用户名: 密码: 验证码:
异向介质与基于EBG的相控阵天线研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以异向介质和电磁带隙(EBG)结构为代表的新型人工电磁材料是当前物理学与电磁学研究领域的前沿和热点,相关研究成果在许多领域都有巨大的应用前景。对于其特性的研究,在理论分析、数值模拟和实际应用等方面还需要不断地发展和完善。本文主要讨论了非色散和色散异向介质导行结构中的导模,研究了主轴与界面存在旋转角的各向异性异向介质及双轴各向异性回旋介质中的负折射现象,采用矩量法(MoM)分析了EBG波导端头缝隙相控阵天线的扫描盲区。
     本文的主要工作可以概括为:
     1.详细研究了非色散的异向介质平板波导中的导模。给出了各向同性异向介质平板中为实、虚横波数时的模式导行条件。讨论了导行TE波的奇模和偶模特性,采用图解法分析了不同异向介质参数情况下虚横波数导模的存在性。由于实验上制备的异向介质均是各向异性的,因而本文还构造了接地的单轴各向异性异向介质平板波导,分类讨论了介电常数张量和磁导率张量中各分量符号不同组合时的模式特性
     2.讨论了各向同性色散异向介质界面及单轴各向异性色散异向介质平板波导的导行波传输特性。结果表明,这两种导行结构的模式特性与色散异向介质的工作频率密切相关。
     3.深入研究了电磁波在各向同性常规媒质和主轴与界面不重合的各向异性异向介质界面的反射和透射特性。根据主轴系下张量分量符号的不同组合,将媒质分为四类。讨论了不同情况下发生负折射的条件及旋转角对全反射和全透射现象的影响。当旋转角为或时,这种各向异性媒质将退化为普通各向异性异向介质,这使得文中的结论更具有一般性。0 o90o
     4.讨论了一种双轴各向异性回旋介质,这种材料中也可以发生负折射并且容易为目前的技术设计和制备。详细分析了TE极化波在各向同性常规介质和双轴各向异性回旋介质界面的传输特性。分类讨论了媒质参数正负号变化对全反射、垂直入射全透射和负折射的影响。得到的数值结果证实了理论分析的正确性。
     5.采用MoM对矩形波导端头缝隙为辐射单元的三角形排布相控阵进行了扫描盲区分析。计算了与盲区现象相关的各参数,包括中心单元反射系数,单元的阵中方向图和耦合系数。由矩量法理论证明了全阵等幅激励且反射系数相位为零(谐振)是有限阵单元方向图与中心单元反射系数描述盲区问题统一的充分条件。得到的结论有助于通过加载EBG对相控阵天线扫描盲区进行有效抑制。
Presently, new artificial electromagnetic materials, such as metamaterials and electromagnetic bandgap (EBG) structures, become the foreland and hotspot field in Physics and Electromagnetism. The research results can be applied to many fields in the future. Thus, the investigation of the properties of the metamaterials and EBG structures needs developing and perfecting constantly in theoretical analysis, numerical simulations and actual applications. In this thesis, the guided modes in guiding structures containing non-dispersive and dispersive metamaterials are discussed, the negative refraction at the interface associated with anisotropic metamaterials cut along nonprincipal axes and biaxially anisotropic gyrotropic media is investigated, and a blind spot analysis is carried out in EBG waveguide end-slot phased array antennas by using the method of moments (MoM). The work of the author is mainly focused on:
     1. The guided modes in a slab waveguide of non-dispersive metamaterial are investigated in detail. The guidance conditions of modes with both real and imaginary transverse wave numbers in an isotropic metamaterial slab are obtained. The odd and even mode properties for guided TE waves are discussed, and besides, the existence of guided modes with imaginary transverse wave numbers for different medium parameters is analyzed graphically. However, the metamaterials that have been prepared successfully in experiments are actually anisotropic. Thus, a grounded slab waveguide of uniaxially anisotropic metamaterial is constructed. In terms of the different sign combinations of the permittivity and permeability tensor components, the mode properties are discussed in different cases.
     2. The guidance of waves at the interface associated with an isotropic dispersive metamaterial and in a slab waveguide of uniaxially anisotropic dispersive metamaterial is discussed. The results show that the mode properties of the two guiding structures are closely dependent on the operating frequency of the dispersive metamaterial.
