. Mogensen, Jesper Gluckstad. A phase-based optical encryption system with polarisation encoding. Optics Communications, 2000,173: 177-183.
    [45] Haisong Liu, Minxian Wu, Guofan Jin, etal. An automatic human face recognition system. Optics and Lasers in Engineering, 1998, 30:305-314.
    [46] Tut San Guan, Talib Alukaidey, Silvano P.V.Barros. An MPP reconfigurable architecture using free-space optical interconnects and Petri net configuring. Journal of Systems Architecture, 1997, 43: 391-402.
    [47] R.L. Eriksen, V.R. Daria, P.J. Rodrigo, etal. C omputer-controlled orientation of multiple optically-trapped microscopic particles. Microelectronic Engineering, 2003, 67(68):872-878.
    [48] J. Liesener, M. Reicherter, H.J. Tiziani. Determination and compensation of aberrations using SLMs. Optics Communications, 2004, 233:161-166.
    [49] Walter M. Duncan, Terry Bartlett, Benjamin Lee, etal. Dynamic optical filtering in DWDM systems using the DMD. Solid-State Electronics, 2002, 46: 1583-1585.
    [50] Rene L. Eriksen, Paul C. Mogensen, Jesper Gluckstad. Elliptical polarisation encoding in two dimensions using phase-only spatial light modulators. Optics Communications, 2001,187: 325-336.
    [51] E.G.S. Paige, L.O.D. Sucharov. Enhancement of imaging performance of a variable focus Fresnel zone plate based on a single, binary, phase-only SLM. Optics Communications,2001,193: 27-38.
    
    [52] Javier Garcia, Rainer G. Dorsch, Adolf W. Lohmann, etal. Flexible optical implementation of fractional Fourier transform processors. Applications to correlation and filtering.Optics Communications, 1997,133: 393-400.
    [53] Stanislaw Bartkiewicz, Andrzej Miniewicz, Francois Kajzar. Incoherent-to- coherent image converter based on hybrid liquid crystal- photoconducting polymer structure.Synthetic Metals, 2000, 109: 105-108.
    [54] J. Liesener, M. Reicherter, T. Haist, etal. Multi-functional optical tweezers using computer-generated holograms. Optics Communications, 2000,185: 77-82.
    [55] Ulric Ljungblad, Ulrike Dauderstadt, Peter Durr, etal. New laser pattern generator for DUV using a spatial light modulator. Microelectronic Engineering, 2001, 57(58): 23-29.
    [56]A.Vargas,J.Campos,C.Iemmi,etal.Optical codification for multiclass pattern recognition using a parallel correlator.Optics Communications,1999,162:121-129.
    [57]Haifeng Peng,Liren Liu,Bingquan Wang,etal.Optical implementation of regular rectangular CC-banyan network by using polarizing beam splitters.Optics Communications,1995,117:37-42.
    [58]Naveen Kumar Nishchal,Joby Joseph,Kehar Singh.Optical phase encryption by phase contrast using electrically addressed spatial light modulato.Optics Communications,2003,217:117-122.
    [59]Bjorn Lofving,Sverker Hard.Optical switching with two FLC SLMs.Optics Communications,2000,174:81-90.
    [60]Shuqun Zhanga,Mohammad A.Karimb.Parallel optical fuzzy logic inference using a SLM-based architecture.Optics & Laser Technology,2000,32:407-412.
    [61]V.A.Berenberg,A.A.Leshchev,L.N.Soms,etal.Polychromatic dynamic holographic one-way image correction using liquid crystal SLMs.Optics Communications,1999,166:181-188.
    [62]Yukihiro Ishii,Takeshi Takahashi,Masao Kobayashi.Real-time phase-only matched fiRering with dual liquid-crystal spatial light modulators.Optics Communications,1996,132:153-160.
    [63]M.G.Capeluto,C.La Mela,C.Iemmi,etal.Scanning mechanism based on a program-mable liquid crystal display.Optics Communications,2004,232:107-113.
