用户名: 密码: 验证码:
基因芯片表达数据分析相关问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以基因芯片表达数据分析技术为研究课题,围绕基因芯片表达数据预处理技术,基因芯片在肿瘤研究中的相关问题以及基因表达调控网络建模技术三方面问题进行了深入分析和研究,其主要内容和创新之处包括:
     1)寡核苷酸芯片系统偏移的校正方法研究
     基因芯片实验涉及多个芯片,因此有必要排除非生物因素引起的芯片间的变异,使得来自不同芯片的数据具有可比性。在对比分析中,通过系统校正能够减少芯片间的系统偏差,使得芯片检测的结果能真实反映生物功能的差别。论文对寡核苷酸芯片系统偏移的校正进行了研究。提出了一种迭代的鲁棒基准芯片校正方法。通过对各芯片上的探针进行排序,选择一个秩差异最小的探针子集,然后利用Tukey biweight算法计算一个伪基准芯片,最后基于伪基准芯片对目标芯片采用M-A非线性校正。对上述过程进行迭代,当达到最大迭代数或者探针杂交强度校正前后的差值低于某个阈值时停止。以Affymetrix公司提供的标准检验数据集HG U133A Spike-in Dataset作为测试数据,与多种现有的方法进行了对比分析,显示新方法具有更好的性能。
     2)基因芯片表达数据缺失估计算法研究
     在基因芯片实验中,经常存在数据缺失现象,这会影响芯片数据后续分析结果的准确性。缺失值估计是在不增加实验次数的情况下降低缺失数据对后续分析影响的有效方法。通过利用相似性信息的核加权函数实现缺失值回归估计的局部化,给出了基于加权回归估计的基因表达缺失值估计方法。在两种不同类型的基因芯片表达数据上,将新算法与几种已知的算法进行了比较分析。实验结果表明,新的估计算法具有较传统缺失值估计算法更好的稳定性和估计准确度。
     3)肿瘤基因芯片表达数据的分类诊断算法研究
     肿瘤基因芯片表达数据分类是一个典型的高维小样本分类问题。当前已经提出了很多有效的分类算法。提出了基于两步策略的肿瘤基因芯片表达数据分类算法。在测试的基因中存在大量的非差异表达冗余基因,为了有效减少其对分类效果的影响,首先利用ReliefF方法对基因进行预选择,得到一个较小的分类基因子集;然后分别建立了基于相关向量机和基于免疫优化支持向量机的分类预测模型。在四个真实的肿瘤基因芯片表达数据上,与几种不同的算法进行了比较,结果显示新算法可以得到更好的分类精度,同时表现出很好的稳定性。
     4)肿瘤基因芯片表达数据的分型识别算法研究
     肿瘤是高度异质性的疾病,不同的发病原因会导致相同的表型。基于临床病理检测很难对肿瘤进行准确的分型诊断。基因芯片技术提供了一种高通量的在分子水平观察肿瘤发生和演变的手段,利用基因表达数据可以对肿瘤组织样本进行准确的分型识别。支持向量聚类是一种基于边缘检测的聚类方法,对非规则的类分布有很好的聚类性能,能够发现样本真实的类分布。给出了基于支持向量聚类的肿瘤分型识别算法。对两个肿瘤基因芯片表达数据进行了分型识别分析,利用自动生成的参数序列,对样本进行不同程度的精细划分,结果显示,基于支持向量聚类的方法能够更准确地对样本进行分型识别,而且能够自动发现肿瘤样本真实的类分布。
     5)基于反向技术的基因表达调控网络建模技术研究
     基因表达调控网络的机制不仅仅是基因间的相互作用,还包含各种调控因子的相互作用,诸如,相关的调控蛋白质,siRNA等等。而这些调控因子不易直接测量。状态空间模型能够很好地描述基因表达调控网络复杂的调控机制。基因表达调控网络具有典型的稀疏特性,即基因的表达只被极少数的基因和调控因子所调控,同时,具有相互调控作用的基因间,在其连续表达水平上表现出较强的相关性。针对基因调控的稀疏子模块特点,先利用相关性聚类对基因进行分解,得到多个基因簇,然后利用状态空间方程对每个簇的基因间相互调控关系进行建模分析。通过在不同聚类数量水平上的建模结果进行综合分析,可以得到具有保守特性的基因间相互作用关系,从而得到一个稀疏的调控网络。对人类T细胞周期基因表达数据进行了分析,结果显示,随着聚类数量的增加,通过分解建模,可以更好地对网络进行重构。同时,建立了不同保守程度的稀疏调控网络模型。
This dissertation refers to studies on DNA microarray expression data preprocessing techniques, classification and class discovery algorithms in cancer research and the gene regulation network modeling method. The main contents and contributions of the dissertation are summarized as follows:
     1) The research on method to normalize system bias for high-density oligonucleotide array gene expression
     In multiarray experiments, there is some system bias, which be contaminated by experimental factors such as spot location (often referred to as a print-tip effect), arrays, dyes, and various interactions of these effects. For comparable each other, it need to normalize the raw expression profile data. Normalization is the key step in low level processing. In fact, many normalization methods have been developed, i.e. scaling normalization, nonlinear normalization, quantile normalization and so on. New baseline normalization is presented. First, select the subset of probes, which have the min rank range; secondly, compute pseudo-baseline by Tukey biweight algorithm; finally, do nonlinear normalization on pseudo-baseline. Iterative strategy weakens the sensitivity of the baseline method to select baseline. With the standard test dataset, compare it with other methods. The results show that the novel method has better performances than others in several ways.