     3. The characteristics of reflection and refraction of electromagnetic waves at the interface between an isotropic regular media and an anisotropic metamaterial cut along nonprincipal axes are thoroughly investigated. In terms of the different sign combinations of the tensor components along principal axes, the anisotropic media is divided into four categories. The existence conditions of negative refraction and the influence of the rotation angle on the total reflection and total transmission phenomenon are discussed for each case. When the rotation angle is equal to 0o or 90o , this anisotropic media can be reduced to general anisotropic media, which makes the conclusions in this paper more general.
     4. A biaxially anisotropic gyrotropic media, in which the negative refraction may occur, is discussed, and the use of such a medium offers flexibility in design and ease of fabrication. The propagation characteristics of TE-polarized waves at the interface between an isotropic regular medium and a biaxially anisotropic gyrotropic medium are analyzed. The effect of the different medium parameters on the total reflection, normally incident total transmission and negative refraction is discussed in different cases. Numerical results are given to validate the theoretical analysis.
     5. A blind spot analysis is carried out in rectangular waveguide end-slot phased arrays of a triangular arrangement by using the MoM. The parameters associated with blind effect, such as the reflection coefficient of the center element, the active element pattern and the coupling coefficient are all computed. The sufficient condition of the unity of the active element pattern and reflection coefficient in describing blind effect is proved, which is the array should be equal scale excited and the phase of the reflection coefficient be zero (resonance). The conclusions will be helpful in effectively suppressing the scan blind spots by using EBG.
引文
[1] V. G. Veselago,“The electrodynamics of substances with simultaneously negative values ofεandμ,”Soviet Physics USPEKHI, Vol. 10, 1968, 509-514.
    [2] I. V. Lindell, S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen,“BW media-media with negative parameters, capable of supporting backward waves,”Microwave Opt. Technol. Lett., Vol. 31, 2001, 129-133.
    [3] C. Luo, S. G. Johnson, and J. D. Joannopoulos, J. B. Pendry,“All-angle negative refraction without negative effective index,”Phys. Rev. B, Vol. 65, 2002, 201104.
    [4] R. W. Ziolkowski,“Wave propagation in media having negative permittivity and permeability,”Phys. Rev. E, Vol. 64, 2001, 056625.
    [5] R. W. Ziolkowski,“Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs,”Optics Express, Vol. 11, 2003, 662-681.
    [6] J. A. Kong,“Electromagnetic wave interaction with stratified negative isotropic media,”Progress In Electromagnetics Research, PIER 35, 2002, 1-52.
    [7] J. A. Kong, B. L. Wu, Y. Zhang,“Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and permeability,”Appl. Phys. Lett., Vol. 80, 2002, 2084-2086.
    [8] J. Pacheco, Jr., T. M. Grzegorczyk, B.-I. Wu, Y. Zhang, and J. A. Kong,“Power propagation in homogeneous isotropic frequency-dispersive left-handed media,”Phys. Rev. Lett., Vol. 89, 2002, 257401.
    [9] Y. Zhang, T. M. Grzegorczyk, and J. A. Kong,“Propagation of electromagnetic waves in a slab with negative permittivity and negative permeability,”Progress In Electromagnetics Research, PIER 35, 2002, 271-286.
    [10] C. D. Moss, T. M. Grzegorczyk, Y. Zhang and J. A. Kong,“Numerical studies of left handed metamaterials,”Progress In Electromagnetics Research, PIER 35, 2002, 315-334.
    [11] E. Yablonovitch,“Inhibited spontaneous emission in solid-state physics and electronics,”Phys. Rev. Lett., Vol. 58, 1987, 2059-2062.
    [12] S.John,“Strong localization of photons in certain disordered dielectric superlattices,”Phys. Rev. Lett., Vol.58, 1987, 2486-2489.
    [13] E. Yablonovitch and T. J. Gmitter,“Photonic band structure: the face-centered-cubic case employing nonspherical atoms,”Phys. Rev. Lett., Vol. 67, 1991, 2295-2298.
    [14] J. B. Pendry, A. J. Holden, W. J. Stewart and I. Youngs,“Extremely low frequency plasmons in metallic mesostructures,”Phys. Rev. Lett., Vol. 76, 1996, 4773-4776.