    [64]翟宏琛,陈自宽,张铁群,路明暂,康辉,战元龄,朱秀山,基于对功率谱进行位相调制的联合变换相关器,中国激光,1998,25(2):139-144.
    [65]黄献烈,赖虹凯,位相调制的实时联合变换相关器,光学学报,1997,17(4):456-460.
    [66]C.C.Mao,K.M.Johnson,R.Turner,etaL Applications of binary and analog hydrogenated amorphous silicon/ferroelectric liquid-crystal optically addressed spatial light modulators.Applied Optics,1992,31(20):3908-.
    [67]Oksana Trushkevych,Neil Collings,William A.Crossland.Resolution in optically adderssed spatial light modulators based on dye-doped liquid crystals.Applied Optics,2006,45(35):8889-8892.
    [68]H.Rehn,R.Kowarschik.Real-time non-linear spatial filtering with a leaky OASLM.Optics & Laser Technology,1998,30:39-47.
    [69]Yun Zhisheng,Li Yulin,Liu Jifang,etal.Phase-only modulation with a spatial light modulator controlled by writing light intensity.Optics Communications,1997,139:232-236.
    [70]Samuel P.Kozaitis,Mark A.Getbehead.Optical wavelet feature extraction using a multiple-input phase-only encoded joint-transform correlator.Optics Communications,1998,151:15-20.
    [71]Jian-Shuen Fang,Chulung Chen.Non-zero order joint transform correlator with multilevel quantized reference function.Optics Communications,2003,220:41-47.
    [72]Laurent Bigue,Michel Frace and Pierre Ambs.Experimental Implementation of a Joint Transform Correlator Using Synthetic Discriminant Functions.Optics and Lasers in Engineering,1995,23:93-111.
    [73]CL.Adler,W.S.Rabinovich,S.R.Bowman,etal.Dynamic white light holography using an optically addressed multiple quantum well spatial light modulator.Optics Communications,1995,114:375-380.
    [74]S.VALLMITJANA,E.MARTIN-BADOSA,S.BOSCH,A.CARNICER.Contrast-improved joint transform correlator using spatial light modulators.Optics & Laser Technology,1996,28(7):525-533.
    [75]G.Keryer,J.L.de Bougrenet de la Tocnaye.A multichannel joint transform correlator.Optics Communications,1995,118:102-113.
    [76]Xiang Yang.Optical Wavelet Joint Transform Correlator for Automatic Target Recognition.J.Optics(Paris),1996,27(1):3-11.
    [77]Yu Wanji,Takumi minemoto.Performances of an all-optical subtracted joint transform correlator that uses a photorefractive crystal.Optical and Quantum Electronics,2000,32:367-382.
    [78]Rem Tripathi,Joby Joseph,K.Singh.Pattern discrimination using wavelet filters in a photorefractive joint-transform correlator.Optics Communications,1997,143:5-10.
    [79]C.Iemmi,C.La.Mela.Phase-only photorefractive joint transform correlator.Optics Communications,2002,209:255-263.
    [80]Philippe Delaye,Gerald Roosen.Evaluation of a photorefractive two-beam coupling novelty filter.Optics Communications,1999,165:133-151.
    [81]F.T.S.Yu,S.Wu,S.Rajan,D.A.Gregory,Compact joint transform correlator with a thick photorefractive crystal,Appl.Opt.,1992,31(14):2415-2418
    [82]H.Rajbenbach,S.Bann,P.Refregier,etal.Compact photorefractive correlator for robotic application,Appl.Opt.,1992,31(26):5666-5674
    [83]董良威,阎晓娜,史开源等.利用光折变晶体的电光、压电效应实现2x2光开关的原理.光学学报,2003,23(7):787-792.
    [84]Liu You-Wen,Liu Li-Ren,Zhou Chang-He,etal.Optically fixed photorefractive correlator.Chinese Physics,2002,11(07):7110-713.
