用户名: 密码: 验证码:
涡轮流量传感器在不同流体条件下测量性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
涡轮流量传感器是一种速度式流量传感器,它具有精度高、重复性好、量程范围宽、体积小等优点,因此被广泛应用于石油、化工、冶金、轻工、食品等工业领域中。由于涡轮流量传感器应用现场条件复杂,被测流体流动情况也不尽相同,因此研究涡轮流量传感器在不同流体条件下的测量性能,对扩大涡轮流量传感器应用领域具有重要现实意义。
     本论文主要完成以下工作:
     1.提出了环形通道内混合流体的虚拟速度剖面指数,分析了混合流体中气泡对叶片的阻力影响,建立了涡轮流量传感器测量泡状流的数学模型,得出虚拟速度剖面指数随体积含气率变化的规律。通过理论结果与实验结果的比较,证明该模型具有较好的预测精度。
     2.采用气液两相混合模型对涡轮流量传感器测量体积含气率低于10%的水平气液两相泡状流进行了数值仿真,根据流场分析得出的结论,提出以现有传感器与改进传感器的仪表系数迁移量仿真值的对比为判定依据,对现有传感器进行了改进设计。实流实验结果表明,改进传感器测量气液两相流的性能优于现有传感器,从而验证了该改进方法的有效性。
     3.以涡轮流量传感器量程范围内线性度误差最小为目标函数,根据四个叶轮特征参数和传感器测量单相流的数学模型,采用多变量非线性规划优化算法,提出了降低涡轮流量传感器线性度误差的优化设计方法。以50 mm和25 mm口径的传感器为例进行优化设计,通过优化前、后传感器实流实验结果比较,验证了该优化设计方法的有效性。
     4.分别采用S-A模型、标准k-ε模型、RNG k-ε模型、Realizable k-ε模型和标准k-ω模型五种湍流模型,对涡轮流量传感器测量单相流进行了仿真研究,结果显示使用标准k-ω模型可以更加准确地反映传感器内部流场,预测传感器仪表系数和特性曲线。
     5.对3台具有不同导程叶轮的涡轮流量传感器,测量体积含气率低于10%的水平气液两相泡状流的特性进行了实验研究。得出了不同含气率下传感器的两相流量特性曲线与仪表系数迁移量曲线,同时得出叶轮导程值大小影响着传感器测量误差值。对体积含气率变化影响涡轮流量传感器特性的物理机理以及造成传感器测量特性改变与误差的原因进行了分析讨论。
Turbine flowmeter is a kind of velocity-type flowmeter with advantages of high accuracy, good repeatability, wide flow range, and small volume. So it is widely applied in chemical industry, petroleum, metallurgy, light industry, food industry and other flow industry. Because the industry field conditions for turbine flowmeter working is complex, and the flow regime is diversity, it is significant for extending the application field of turbine flowmeter to research on the performance of turbine flowmeter under different flow conditions.
     The main research works of this dissertation are as following:
     1. The index number of virtual velocity profile of mixed fluid in the annulus pipe was presented. Based on the analysis of the influence for bubble of mixed fluid to blade by the drag force, the mathematic model of measuring gas-liquid two-phase bubble flow with turbine flowmeter was established. The curve between the index number of virtual velocity profile and gas volume fraction were obtained. The validity of mathematic model was verified by experiments.
     2. Based on the mixture model, the numerical simulation on gas-liquid two-phase bubble flow (GVF<10%) in a turbine flowmeter was investigated. According to the conclusion of flow field analysis, a method, which can evaluate the performance of turbine flowmeter by simulative value of meter factor variation, was put forward. The rotor’s structure of existed flowmeter was improved. It was showed by physical experiment that the performance of the improved meter was better than that of existed meter. The validity of the method of improving design for turbine flowmeter was verified.
     3. The object function was the minimum of linearity errors of the measurement range. According to four characteristic parameters, the turbine flowmeter’s mathematic model and the multivariable nonlinear programming algorithm, a method was presented for reducing the linearity error of a turbine flowmeter. The turbine flowmeters of 50 mm and 25 mm caliber were optimized. The turbine flowmeter with optimal rotor and existed rotor were evaluated on a water flow calibration facility. Through the comparisons of linearity error between the meters with optimal rotor and the meter with existed rotor, the validity of the design reducing the linearity error of turbine flowmeter was verified.
     4. Five kinds of turbulence model, S-A model, standard k-εmodel, RNG k-εmodel, Realizable k-εmodel and standard k-ωmodel were applied separately to numerically simulate a turbine flowmeter for measuring liquid. The comparisons between the numerical results and the data of physical experiment showed that standard k-ωmodel was more suitable for 3D numerical simulation on the internal flow fields of the turbine flow sensor and the prediction of the meter factor.