    [15] J. B. Pendry, A. J. Holden, D. J. Robbins and W. J. Stewart,“Magnetism from conductors and enhanced nonlinear phenomena,”IEEE Trans. Microwave Theory Tech., Vol. 47, 1999, 2075-2084.
    [16] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. N.-Nasser and S. Schultz,“Composite medium with simultaneously negative permeability and permittivity,”Phys. Rev. Lett., Vol. 84, 2000, 4184-4187.
    [17] R. A. Shelby, D. R. Smith, S. C. N.-Nasser and S. Schultz,“Microwave transmission through a two-dimensional, isotropic left-handed metamaterial,”Appl. Phys. Lett., Vol. 78, 2001, 489-491.
    [18] R. A. Shelby, D. R. Smith and S. Schultz,“Experimental verification of a negative index of refraction,”Science, Vol. 292, 2001, 77-79.
    [19] P. M. Valanju, R. M. Walser and A. P. Valanju,“Wave refraction in negative-index media: always positive and very inhomogeneous,”Phys. Rev. Lett., Vol. 88, 2002, 187401.
    [20] J. B. Pendry and D. R. Smith,“Comment on‘Wave Refraction in Negative-Index Media: Always Positive and Very Inhomogeneous’,”Phys. Rev. Lett., Vol. 90, 2003, 029703
    [21] J. Woodley and M. Mojahedi,“Negative group velocity in left-handed materials,”The 2003 IEEE AP-S International Symposium on Antennas and Propagation, Vol. 4, 2003, 643-646.
    [22] N. Engheta,“Is foster’s reactance theorem satisfied in double-negative and single-negative media?”Microwave and Optical Technology Letters, Vol. 39, 2003, 11-14.
    [23] T. J. Cui and J. A. Kong,“Causality in the propagation of transient electromagnetic waves in a left-handed medium,”Phys. Rev. B, Vol. 70, 2004, 165113.
    [24] T. J. Cui and J. A. Kong,“Time-domain electromagnetic energy in a frequency-dispersive left-handed medium,”Phys. Rev. B, Vol. 70, 2004, 205106.
    [25] J. B. Pendry,“Negative refraction makes a perfect lens,”Phys. Rev. Lett., Vol.85, 2000, 3966-3969.
    [26] G. W.’t Hooft,“Comment on‘Negative Refraction Makes a Perfect Lens’,”Phys. Rev. Lett., Vol. 87, 2001, 249701.
    [27] N. Garcia and M. Nieto-Vesperinas,“Left-handed materials do not make a perfect lens,”Phys. Rev. Lett., Vol. 88, 2002, 207403.
    [28] Z. Ye,“Optical transmission and reflection of perfect lenses by left handed materials,”Phys. Rev. B, Vol. 67, 2003, 193106.
    [29] D. R. Smith, D. Schurig, M. Rosenbluth, et al.,“Limitations on subdiffraction imaging with a negative refractive index slab,”Appl. Phys. Lett., Vol. 82, 2003, 1506-1508.
    [30] J. T. Shen and P. M. Platzman,“Near field imaging with negative dielectric constant lenses,”Appl. Phys. Lett., Vol. 80, 2002, 3286-3288.
    [31] R. Marques and J. Baena,“Effect of losses and dispersion on the focusing properties of left-handed media,”Microwave and Optical Technology Letters, Vol. 41, 2004, 290-294.
    [32] A. N. Lagarkov and V. N. Kissel,“Near-perfect imaging in a focusing system based on a left-handed-material plate,”Phys. Rev. Lett., Vol. 92, 2004, 077401.
    [33] C. Li, C. Liu and F. Li,“Imaging quality of a lossy left-handed material slab,”The Seventeenth Asia-Pacific Microwave Conference (APMC’2005), Vol. 1, 2005, 1606210.
    [34] T. J. Cui, Q. Cheng, W. B. Lu, et al.,“Localization of electromagnetic energy using a left-handed-medium slab,”Phys. Rev. B, Vol. 71, 2005, 045114.
    [35] Q. Cheng, T. J. Cui and W. B. Lu,“Lossy and retardation effects on the localization of EM waves using a left-handed medium slab,”Physics Letters A, Vol. 336, 2005, 235-244.
    [36] Q. Cheng and T. J. Cui,“Electromagnetic properties of a left-handed medium slab excited by three-dimensional electric dipoles,”Physics Letters A, Vol. 345, 2005, 439-447.