    [85]H.Zhang,C.M.Cartwright,M.S.Ding,etal.Optical implementation of a photorefractive joint transform correlator with wavelet filters.Optics Communications,2000,181:223-230.
    [86]Thomas Chatters Hale and Ken Yelschow.Optical lock-in vibration detection using photorefractive frequency domain processing.Appl.Phys.Lett.1996,69(18):2632-2634.
    [87]Imtiaz Ahmad Taj,Ping Xie,Teruhito Mishima.Fast switching of photo-refractive output by applied electric field.Optics Communications,2001,187:7-15.
    [88]Abtine Tavassoli and Michael F.Becker,Optical correlation of spatial-frequency-shifted images in a photorefractive BSO correlator,APPLIED OPTICS,2004,43(8):1695-1702.
    [89]Wanjiyu and Takumi Minemoto,Performances of an all-optical subtracted joint transform correlator that uses a photorefractive crystal,Optical and Quantum Electronics,2000,32:367-382.
    [90]Jerome Colin,Nicolas Landru,Vincent Laude,eta1.High-speed photo-refractive joint transform correlator using nonlinear filters,J.Opt.A:Pure Appl.Opt.,1999,1:283-285.
    [91]F.Garzia,E.Fazio,M.Bertolotti and V.Vlad.Optical multifunction logic gate based on BSO photorefractive crystal.Proc.of SPIE,2003,4987:311-319.
    [92] Archan Kumar Das and Sourangshu Mukhopadhyay, An all-optical matrix multiplication scheme with non-linear material based switching system, CHINESE OPTICS LETTERS, 2005, 3(3): 172-175.
    [93] S. L. Hou and D. S.Oliver. Pockels readout optical memory using Bil2Si020. Appl.Phys. Lett., 1971, 18(8): 325-328.
    [94] D. Casasent, F. Caimi, and A. Khomenko. Test and evaluation of the Soviet Prom and Priz spatial light modulators. APPLIED OPTICS, 20(24): 4215-4220.
    [95] David Casasent, Frank Caimi, M. P. Petrov, and A. V. Khomenko. Applications of the Priz light modulator. Appl. Optics, 1982, 21(21): 3846-3854.
    [96] Yasuyuki Nagao, Haruhisa Sakata, etal. Bi_(12)SiO_(20) thin-film spatial light modulator, APPLIED OPTICS , 1992, 31(20): 3966-3970.
    [97] Yasuyuki Nagao, Haruhisa Sakata, etal. :Improvements in Bil2SiO20 thin-film spatial light modulator, APPLIED OPTICS, 1993, 32(26): 5036-5042.
    
    [98] Yasuyuki Nagao, etal. :Spatial Light Modulator, United States Patent, No.5105302o
    [99] Mimura Hidenori, etal.: Optical Image Element, Japanese Patent Laying-open,No.208022/88.
    [100] Mimura Hidenori, etal. : electric erasure type optical image element, Japanese Patent Laying-open, No.221916/90。
    [101] Micheal Bass, Eric Van Stryland, David R. Williams and William L. Wolfe. Handbook of Optics. Vol 2. 2nd edition. New York: McGraw-Hill; 1995, p39.13.
    [102] R. A. Ganeev, A. I. Ryasnyansky, R. I. Tugushev, etal. Nonlinear optical characteristics of BSO and BGO photorefractive crystals in visible and infrared ranges. Optical and Quantum Electronics, 2004, 36: 807-818.
    [103] L. Arizmendi, J.M. Cabrera and F. Agullo-Lopez, Material properties and photorefractive behaviour of BSO family crystals, International Journal of Optoelectronics, 1992, 7:149-180.
    [104] R. E. Aldrich, S. L. Hou and M. L. Harvill. Electrical and Optical Properties of Bi_(12)SiO_(20).J. Appl. Phys., 1971,42: 493-494.