     2) The research on algorithms for missing value estimation of microarray expression data
     In microarray experiments, the missing value does exist and somewhat affects the stability and precision of the expression data analysis. Compared with increasing experiments, missing value estimation is preferred in reducing the influence of missing values on the post-processing. With the kernel weight based on similarly between target gene and sample genes, which localize missing value estimation, a new method based on weighted regression is presented. On the two real microarray expression datasets, the novel method is compared with several existing methods. Experimental results show that the novel method has better stability and precision than the existing methods that have been employed.
     3) The research on algorithms for cancer microarray expression classification
     DNA microarray technology can measure the expression levels of thousands ofgenes simultaneously. It has become an important tool in cancer biological investigations. In combination with classification methods, microarray technology can be useful to support clinical management decisions for individual patients. Cancer microarray expression classification is a typical case that has high dimensions and small samples. In gene expression dataset, there are many genes that are redundant for cancer microarray expression classification. The most relevant gene selection is an important issue. A robust two-step approach is presented. For reducing the computation complexity, a gene pre-selection procedure by ReliefF is adopted to reduce the huge number of genes being considered. Secondly, the relevance vector machine and the support vector machine optimized by immune clonal algorithm are differently used on the gene subset for cancer microarray expression classification. On four real cancer microarray datasets, the new approach is compared to the several existing methods. The experimental results show that the proposed approach can achieve high classification accuracy and is more robust.
     4) The research on methods for class discovery of cancer microarray expression
     Cancer is a highly heterogeneous disease, and the different causes will lead to thesame phenotype. Based on clinical pathology, it is very difficult to find different classes of the cancer. DNA microarray technology provides a high-throughput tool that penetrates the occurrence and evolution of the cancer on the molecular level. The different classes of the cancer can be accurate discovered on microarray expression profiling. Many clustering methods have been widely used in the study to discover classes of the cancer. The support vector clustering is a bound-based clustering method that does well for irregular classes and can automatically find true classes. An algorithm to discover classes of the tumor is presented, which is based on the support vector clustering. There are a lot of redundancy gene expression profiles for class discovery of cancer. Therefore, the variance filtering selects a little of genes with the largest variance as characters for class discovery of cancer. Secondly, the support vector clustering is used to discover classes of cancer. On the two cancer microarray datasets, with the parameter sequence produced automatically, the presented method partitions the cancer samples on different fine level. The result shows that this method can more accurately discover classes of cancer samples and automatically find true class number of cancer samples.