    [37] J. A. Kong, Bae-lan Wu and Y. Zhang,“A unique lateral displacement of a Gaussian beam transmitted through a slab with negative permittivity and permeability,”Microwave and Optical Technology Letters, Vol. 33, 2002, 136-139.
    [38] X. S. Rao and C. K. Ong,“Amplification of evanescent waves in a lossy left-handed material slab,”Phys. Rev. B, Vol. 68, 2003, 113103.
    [39] S. A. Cummer,“Dynamics of causal beam refraction in negative regractive indexmaterials,”Appl. Phys. Lett., Vol. 82, 2003, 2008-2010.
    [40] L. Chen, S. He and L. F. Shen,“Finite-Size effects of a left-handed material slab on the image quality,”Phys. Rev. Lett., Vol. 92, 2004, 107404.
    [41] P. F. Loschialpo, D. W. Forester, D. L. Simith and F. J. Rachford,“Optical properties of an ideal homogeneous causal left-handed material slab,”Phys. Rev. E, Vol. 70, 2004, 036605.
    [42] X. S. Rao and C. K. Ong,“Subwavelength imaging by a left-handed material superlens,”Phys. Rev. E, Vol. 68, 2003, 067601.
    [43] S. A. Cummer,“Simulated causal subwavelength focusing by a negative regractive index slab,”Appl. Phys. Lett., Vol. 82, 2003, 1503-1505.
    [44] P. F. Loschialpo, D. L. Simith, D. W. Forester and F. J. Rachford,“Electromagnetic waves focused by a negative-index planar lens,”Phys. Rev. E, Vol. 67, 2003, 035602.
    [45] D. Correia and J. M. Jin,“Theoretical analysis of left-handed metamaterials using FDTD-PML method,”Proceedings IEEE MTT-S IMOC, 2003, 1033-1036.
    [46] Y. Hao, L. Lu and C. G. Parini,“Dispersive FDTD modeling on multi-layer left-handed meta-materials for near/far field imaging at microwave frequencies,”The 2003 IEEE AP-S International Symposium on Antennas and Propagation, Vol. 4, 2003, 639-642.
    [47] S. A. Cummer,“Perfectly matched layer behavior in negative refractive index materials,”IEEE Antennas and Wireless Propagation Letters, Vol. 3, 2004, 172-175.
    [48] W. F. Michael and S. K. Yuri,“Sub-wavelength imaging with a left-handed material flat lens,”Physics Letters A, Vol. 334, 2005, 326-330.
    [49] R. W. Ziolkowski,“Pulsed Gaussian beam interactions with double negative metamaterial slabs: errata,”Optics Express, Vol. 11, 2003, 1596-1597.
    [50] N. Engheta and W. Ziolkowski,“A positive future for double-negative metamaterials,”IEEE Trans. Microwave Theory Tech., Vol. 53, 2005, 1535-1556.
    [51] M. W. Feise, P. J. Bevelacqua and J. B. Schneider,“Effects of surface waves on the behavior of perfect lenses,”Phys. Rev. B, Vol. 66, 2002, 035113.
    [52] I. V. Shadrivov, A. A. Sukhorukov and Y. S. Kivshar,“Guided modes in negative-refractive-index waveguides,”Phys. Rev. E, Vol. 67, 2003, 057602.
    [53] P. Baccarelli, P. Burghignoli, G. Lovat, et al.,“Surface-wave suppression in a double-negative metamaterial grounded slab,”IEEE Antennas and Wireless Propagation Letters, Vol. 2, 2003, 269-272.
    [54] H. Cory and A. Barger,“Surface-wave propagation along a metamaterial slab,”Microwave and Optical Technology Letters, Vol. 38, 2003, 392-395.
    [55] B.-I. Wu, T. M. Grzegorczyk, Y. Zhang and J. A. Kong,“Guided modes with imaginary transverse wave number in a slab waveguide with negative permittivity and permeability,”Journal of Applied Physics, Vol. 93, 2003, 9386-9388.
    [56] H. Cory and A. Shtrom,“Wave propagation along a rectangular metallic waveguide longitudinally loaded with a metamaterial slab,”Microwave and Optical Technology Letters, Vol. 41, 2004, 123-127.