    [105] Alfred E. Attard. Photoconductive and photorefractive effects in BSO. Applied Optics,1989,28(23): 5169-5174.
    [106] S. L. Hou, R. B. Lauer, R. E. Aldrich. Transport Process of Photoinduced Carries in Bi_(12)SiO_(20). J. Appl. Phys, 1973,44(6): 2652-2658.
    [107] Alfred E. Attard and Timothy X. Brown. Experimental observations of trapping levels in BSO. Appl. Optics, 1986, 25(18): 3253-3259.
    [108] Alfred E. Attard. Charge shielding effects of photoexcited mobile carriers on occupied deep trapping centers in BSO. Applied Optics, 1988,27(2): 232-238.
    [109] Alfred E. Attard. Theory of origins of the photorefractive and photoconductive effects in Bi_(12)SiO_(20). J. Appl. Phys, 1991, 58(1): 44-55.
    [110] E. Soergel, W. Krieger and V.I. Vlad. Charge distribution on photorefractive crystals observed with an atomic force microscope. Appl. Phys. A, 1998, 66: S337-S340.
    [111] D. Petre, I. Pintilie, T. Botila, and M. L. Ciurea. Trapping levels in Bi_(12)SiO_(20) crystals. J.Appl. Phys, 1994, 76(4): 2216-2219.
    [112] R. Grousson, M. Henry and S. Mallick. Transport properties of photoelectrons in Bi_(12)SiO_(20). J. Appl. Phys, 1984, 56(1): 224-229.
    [113] M. Peltier and F. Micheron. Volume hologram recording and charge transfer process in Bi_(12)SiO_(20) and Bi_(12)GeO_(20).J.Appl.Phys,1997,48(9):3683-3690.
    [114]S.L.Hou,R.B.Lauer and R.E.Aldrich.Transport Process of Photoinduced Carries in Bi_(12)SiO_(20).J.Appl.Phys,1973,44(6):2652-2658.
    [115]K.Buse.Light-induced charge transport processes in photorefractive crystals Ⅰ:Models and experimental methods.Appl.Phys.B,1997,64:273-291.
    [116]K.Buse.Light-induced charge transport processes in photorefractive crystals Ⅱ:Materials.Appl.Phys.B,1997,64:391-407.
    [117]D.Rouede,N.Kukhtarev,G.Khitrova,etal.Photorefractive energy exchange requiring optical activity and an electric field.OPTICS LETTERS,1989,14(14):740-742.
    [118]R.V.Litvinov.Space-Charge Field Induced in a photorefractive Crystal with an Applied Square-Wave Electric Field for Large Contrast of an Interference Pattern.Russian Physics Journal,2001,44(10):1030-1037.
    [119]A.Ennouri,M.Tapiero,J.P.Vola,etal.Determination of the mobility and transport properties of photocarriers in Bi_(12)GeO_(20) by the time-of-flight technique.J.Appl.Phys.,1993,74(4):2180-2191.
    [120]J.P.Partanen,J.M.C.Jonathan and R.W.Hellwarth.Direct determination of electron mobility in photorefractive Bi_(12)SiO_(20) by a holographic time-of-flight technique.Appl.Phys.Lett.,1990,57(23):2404-2406.
    [121]D.Bloom and S.W.S.McKeever.Temperature dependence of electron mobility in Bi_(12)GeO_(20) and Bi_(12)SiO_(20) using the time-of-flight technique.J.Appl.Phys.,1997,82(1):249-258.
    [122]Sydney Geltman.Cross sections of laser-induced collisional processes:excitation transfer and charge transfer.Phys.Rev.A.,1987,35(9):3775-3783.
    [123]Li Wang and Garret Moddela.Resolution limits from charge transport in optically addressed spatial light modulators.J.Appl.Phys.1995,78(12):6923-6935.
    [124]Y.Owechko and A.R.Tanguay.Theoretical resolution limitations of electrooptic spatial light modulators.Ⅰ.Fundamental considerations.JOSA A,1984,1(6):635-643.