     5) The research on modeling methods for the gene regulatory networks
     The gene regulatory networks is not only a mechanism of the interaction between genes, and also includes the interaction of various regulatory factors, such as the regulation protein, siRNA and so on, which regulatory factors can not be measured directly. The state-space model is a special type of dynamic bayesian networks, on the assumption that the observed variables are dependent on the state variables that have the Markov dynamic characteristics. Therefore the state-space model can accurately describe the complex mechanism of the gene regulatory networks. Due to the complexity of computation, model-based modeling methods of gene regulatory networks are difficult to directly model greater gene regulatory networks. It is the typical sparse characteristics of gene regulatory networks that one gene expression was only controlled by a very small number of genes and regulatory factors, and its continuous expression profiles show a strong correlation. In view of the light characteristics of gene regulation, cluster genes by use of correlation clustering, and then model the mutual regulation of genes in one cluster with the state-space model. In order to get a sparse network, integrate with the conservative interaction between genes on the various levels of cluster number. On the human T-cell cycle expression data, the dissertation analyzes the reconstruction performance of the model's dynamic behavior. The result shows that with the increase of the number of clusters, decomposition-modeling can better respond to network reconstruction. Meanwhile, the dissertation establishes several sparse regulatory networks with different levels of light.
引文
1.Collins S,Morgan M,Patrinos A.The Human Genome Project:Lessons from large-scale biology.Science,2003,300(5617):286-290
    2.International Human Genome Sequencing Consortium.Finishing the euchromatic sequence of the human genome.Nature,2004,431(7011):931-945
    3.Mouse Genome Sequence Consortium.Initial sequencing and comparative analysis of the mouse genome.Nature,2002,420(6915):520-562
    4.Aparicio S,Chapman J,Stupka E,et al.Whole-genome shotgun assembly and analysis of the genome of Fugu rubripes.Science,2002,297(5585):1301-1310
    5.Rat Genome Sequencing Project Consortium.Genome sequence of the Brown Norway rat yields insights into mammalian evolution.Nature,2004,428(6982):493-521
    6.International Chicken Genome Sequencing Consortium.Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution.Nature,2004,432(7018):695-716
    7.李瑶主编.基因芯片与功能基因组.北京:化学工业出版社,2004
    8.陈忠斌主编.生物芯片技术.北京:化学工业出版社,2005
    9.孙之荣等译.后基因组信息学.北京:清华大学出版社,2002
    10.孙之荣等译.探索基因组学、蛋白质组学和生物信息学.北京:科学出版社,2004
    11.Marshall A,Hodgson J.DNA chips:An array of possibilities.Nature Biotechnology,1998,16:731-738
    12.Ramsay R.DNA chips:State-of-the-art.Nature Biotechnology,1998,16:40-49
    13.李瑶主编.基因芯片表达数据分析与处理.北京:化学工业出版社,2006
    14.马立人等.生物芯片.北京:化学工业出版社,2002
    15.杨胜利.系统生物学研究进展.北京:中国科学院院刊,2004
    16.赵国屏.生物信息学.北京:科学出版社,2002
    17.罗静初等译.生物信息学概论.北京:北京大学出版社,2002
    18.张成岗,贺福初.生物信息学方法与实践.北京:科学出版社,2002
    19.李衍达,孙之荣等译.生物信息学:基因和蛋白质分析的实用指南.北京:清华大学出版社,2000
    20.钟扬,张亮,赵琼.简明生物信息学.北京:高等教育出版社,2001
    21.张阳德.生物信息学.北京:科学出版社,2004
    22.孙啸,陆祖宏,谢建明.生物信息学基础.北京:清华大学出版社,2005
    23.Altschul S F,Adden T L,Schaffer A A,Zhang Z,Miller W,Lipman D J.Gapped Blast and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 1997, 25: 3389-3402
    24. Pearson W R. Flexible sequence similarity searching with the FASTA3 program package. Methods Mol. Biol, 2000, 132: 185-219
    25. Thompson J D, Higgins D G, Gibson T J. CLUSTALW: improving the sensitivity of progressive multiple sequence aligment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res, 1994, 22: 4573-4680
    26. Ermolaeva O, Pruitt K, Pruitt K. Data management and analysis for gene expression arrays. Nature genetics, 1998, 20: 19-23