    [57] P. Baccarelli, P. Burghignoli, F. Frezza, et al.,“Fundamental modal properties of surface waves on metamaterial grounded slabs,”IEEE Trans. Microwave Theory Tech., Vol. 53, 2005, 1431-1442.
    [58] J. Lu, B.-I. Wu and J. A. Kong,“Guided modes with a linearly varying transverse field inside a left-handed dielectric slab,”J. Electromagn. Waves Appl., Vol. 20, 2006, 689-697.
    [59] M. M. B. Suwailam and Z.(David) Chen,“Surface waves on a grounded double-negative(DNG) slab waveguide,”Microwave and Optical Technology Letters, Vol. 44, 2005, 494-498.
    [60] J. Huangfu, L. Ran, H. Chen, et al.,“Experimental confirmation of negative refractive index of a metamaterial composed ofΩ-like metallic patterns,”Appl. Phys. Lett., Vol. 84, 2004, 1537-1539.
    [61] H. Chen, L. Ran, J. Huangfu, et al.,“Left-handed materials composed of only S-shaped resonators,”Phys. Rev. E, Vol. 70, 2004, 057605.
    [62] L. Hu and S. T. Chui,“Characteristics of electromagnetic wave propagation in uniaxally anisotropic left-handed materials,”Phys. Rev. B, Vol. 66, 2002, 085108.
    [63] D. R. Smith, D. Schurig, J. J. Mock, P. Kolinko and P. Rye,“Partial focusing of radiation by a slab of indefinite media,”Appl. Phys. Lett., Vol. 84, 2004, 2244-2246.
    [64] I. V. Lindell and S. Ilvonen,“Waves in a slab of uniaxial BW medium,”J. Electromagn. Waves Appl., Vol. 16, 2002, 303-318.
    [65] Q. Cheng and T. J. Cui,“Guided modes in a planar anisotropic biaxial slab with partially negative permittivity and permeability,”Appl. Phys. Lett., Vol. 87, 2005, 174102.
    [66] Q. Cheng and T. J. Cui,“Infinite guided modes in a planar waveguide with a biaxially anisotropic metamaterial,”Journal of the Optical Society of America A, Vol. 23, 2006, 1989-1993.
    [67] S. Liu, L. Chen and C. Liang,“Guided modes in a grounded slab waveguide of uniaxially anisotropic left-handed material,”Microwave and Optical Technology Letters, Vol. 49, 2007, 1644-1648.
    [68] S. H. Liu, C. H. Liang, W. Ding, et al.,“Electromagnetic wave propagation through a slab waveguide of uniaxially anisotropic dispersive metamaterial,”Progress In Electromagnetics Research, PIER 76, 2007, 467-475.
    [69] Y. Xiang, X. Dai and S. Wen,“Total reflection of electromagnetic waves propagating from an isotropic medium to an indefinite metamaterial,”Optics Communications, Vol. 274, 2007, 248-253.
    [70] N. H. Shen, Q. Wang, J. Chen, et al.,“Total transmission of electromagnetic waves at interfaces associated with an indefinite medium,”Journal of the Optical Society of America B, Vol. 23, 2006, 904-912.
    [71] H. Luo, W. X. Shu, F. Li and Z. Z. Ren,“Anomalous wave propagation in quasiisotropic media,”Optics Communications, Vol. 267, 2006, 271-277.
    [72] H. X. Da, C. Xu, Z. Y. Li and G. Kraftmakher,“Beam shifting of an anisotropic negative refractive medium,”Phys. Rev. E, Vol. 71, 2005, 066612.
    [73] W. Shu, Z. Ren, H. Luo and F. Li,“Brewster’s angle for anisotropic materials from the extinction theorem,”Applied Physics A: Materials Science and Processing, Vol. 87, 2007, 297-303.
    [74] D. R. Smith and D. Schurig,“Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors,”Phys. Rev. Lett., Vol. 90, 2003, 077405.
    [75] T. M. Grzegorczyk, Z. M. Thomas and J. A. Kong,“Inversion of critical angle and Brewster angle in anisotropic left-handed metamaterials,”Appl. Phys. Lett., Vol. 86, 2005, 251909.
    [76] Q. Cheng and T. J. Cui,“Lateral shifts of optical beams on the interface of anisotropic metamaterial,”Journal of Applied Physics, Vol. 99, 2006, 066114.