    [125]Y.Ohmori,Y.Yasojima,Y.Inuishi.Control of optical damage in reduced LiNbO_3 by extemal applied field.Appl.Phys.Lett.,1974,25(12):716-717.
    [126]S.R.King,T.S.Hartwick,A.B.Chase.Optical damage in KTN.Appl.Phys.Lett.,1972,21(7):312-314.
    [127]O.Eknoyan,H.F.Taylor,W.Matous,etal.Comparison of photorefractive damage effects in LiNbO_3,LiTaO_3,and Ba_(1-x)Sr_xTi_yNb_(2-y)O_6 optical waveguides at 488 nm wavelength.Appl.Phys.Lett.,1997,71(21):3051-3053.
    [128]王文生.对硅酸铋晶体实时自动记录信息的研究.硅酸盐学报,1994,22(2):124-128.
    [129]王文生.BSO晶体的光学特性及在实时全息术中的应用.半导体光电,1997,18(4):241-244.
    [130]N.Kukhtarev,T.Kukhtareva,R.Jones,etal.Real-time holography for optical processing using photorefractive crystals.SPIE,3793:0277-786x/99.
    [131]万玉红,袁韦华,刘国庆等.光折变晶体全息存储中散射噪声特性的研究.中国激光,2003,30(6):529-532.
    [132]A.V.Gusel'nikova,S.M.Shandarov,and A.M.Plesovskikh.Vector four-wave mixing of light at reflective gratings in bismuth titanate crystals.J.Opt.Technol.,2006,73(11):760-763.
    [133]Michael A.Krainak,Frederic M.Davidson.Two-wave mixing gain in Bi_(12)SiO_(20) with applied alternating electric fields:self-diffraction and optical activity effects.J.Opt.Soc.Am.B,1989,6(4):634-638.
    [134]Alfred E.Attard.Fermi level shift in Bi_(12)SiO_(20) via photon-induced trap level occupation.J.Appl.Phys.,1992,71(2):933-937.
    [135]Senlin Fu,Hiroyuki Ozoe.Enhancement of growth rate for BSO crystals by improving thermal conditions.Materials Research Bulletin,1996,31(11):1341-1354.
    [136]ALEKSANDAR GOLUBOVIC,SLOBODANKA NIKOLIC,RADO GAJIC,etal.The growth and optical properties of Bi_(12)SiO_(20) single crystals.J.Serb.Chem.Soc.2002,67(4):279-289.
    [137]C.W.Lan,H.J.Chen,C.B.Tsai.Zone-melting Czochralski pulling growth of Bi_(12)SiO_(20)single crystals.Journal of Crystal Growth,2002,245:56-62.
    [138]Y.F.Zhoua,J.C.Wanga,L.A.Tanga,etal.Space growth studies of Ce-doped Bi_(12)SiO_(20)single crystal.Materials Science and Engineering B,2004,113:179-183.
    [139]徐学武,沈炳孚,廖晶莹等.Bi_(12)SiO_(20)晶体生长及其形态.人工晶体学报,1992,21(1):5-11.
    [140]徐学武,廖晶莹.硅酸铋(Bi_(12)SiO_(20))晶体生长的研究进展.无机材料学报,1994,9(2):129-138.
    [141]Roberto Machorro,Luis E.Regalado,and Jesus M.Siqueiros.Optical properties of parylene and its use as substrate in beam splitters.APPLIED OPTICS,1991,30(19):2778-2781.
    [142]Kaustubh S.Gadre and T.L.Alford.Contact angle measurements for adhesion energy evaluation of silver and copper films on parylene-n and SiO2 substrates.J.Appl.Phys.,2003,93(2):919-923.
    [143]L.You,G.-R.Yang,D.B.Knorr,etal.Texture of vapor deposited parylene thin films.Appl.Phys.Lett.1994,64(29):2812-2814.