    27. Welford S, Chen E, Chen E. Detection of differentially expressed genes in primary tumor tissues using representational differences analysis coupled to microarray hybridization. Nucleic Acids Res, 1998, 26: 3059-3065
    28. Charlie C. DNA microarray technology and its applications. Biotechnology Advances, 2000, 18:35-46
    29. Brazma A. Gene expression data analysis. FEBS Letters, 2000, 480: 17-24
    30. DeRisi J, Brown P, Brown P. Exploring the Metabolic and Genetic Control of Gene Expression on a Genomic Scale. Science, 1997, 278: 680-686
    31. Joaquin D, Ilaria D. Methods and approaches in the analysis of gene expression data. Journal of Immunological Methods, 2001, 250: 93-112
    32. Draghici S, Kulaeva O, Hoff B, Petrov A, Shams S, Tainsky M A. Noise sampling method: an ANOVA approach allowing robust selection of differentially regulated genes measured by DNA microarrays. Bioinformatics, 2003, 19(11): 1348-1359
    33. Giraudel J A. Comparison of self-organizing map algorithm and some conventional statstical methods for ecological community ordination. Ecological Modelling, 2001, 146: 329-339
    34. Kwonmoo L, Chung T. Evolution strategy applied to global optimization of clusters in gene expression data of DNA microarrays. Proceedings of the 2001 Congress on Evolutionary Computation, 2001, 2: 845-850
    35. Herrero J, Diaz-Uriarte R, Dopazo J. Gene expression data preprocessing. Bioinformatics, 2003, 19(5): 655-656
    36. Kazumi H, Masahiro O, Taizo H. Novel technique for preprocessing high dimensional time-course data from DNA microarray: mathematical model-based clustering. Bioinformatics, 2006, 22(7): 843-848
    37. Ilk H G, Konu O, Ozdag H. Investigation and comparison of the preprocessing algorithms for microarray analysis for robust gene expression calculation and performance analysis of technical replicates. Signal Processing and Communications Applications, 2006 IEEE 14~(th), 2006,1- 4
    38.吴斌,沈自尹.基因芯片基因表达数据的预处理分析.中国生物化学与分子生物学报,2006,22(4):272-277
    39.Quackenbush J.Microarray data normalization and transformation.Nature Genet,2002,32:496-501
    40.Yang Y H,et al.Normalization for cDNA microarray data:a robust composite method addressing single and multiple slide systematic variation.Nucleic Acids Res.2002,30:e15
    41.Tseng G C,Rohlin L,Liao J C,Wong W H.Issues in cDNA microarray analysis:quality filtering,channel Normalization,models of variations and assessment of gene effects.Nucleic Acids Res,2001,29(12):2549-2557
    42.Herrero J,Al-Shahrour F,Diaz-Uriarte R,Mateos A,Vaquerizas J M,Santoyo J,Dopazo J.GEPAS:A web-based resource for microarray gene expression data analysis.Nucleic Acids Res,2003,31(13):3461-3467
    43.Smyth G K,Yang Y H,Speed T.Statistical issues in cDNA microarray data analysis.Methods Mol Biol,2003,224:111-136
    44.Affymetrix Microarray Suite User Guide,Version 5.Affymetrix,http://www.affymetrix.com/support/technical/manuals.affx
    45.Li C,Wong W H.Model-based Analysis of oligonucleotide arrays:model validation,design issues and standard error application.Genome Biol,2001a,2:1-11
    46.Li C,Wong W H.Model-based Analysis of oligonucleotides arrays:expression index computation and outlier detection.Proc Natl Acad Sci USA,2001b,98:31-36
    47.Irizarry R A,Bolstad B M,Collin F,et al.Summary of affymetrix geneChip probe level data.Nucleic Acids Res,2003a,31(4):e15
    48.Irizarry R A,Hobbs B,Collin F,et al.Exploration,normalization,and summaries of high density oligonucleotide array probe level data.Biostatistics,2003b,4:249-264
    49.Hartemink D G,Jaakkola I,Young R.Maximum likelihood estimation of optimal scaling factors for expression array Normalization.In Microarrays.Optical Technologies and Informatics Proceedings of SPIE.SPIE:Bellingham,WA;2001,4266
    50.Rocke D M,Durbin B.A model for measurement error for gene expression Arrays.J.Comput.Biol,2001,8:557-569
    51.Schadt E,Li C,Eliss B,Wong W H.Feature extraction and normalization algorithms for high-density oligonucleotide gene expression array data.J.Cell.Biochem,2002.84(S37):120-125