    [77] Y. H. Lu, P. Wang, P. J. Yao, J. P. Xie and H. Ming,“Negative refraction at the interface of uniaxial anisotropic media,”Optics Communications, Vol. 246, 2005, 429-435.
    [78] M. K. Karkkainen,“Numerical study of wave propagation in uniaxially anisotropic lorentzian backward-wave slabs,”Phys. Rev. E, Vol. 68, 2003,026602
    [79] W. Jonathan and M. Mohammad,“Backward wave propagation in left-handed media with isotropic and anisotropic permittivity tensors,”Journal of the Optical Society of America B, Vol. 23, 2006, 2377-2382.
    [80] C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah and M. Tanielian,“Experimental verification and simulation of negative index of refraction using Snell’s Law,”Phys. Rev. Lett., Vol. 90, 2003, 107401.
    [81] D. R. Smith, P. Kolinko and D. Schurig,“Negative refraction in indefinite media,”Journal of the Optical Society of America B, Vol. 21, 2004, 1032-1043.
    [82]刘松华,梁昌洪,高洁,潘伟涛,各向异性异向介质表面的全反射与全透射,电波科学学报,已录待刊,2009.
    [83] E. R. Brown, C. D. Parker and E. Yablonovitch,“Radiation properties of a planar antenna on a photonic-crystal substrate,”Journal of the Optical Society of America B, Vol. 10, 1993, 404-407.
    [84] Y. Qian, R. Coccioli, D. Sievenpiper and V. Radisic et al,“Microstrip patch antenna using novel photonic band-gap structures,”Microwave Journal, Vol. 42, 1999, 66-76.
    [85] R. Coccioli, F. R. Yang, K. P. Ma and T. Itoh,“Aperture-coupled patch antenna on UC-PBG substrate,”IEEE Trans. Microwave Theory Tech., Vol. 47, 1999, 2123-2130.
    [86] R. Gonzalo, P. de Maagt, and M. Sorolla,“Enhanced patch antenna performance by suppressing surface waves using photonic-bandgap substrates,”IEEE Trans. Microwave Theory Tech., Vol. 47, 1999, 2131-2138.
    [87] M. Thevenot, M. S. Denis, A. Reineix and B. Jecko,“Design of a new photonic cover to increase antenna directivity,”Microwave and Optical Technology Letters, Vol. 22, 1999, 136-139.
    [88] I. Rumsey, M. Piket-May and P. K. Kelly,“Photonic bandgap structure used as filters in microstrip circuits,”IEEE Microwave and Guided Wave Letters, Vol. 8, 1998, 336-338.
    [89] K. M. Shum, Q. Xue and C. H. Chan,“A novel microstrip ring hybrid incorporating a PBG cell,”IEEE Microwave and Wireless Components Letters, Vol. 11, 2001, 258-260.
    [90] V. Radisic, Y. Qian and T. Itoh,“Broadband power amplifier using dielectric photonic bandgap structure,”IEEE Microwave and Guided Wave Letters, Vol. 8,1998, 13-14.
    [91] Y. Horii and M. Tsutsumi,“Suppression of the harmonic radiation from the PBG microstrip patch antenna,”Asia-Pacific Microwave Conference (APMC’1999), Vol.3, 724-727, 1999.
    [92] Z. Iluz, R. Shavit and R. Bauer,“Microstrip antenna phased array with electromagnetic bandgap substrate,”IEEE Trans. Antennas Propagat., Vol. 52, 2004, 1446-1453.
    [93]郭燕昌,钱继曾,黄富雄,冯祖伟.相控阵天线和频率扫描天线原理.北京:国防工业出版社, 1978.
    [94] N. Amitay, V. Galindo and C. P. Wu, Theory and Analysis of Phased Array Antennas, Wiley, New York, 1972.
    [95] C. Caloz and T. Itoh, Electromagnetic metamaterials: transmission line theory and microwave applications, John Wiley&Sons, 2005.
    [96] L. D. Landau and E. M. Lifshitz, Electrodynamics of continuous media, Pergamon, Oxford, 1984.
    [97]黄席椿.论波速.北京:高等教育出版社, 1985.
    [98]牛中奇,朱满座,卢智远,路宏敏等.电磁场理论基础.北京:电子工业出版社, 2001.