    [144]周引穗,王俊,杨晓东等.透光导电ITO膜的制备及其光电特性的研究.光子学报,2002,31(9):1077-1080.
    [145]H.Kim,J.S.Horwitz,G.Kushto,etal.Effect of film thickness on the properties of indium tin oxide thin films.J.Appl.Phys.,2000,88(10):6021-6025.
    [146]H.Kim and C.M.Gilmore.Electrical,optical,and structural properties of indiumtin-oxide thin films for organic light-emitting devices.J.Appl.Phys.,1999,86(11):6451-6461.
    [147]J.E.A.M.van den Meerakker,E.A.Meulenkamp,M.Scholten.(Photo)electrochemical characterization of tin-doped indium oxide.J.Appl.Phys.1993,74(5):3282-3288.
    [148]J.Ederth,P.Johnsson,G.A.Niklasson,etal.Electrical and optical properties of thin films consisting of tin-doped indium oxide nanoparticles.PHYSICAL REVIEW B,2003,68:155410.
    [149]Tobias Gerfin and Michael Gratzel.Optical properties of tin-doped indium oxide determined by spectroscopic ellipsometry.J.Appl.Phys.1996,9(3):1722-1729.
    [150]Elias Aperathitis,Marcus Bender,Volker Cimalla,etal.Properties of if-sputtered indium-tin-oxynitride thin films.J.Appl.Phys.,2003,94(2):1258-1266.
    [151]Swati Ray,Ratnabali Banerjee,N.Basu,etal.Properties of tin doped indium oxide thin films prepared by magnetron sputterin.J.Appl.Phys.,1983,54(6):3497-3501.
    [152]李铭华,杨春晖,徐玉恒等.光折变晶体材料科学导论.科学出版社,北京:2003.
    [153]Sydney Geltman.Cross sections of laser-induced collisional processes:Excitation transfer and charge transfer.Physical Review A,1987,35(9):3775-3783.
    [154]M.Vos and I.E.McCarthy.Observing electron motion in solids.Reviews of Modern Physics,1995,67(3):713-726.
    [155]庄松林,钱振邦.光学传递函数,机械工业出版社,北京:1981.
    [156]马卫红,基于图像分析的光学传递函数测试技术研究,西安,中国科学院西安光学精密机械研究所博士学位论文,2005.
    [157]H Lavin,M Quick,The OTF in electro-optical imaging systems,Proc.of SPIE,46:279-286.
    [158]宋菲君,S.Jutamulia.近代光学信息处理.北京大学出版社,北京:1998.
    [159]R.G.Barrera,O.Guzman,and B.Balaguer,Point charge in a three-layer dielectric medium with planar interfaces,Am.J.Phys.1978,46:1172-1179.
    [160]A.I.Ryasnyanskii.Three-Photon Absorption in Photorefractive BSO And BGO Crystals.Journal of Applied Spectroscopy,2004,71(2):295-298.
    [161]Irie,M.Diarylethenes for Memories and Switches.Chemical Reviews,2000,100:1685-1716.
    [162]Tian,H.& Yang,S.J.Recent progresses on diarylethene based photochromic switches.Chemical Society Reviews,2004,33:85-97.
    [163]Pu,S.Z.et al.Photochromic diarylethene for polarization holographic optical recording.Materials Letters,2007,61:855-859.
    [164]Luo,S.J.et al.Photochromic diarylethene for rewritable holographic data storage.Optics Express,2005,13:3123-3128.
    [165]Pu,S.Z.,Tang,H.H.,Chen,B.,Xu,J.K.& Huang,W.H.Photochromic diarylethene for two-photon 3D optical storage.Materials Letters,2006,60:3553-3557.
    [166]羊国光,宋菲君.高等物理光学.中国科学技术大学出版社,合肥:1991.
    [167]Joseph W.Goodman著,秦克诚,刘培森,陈家璧等译.傅里叶光学导论.电子工业出版社,北京:2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700