    52.Astrand M.Contrast Normalization of oligonucleotide arrays.Journal of Computational Biology, 2003, 10(1): 95-102
    53. Bolstad B M, Irizarry R A, Astrand M, Speed T P. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 2003,19: 185-193
    54. Dudoit S, Yang Y H, Callow M J, Speed T P. Statistical methods for identifying genes with differential expression in replicated cDNA microarray experiments. Stat. Sin, 2002,12(1): 111-139
    55. Spellman P T, Gavin S, Michael Q Z. Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyces cerevisiae by Microarray HybridizationhD. Molecular Biology of the Cell, 1998, 9: 3273-3297
    56. Alexandre G B, Serge H, Alain M. Influence of microarrays experiments missing values on the stability of gene groups by hierarchical clustering. BMC Bioinformatics, 2004, 5:114
    57. Liebermeister W. Linear modes of gene expression determined by independent component analysis. Bioinformatics, 2002,18(1): 51-60
    58. Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani R, Botstein D, Altaian R B. Missing value estimation methods for DNA microarrays. Bioinformatics, 2001, 17(6): 520-525
    59. Oba S, Sato M A, Takemasa I, Monden M, Matsubara K, Ishii S. A Bayesian missing value estimation method for gene expression profile data. Bioinformatics, 2003,19(16): 2088-2096
    60. Pearson, K. (1894) Contributions to the mathematical theory of evolution. Phil. Trans. R. Soc. London, 185, 71-110
    61. Zhou X B, Wang X D, Edward R D. Missing-value estimation using linear and non-linear regression with Bayesian gene selection. Bioinformatics, 2003, 19(17): 2302-2307
    62. Ouyang M, Welsh W J, Georgopoulos P. Gaussian mixture clustering and imputation of microarray data. Bioinformatics, 2004, 20(6): 917-23
    63. B0 T H, Dysvik B, Jonassen I. LSimpute: accurate estimation of missing values in microarray data with least squares methods. Nucleic Acids Res, 2004, 32(3): e34
    64. Hyunsoo K, Gene H G, Haesun P. Missing value estimation for DNA microarray gene expression data: local least squares imputation. Bioinformatics, 2005, 2(21): 187-198
    65. Hastie T, Tibshirani R, Friedman J.著,范明 柴玉梅 等译. The elements of statistical learning, data Mining, inference, and prediction. 北京: 电子工业出版社, 2004
    66. Gasch A P, Spellman P T, Kao C M, Carmel-Harel O, Botstein D, Elledge S J, Brown P O. Genomic expression responses to DNA-damaging agents and the regulatory role of the yeastATRhomolog Mec1p. Mol Biol Cell, 2001, 12: 2987-3003
    67. Ramaswamy S, Golub T R. DNA microarrays in clinical oncology. Journal of Clinical Oncology, 2002, 20(7): 1932-1941
    68. DeRisi J, Penland L, Brown P O. Use of a cDNA microarray to analyze gene expression patterns in human cancer. Nature Genetics, 1996,14(4): 457-460
    69. Golub T R, Slonim D K, Tamayo P, Huard C, Gaasenbeek M, Mesirov J P, Coller H, Loh M L, Downing J R, Caligiuri M A, Bloomfield C D, Lander E S. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 1999,286(5439): 531-537
    70. Khan J, Wei J S, Ringner M, et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine, 2001, 7(6): 673-679
    71. Dudoit S, Fridlyand J, Speed P T. Comparison of discrimination methods for the classification of tumors using gene expression data. Application and Case Studies, 2002, 97(457): 77-87
    72. Guyon I, Weston J, Barnhill S, et al. Gene selection for cancer classification using support vector machines. Machine Learning, 2000,46(13): 389-422
    73. Statnikov A R, Aliferis C F, Tsamardinos I, Hardin D, Levy S. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics, 2005, 21(5): 631-643
    74. Theodoridis S, Koutroumbas K. Pattern Recognition (2nd Edition). New York: Academic Press, 2003
    75. Vapnik V N. Statistical Learning Theroy. New York: Wiley Interscience, 1998
    76. Alon U, Barkai N, Notterman D A, Gish K, Ybarra S, Mack D, Levine A J. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad Sci U.S.A, 1999, 96(12): 6745-6750