    [99]杨娟.二维光子晶体与左手媒质研究.西安电子科技大学博士学位论文. 2005.
    [100]刘松华,梁昌洪,党晓杰,平面波经左手平板的传输特性分析,2007年全国微波毫米波会议论文集,宁波,2007.
    [101] R. W. Ziolkowski,“Design, fabrication, and testing of double negative metamaterials,”IEEE Trans. Antennas Propagat., Vol. 51, 2003, 1516-1529.
    [102] J. A. Kong, Electromagnetic wave theory, Wiley, New York, 1985.
    [103] R. Ruppin,“Surface polaritons of a left-handed medium,”Physics Letters A, Vol. 277, 2000, 61-64.
    [104] K. Y. Kim, J.-H. Lee, Y. K. Cho, and H.-S. Tae,“Electromagnetic wave propagation through doubly dispersive subwavelenth metamaterial hole,”Optics Express, Vol. 13, 2005, 3653-3663.
    [105]黄艳艳,单轴各向异性半无限左手化材料中的表面极化激元,苏州大学学报,Vol.20, 2004, 58-62.
    [106] S. A. Darmanyan, M. Neviere, and A. A. Zakhidov,“Surface modes at the interface of conventional and left-handed media,”Optics Communications, Vol. 225, 2003, 233-240.
    [107] Y. Satomura, M. Matsuhara, and N. Kumagai,“Analysis of electromagnetic wave modes in anisotropic slab waveguide,”IEEE Trans. Microwave Theory Tech., Vol. 22, 1974, 86-92.
    [108] R. E. Collin, Field theory of guided waves, McGraw-Hill, New York, 1960.
    [109] R. W. Ziolkowski,“Superluminal transmission of information through an electromagnetic metamaterial,”Phys. Rev. E, Vol. 63, 2001, 046604.
    [110]丁伟.时域有限差分法关键技术及其应用研究.西安电子科技大学博士学位论文. 2007.
    [111] H. Luo, W. Hu, X. Yi, et al.,“Amphoteric refraction at the interface between isotropic and anisotropic media,”Optics Communications, Vol. 254, 2006, 253-360.
    [112] M. Notomi,“Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap,”Phys. Rev. B, Vol. 62, 2000, 10696-10705.
    [113] J. B. Pendry,“A chiral route to negative refraction,”Science, Vol. 306, 2004, 1353-1355.
    [114] Q. Cheng and T. J. Cui,“Negative refractions in uniaxially anisotropic chiral media,”Phys. Rev. B, Vol. 73, 2006, 113104.
    [115] J. Q. Shen,“Novel properties of wave propagation in biaxially anisotropic left-handed materials,”Ann. Phys.(Leipzig), Vol. 13, 2004, 335-356.
    [116] P. Queffelec, M. L. Floc’h, and P.Gelin,“New method for determining the permeability tensor of magnetized ferrites in a wide frequency range,”IEEE Trans. Microwave Theory Tech., Vol. 48, 2000, 1344-1351.
    [117] R.C.Hansen, Significant Phased Array Papers, Artech house, Massachusetts, 1973.
    [118]汪茂光,吕善伟,刘瑞祥等.阵列天线分析与综合.成都:电子科技大学出版社, 1989.
    [119] E. V. Sohtell,“Mutual admittance between slots on a cylinder using the extended poynting vector method,”IEE Proc., Vol. 133, 1986, 238-240.
    [120] R. W. Scharstein,“Mutual Coupling in a Slotted Phased Array, Infinite in E-Plane and Finite in H-Plane,”IEEE Trans. Antennas Propagat., Vol. 38, 1990, 1186-1191.
    [121]李龙.广义电磁谐振与EBG电磁局域谐振研究及应用.西安电子科技大学博士学位论文. 2005.
    [122] R. W. Lyon, A. J. Sangster,“Efficient Moment Method Analysis of Radiating Slots in a Thick-Walled Rectangular Waveguide,”IEE Proc., Vol. 128, 1981, 197-205.
    [123]李建瀛,梁昌洪,波导端头裂缝的矩量法分析,西安电子科技大学学报, Vol. 26, 1999, 67-70.
    [124]李建瀛,梁昌洪,波导端头裂缝有限相控阵单元的阵中特性,电子学报, Vol. 27, 1999, 102-104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700