     5. Three turbine flowmeters, with different lead of rotors, were investigated to measure horizontal gas-liquid two-phase bubble flow on the gas-liquid two-phase flow facility. Results showed that the characteristics curve, measurement relative error and repeatability error were clearly changed with the variation of gas volume fraction. The performance of turbine flowmeter with smaller lead of rotor was better than those of the other two flowmeters. The reasons of the change of measurement performance and error were analyzed and discussed. The physical mechanics that the turbine flowmeter measurement performance was affected by gas volume fraction was also analyzed.
引文
[1]蔡武昌,回顾和展望中国流量检测仪表的发展,航空计测技术,2003,23 (3):1~5
    [2]蔡武昌,周美华,流量仪表制造业若干情况,世界仪表与自动化,2000,4 (3):42~44
    [3] Dave H.,流量仪表的新动向,Control Engineering China,2003,(10):1~2
    [4] Hochreiter, H. M., Dimensionless correlation of coefficients of turbine-type flowmeters, Trans. ASME, October 1958: 1363~1368
    [5] Lee,W. F. Z., Henning Karlby, A study of viscosity effect and its compensation on turbine-type flowmeters, Journal of Basic Engineering, Trans. ASME Sept. 1960: 717~728
    [6] Rubin M., Miller R. W, Fox W. G., Driving torques in a theoretical model of a turbine meter, J. of Basic Engineering, June 1965: 413~420
    [7] Lee, W. F. Z., Evans H. G., Density and Reynolds numbers effects on gas turbine flowmeter, Trans. ASME, Journal Basic Engineering, 1965, 87 (12): 1043~1057
    [8] Thompson R. E., Grey J., Turbine flowmeter performance model, Trans. of ASME, J. Basic Engineering, Dec. 1970: 712~723
    [9] Tan, P. A. K., Theoretical and experimental studies of turbine flowmeter, Ph. D. Thesis, Department of Mechanical Engineering, University of Southampton, 1973
    [10] Fakouhi A., The influence of viscosity on turbine flowmeter calibration cures, Ph. D. Thesis, University of Southampton, 1977
    [11] Blows L. G., Towards a better turbine flowmeter, In: Proc. of the international conference on the Advance in Flow Measurement Techniques, 9-11, September 1981, University of warwrick: 307~318
    [12] Salami L. A., Effect of a velocity profile just upstream of a turbine flowmeter on its characteristics, University of Southampton, Mech. Eng. Report, No. ME/72/2, January, 1972
    [13] Jepson P., Bean P. G., Effect of upstream velocity profile on turbine flowmeter registration, Journal Mechanical Engineering Science, 1969, Vol.11, No. 5
    [14] Funress R. A., Turbine flowmeters in‘developments in flow measuremen-1’(ed. R. W. Scott), Applied Science Publishers, 1982: 171~207
    [15]赵学端,应启戛,沈昱明,涡轮流量计数学模型与优化设计,上海机械院学报,1985 (2):l~15
    [16]翁燕,吴国玢,赵学端,流体粘度对涡轮流量计性能影响的理论预测,上海机械学院学报,1990,12 (2):11~22
    [17] Singh R., Jain V. K., Jalwania C. R., et al, Micro-flow meter integrated with an optical sensor, In: Proc. of the SPEI-The International Society for Optical Engineering, v3321, 1996: 758~770
    [18] Svedin N., Stemme E., Stemme G., A static turbine flowmeter with a micromachined silicon torque sensor, In: Proc. of the 14th IEEE International Conefrence on Micro Electro Mechanical Systems (MEMS2001), Interlaken,Switzerland: 208~211
    [19]郭亮,双叶片轴尖式气体涡轮流量计,油气田地面工程,1994,13(3):37~38
    [20]赵学端,郭亮,对双叶片轴尖式气体涡轮流量计的探讨,油气田地面工程,1996,15 (l):56~58
    [21]郭亮,于袭,高庆等,扩大双叶片气体涡轮流量计测量范围的试验研究,油气田地面工程,1996,15 (3):42~44
    [22] Pauld, Olivier, A turbine flowmeter that is insensitive to changes in fluid viscosity, In: Proc. of the 10th International conference on Flow Measurement, 2002
    [23] Phihppe Dupuy,曹莹,新一代螺旋式涡轮流量计在液体测量领域的应用,中国计量测试学会流量专业委员会,全国流量计量学术交流会论文集,北京:中国计量测试学会2002:265~273
    [24] Furness R. A., Theoretical and experimental development on bearingless turbine flowmeter, In: Proc. of the international conference on the Advance in Flow Measurement Techniques, 9-11, September 1981, University of warwrick: 293~306