    77. van't V L J, Dai H, Van M J, He Y D, Hart A A M, Mao M, Peterse H L, Van Der Kooy K, Marton M J, Witteveen A T, Schreiber G J, Kerkhoven R M, Roberts C, Linsley P S, Bernards R, Friend S H. Gene expression profiling predicts clinical outcome of breast cancer. Nature, 2002,415: 530-536
    78. Iizuka N, Oka M, Yamada-Okabe H, Nishida M, Maeda Y, Mori N, Takao T, Tamesa T, Tangoku A, Tabuchi H, Hamada K, Nakayama H. Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocelluar carcinoma after curative resection. The Lancet, 2003,361: 923-929
    79. Nathalie P, Frank D S, Johan A K, Suykens B L R, De M. Systematic benchmarking of microarray data classification: assessing the role of nonlinearity and dimensionality reduction. Bioinformatics, 2004, 20(17): 3185-3195__________
    80. Kononenko I. Estimation attributes: analysis and extensions of Relief. ECML-94, In: Machine Learning. Berlin: Springer-Verlag, 1994: 171-182
    81. Scholkopf B, Burges C, Vapnik V N. Extracting support data for a given task. First International Conference for Knowledge Discovery and Data Mining. USA: AAAI Press, 1995
    82. Mao Y, Zhou XB, Pi DY, Sun YX, et at. Parameters Selection in Gene Selection using Gaussian Kernel Support Vector Machine by Genetic Algorithm. Journal of Zhejiang University SCIENCE, 2005, 6B(10): 961--973
    83. De Castro L N, Von Zuben F J. The clonal selection algorithm with engineering applications. Proc. of GECCO'00, Workshop on Artificial Immune Systems and Their Applications. 2000: 36-39
    84. Tipping M E. Sparse bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 2001,1(3): 211-244
    85. Bishop C, Tipping M. Variational relevance vector machines. In Proc. of the 16th Conf. in Uncertainty in Artificial Intelligence, USA. 2000: 46-53
    86. Machay D J C. The evidence framework applied to classification networks. Neural Computation, 1992,4(5): 720-736
    87. Aronson. Remodeling the mammary gland at the termination of breast feeding: role of a new regulator protein BRP39, The Beat, University of South Alabama College ofMedecine, July, 1999.
    88. Harlan D M, Graff J M, Stumpo D J, Eddy R L, Shows T B, Boyle J M and Blackshear P J. The human myristoylated alanine-rich C kinase substrate (MARCKS) gene (MACS). Analysis of its gene product, promoter, and chromosomal localization. Journal of Biological Chemistry, 1991,Vol. 266, Issue 22,14399-14405.
    89. Macalma T, Otte J, Hensler M E, Bockholt S M, Louis H A, Kalff-Suske M, Grzeschik K H, von der Ahe D, Beckerle M C. Molecular characterization of human zyxin. Journal of Biological Chemistry. 1996,271(49), 31470-31478.
    90. Thorsteinsdottir U, Krosl J, Kroon E, Haman A, Hoang T, Sauvageau G. The oncoprotein E2A-Pbx1a collaborates with Hoxa9 to acutely transform primary bone marrow cells. Molecular Cell Biology. 1999, 19(9), 6355-6366
    91. Walsh J H Section Editor. Epidemiologic evidence underscores role for folate as foiler of colon cancer. Gastroenterology News. Gastroenterology. 1999,116, 3-4.
    92. Alizadeh A A, Eisen M B, Davis R E, Ma C, Lossos I S, Rosenwald A, Boldrick J C, Sabet H, Tran T, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 2000,403(6769): 503-511
    93. Perou C M, Sorlie T, Eisen M B, et al. Molecular portraits of human Breast tumors. Nature, 2000,406:747-752
    94. Bittner M, Meltzer P, Chen Y, Jiang Y, et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature, 2000,406: 536-540
    95. Dugas M, Merk S, Breit S, Dirschedl P. Mdclust-Exploratory: microarray analysis by multidimensional clustering. Bioinformatics, 2004,20: 931-936
    96. Slonim D K, Tamayo P, Mesirov J P, Golub T R, Lander E S. Class prediction and discovery using gene expression data. RECOMB 2000. ACM Press, NY, USA. 2000,263-272
    97. Covell D G, Wallqvist A, Rabow A A, Thanki N. Molecular classification of cancer: unsupervised self-organizing map analysis of gene expression microarray data. Mol Cancer Ther, 2003, 2: 317-332
    98. Hsu A L, Tang S L, Halgamuge S K. An unsupervised hierarchical dynamic self-organizing approach to cancer class discovery and marker gene identification in microarray data. Bioinformatics. 2003,19(16): 2131-2140
    99. Ben-Dor A, Friedman N, Yakhini Z. Class discovery in gene expression data. In Proceedings of the Fifth Annual Conference on Computational Biology (RECOMB), Lengauer T, Sankoff D, Istrail S, Pevzner P, Waterman M (edites). ACM Press; 2001: 31-38
    100.von Heydebreck A, Huber W, Poustka A, Vingron M. Identifying Splits with Clear Separation: A new class discovery method for gene expression data. Bioinformatics, 2001,17(Suppl 1): S107-114
    101.Yingchun L, Markus R. Multiclass discovery in array data. BMC Bioinformatics, http://www.biomedcentral.com /1471-2105/5/70
    102.Volker R, Tilman L. Bayesian class discovery in microarray datasets. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2004, 51(5): 707-718
    103.Ben-Hur A, Horn D, Siegelmann H, Vapnik V N. Support vector clustering. Journal of Machine Learning Research, 2001, 2: 125-137
    104.Lee S, Daniels K. Cone cluster labeling for support vector clustering. Proceedings of 6th SIAM Conference on Data Mining, Joydeep G, Diane L, David S, Jaideep S (edites). Maryland, 2006: 484-488
    105.Lee S, Daniels K. Gaussian kernel width generator for support vector clustering. Proceedings of the International Conference on Bioinformatics and its Applications: In Advances in Bioinformatics and Its Applications, Series in Mathematical Biology and Medicine. Matthew H, Giri N, Sergei P (edites). World Scientific, 2005,8: 151-162
    
    106.刘秉文, 陈俊杰.医学分子生物学. 北京:中国协和医科大学出版社, 2000
    107.McAdams H H, Arkin A. Tochastic mechanisms in gene expression. Proc Natl. Acad. Sci. USA, 1997, 94: 814-819
    108.Savageau M A. Rules for the evolution of gene circuitry. Pacific Symp. Biocomp, 1998, 3: 55-65
    109.Szallasi Z. Genetic network analysis in light of massively parallel biological data acquisition. Pacific Symp. Biocomp, 1999, 4: 5-16
    110.Thieffry D, Thomas R. Qualitative analysis of gene networks. Pacific Symp. Biocomp, 1998, 3:77-88
    111.Wolf D M, Eeckman F H. On the relationship between genomic regulatory element organization and gene regulatory dynamics. J. Theor. Biol, 1998, 195: 167-186
    112.Shea M, Ackers G. The Oj control system of bacteriophage lambda: a physical-chemical model for generegulation. J. Molec. Biol, 1985,181: 211-230
    113.Raychaudhuri S, Stuart J. M, Altaian R B. Principal components analysis to summarize microarray experiments: application to sporulation time series. Pac. Symp. Biocomput, 2000, 20: 455-466
    114.Eisen M B, Brown P O. DNA arrays for analysis of gene expression. Meth. Enzymol, 1999, 303: 179-205.
    115.Dopazo J, Zanders E, Dragoni I, Amphlett G, Falciani F. Methods and approaches in the analysis of gene expression data. J. Immunol. Meth, 2001, 250: 93-112
    116.D'haeseleer P, Liang S, Somogyi R. Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics, 2000, 16(8): 707-726
    117.Akutsu T, Miyano S, Kuhara S. Identification of genetic networks from a small number of gene expression patterns under the boolean network model. Pac. Symp. Biocomput, 1999,17-28
    118.Liang S, Fuhrman S, Somogyi R. Identification of genetic networks from a small number of gene expression patterns under the boolean network model. Pac. Symp. Biocomput, 1998,18-29
    119.Thomas R. Boolean formalization of genetic control circuits. J. Theor. Biol. 1973, 42: 563-586
    120.van Someren E, Wessels L, Backer E, Reinders M. Genetic network modeling. Pharmacogenomics, 2002, 3: 507-525
    121.D'Haeseleer P, Wen X, Fuhrman S, Somogyi R. Linear modeling of mRNA expression levels 16 during CNS development and injury. Pacific Symposium for Biocomputing, 1999, 3: 41-52
    122.Holter N S, Maritan A, Cieplak M, Fedoroff N.V, Banavar J.R. Dynamic modeling of gene expression data.Proc. Nat. Acad. Sci. USA, 2001, 98: 1693-1698
    123.Mamoru K, Tatsuhiko T, Toshihisa T. Inferring genetic networks from DNA microarray data by multiple regression analysis. Genome Informatics, 2000, 11: 118-128
    124.Weaver D, Workman C, Stormo G. Modeling regulatory networks with weight matrices. Pac. Symp. Biocomput, 1999,4: 112-123
    
    125.Rice J, Tu Y, Stolovitzky G. Reconstructing biological networks using conditional correlation analysis. Bioinformatics, 2005,21(6): 765-773
    126.Butte A J, Tamayo P, Slonim D, Golub T R, Kohane I S. Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proc Natl Acad Sci USA, 2000, 97(22): 12182-6
    127.Butte A J, Kohane I S. Mutual information relevance networks: Functional genomic clustering using pairwise entropy measurements. PSB, 2000, 5: 415-426
    128.Chen T, Filkov V, Steven S. Identifying gene regulatory networks from experimental data. Proceedings of the Third International Conference on Research in Computational Molecular Biology, 1999, 94-103
    129.Maki Y, Tominaga D, Okamoto M. Development of a system for the inference of large scale genetic networks. Pac Symp Biocomput. Singapore: World Scientific Publishing, 2001,446-458
    130.Kikuchi S, Tominaga D, Arita M. Dynamic modeling of genetic networks using genetic algorithm and S-system. Bioinformatics, 2003, 19(5): 643-650
    131.Kholodenko B, Kiyatkin A, Bruggeman F, Sontag E, Westerhoff H, Hoek J. Untangling the wires: a strategy to trace functional interactions in signaling and gene networks. Proc Natl Acad Sci USA, 2002, 99: 12841-12846
    132.Gouze J, Sari T. A class of piecewise linear differential equations arising in biological models. Dynamical Systemsan International Journal, 2002, 17(4): 299-316
    133.Friedman N, Linial M, Nachman I. Using bayesian networks to analyze expression data. J Comput Biol, 2000, 7(34): 601-620
    134.Murphy K, Mian S. Modelling gene expression data using dynamic bayesian networks. Technical Report, University of California, Berkeley, 1999
    135.Hartemink A, Gifford D, Jaakkola T. Bayesian methods for elucidating genetic regulatory networks. IEEE Intelligent Systems, 2002,17(2): 37-43
    136.Pe'er D, Regev A, Elidan G, Friedman N. Inferring subnetworks from perturbed expression profiles. Proceedings of the 9th International Conference on Intelligent Systems for Molecular Biology (ISMB). Copenhagen, 2001,21-25
    137.Yoo C, Thorsson V, Cooper G. Discovery of causal relationships in a gene-regulation pathway from a mixture of experimental and observational DNA microarray data. Pac. Symp. Biocomput, 2002,422-433
    138.Ong I, Glasner J, Page D. Modelling regulatory pathways in E.coli from time series expression profiles. Bioinformatics, 2002,18: S241-S248
    139.Perrin B E, Ralaivola L, Mazurie A. Gene networks inference using dynamic bayesian networks. Bioinformatics, 2003,19(Suppl 2): 138-148
    140.Kim S Y, Imoto S, Miyano S. Inferring gene networks from time series microarray data using dynamic Bayesian networks. Brief Bioinform, 2003, 4(3): 228-235
    141.Zou M, Conzen S D. A new dynamic bayesian network (DBN) approach for identifying gene regulatory networks from time course microarray data.Bioinformatics,2005,21(1):71-79
    142.Husmeier D.Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic bayesian networks.Bioinformatics,2003,19:2271-2282
    143.Rangel C,Angus J,Ghahramani Z,Lioumi M,Sotheran E,Gaiba A,Wild D L,Falciani F.Modeling T-cell activation using gene expression profiling and state-space models.Bioinformatics,2004,20(9):1361-1372
    144.Rangel C,Wild D L,Falciani F,Ghahrarnani Z,Gaiba A.Modelling biological responses using gene expression pro-filing and linear dynamical systems.Proceedings of the 2nd International Conference on Systems Biology,2001,248-256
    145.Beal M J,Falciani F,Ghahramani Z,Rangel C,Wild D L.A bayesian approach to reconstructing genetic regulatory networks with hidden factors.Bioinformatics,2005,21(3):349-56
    146.Li Z,Shaw S M,Yedwabnick M J,Chan C.Using a state-space model with hidden variables to infer transcription factor activities.Bioinformatics,2006,22(6):747-754
    147.Roweis S,Ghahramani Z.A unifying review of linear Gaussian models.Neural Comput,1999,11:305-345

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700