    [25] Rivetti A., Martini G., Goria R., Turbine flowmeter for liquid helium with the rotor magnetically levitated, In: Proc. of the Space cryogenics Workshop, ESTEC, Noordwijk, Netherlands, 28-29, April 1986
    [26] Chang H. K., Yong B. L., Seung Jong Kim, et al., High accuracy turbine flowmeter using magnetic bearing, Patent application publication, USZOO30066361, 2003, United States
    [27]张茂青,钱振雄,李正明等,磁浮型涡轮流量计,自动化仪表,1995,16 (4): 25~26
    [28]马腾,磁悬浮式涡轮流量变速器,实用新型专利,专利号:305459,1997,中华人民共和国专利局
    [29]查美生,佟允宪,聂孟晨,一种磁悬浮式流量测量用涡轮变送器,专利号90103836.9,中华人民共和国专利局
    [30]孙立军,降低涡轮流量传感器粘度变化敏感度的研究,博士学位论文,天津:天津大学, 2004
    [31] Cheesewright R., Clark C., The influence of forces due to electromagnetic pick-ups on the performance of small turbine flowmeters, In: Proc. of the Institution of Mechanical Engineers, Part I (Journal of Systems and Control Engineering), v 210, n14, 1996: 243~7
    [32]查美生,佟允宪,一种新型的γ射线涡轮变送器,自动化与仪表,1989,1:16~17
    [33]田新启,光纤速度式涡轮流量传感器,自动化仪表,2000,21(3):14~16
    [34]张晓钟,薛水发,奚晓春,应用双光纤传感器的涡轮流量计结构、特性试验研究,仪器仪表学报,1999,20 (l):106~108
    [35]华义祥,李安虎,光纤传感器及其在流量测控中的应用,通用机械,2005,(3):54~57
    [36] Pusyaatanont M., Higham E. H., Unsworth P. J., Analysis of the sensor signal from turbine flowmeter to recover information regarding the flow regimes, In: Proc. of the 11th International conference on Flow Measurement, 2003
    [37]查美生,王秀清,聂孟晨,NRTM型涡轮流量计的研制及对5MW低温供热堆堆芯冷却剂流量的测量,核科学与工程,1995,15 (1):27~32
    [38]查美生,聂孟晨,频谱分析测频技术及在5MW低温核供热堆上的应用,自动化仪表,1998,19 (4):11~13,25
    [39] Cheesewright R., Bisset D., Clark C., Factors which influence the variability turbine flowmeter signal characteristics, Flow Measurement and Instrumentation 1998, 9 (l): 83~89
    [40]张荣标,成立,唐平,基于多周期同步测量的涡轮式流量测试研究,排灌机械,2001,19 (5):30~31
    [41] Anabtawi A. L., Howlett R. J., Detection of blade contamination in turbine flowmeters using neural networks, In: Proc. 4th International Conference on knowledge-Based Intelligent Engineering Systems & Allied Technologies, 30 Aug. - l Sept. 2000, Brighton, UK: 635~639
    [42] Luxhoj J. T., An artificial neural network for nonlinear estimation of the turbine flow- meter coefficient, J. of Engineering Application of Artificial Intelligence, 1998, Vol. 11: 723~734
    [43] Al-Manie M. A., Condition monitoring of a turbine flowmeter using a deconvolution method,In:Proc. 2006 International RF and Microwavem Conference Proceedings, Setp. 12 - 14, 2006, Putrajaya, Malaysia: 323~325.
    [44] Li G., Li Q. Z., Dong F., Study on wide-range turbine flowmeter, In: Proc. of the 5th International Conference on Machine Learning and Cybernetics, Dalian, 13-16 August 2006: 775~778
    [45] Cheesewright R., Atkinson K. N., Clark C., et al, Field tests of correction procedures of turbine flowmeters in pulsatile flows, Flow Measurement and Instrumentation, 1996, 7 (l): 7~17
    [46] Jungowski W. M., Weiss M. H., Eeffcts of flow pulsation on a single-rotor turbine meter, Transactions of the ASME, J. of Fluids Engineering, 1996, March: 198~201
    [47]李文,应启戛,脉动流对涡轮流量计精确度的影响,湘潭大学自然科学学报,2002,24 (l):78~79
    [48]李文,应启戛,脉动流对涡轮流量计误差的影响,自动化仪表,2002,23 (2): 20~22
    [49]张雯,应启戛,周期性脉动流对涡轮流量计测量精度影响的分析,自动化仪表,2001,22 (2):10~12
    [50]李文,涡轮流量计在正弦脉动气体流下的测量误差,计量学报,2006,27 (1):43~45
    [51] Kirik, Michael J., Lee, Winston F. Z., Performance of self-adjusting gas turbine meters in non-steady flow, In: Proc. of the American Gas Association,Operating Section,May 7-10, 1995,Las Vegas,NV, USA: 586~609
    [52] Salami L. A., Effects of upstream velocity profile and integral flow straightenrs on turbine flowmeters, J. Heat and Fluid Flow, 1984, n5: 155~164
    [53] Fletcher S. I., Nicholson G. I., Smith D. J. M., Investigation into the effects of installation on the performance of insertion flowmeters, Flow Measurement and Instrumentation, v11, nl, Mar, 2000: 19~39
    [54] Staszewska T. W., Jwaorski J., Effects of disturbances on measurement accuracy of diaphragm and turbine gas meters, In: Proc. of the 9th Intenrational Conference on Flow Measurement, 2001
    [55] Islam M., Seshadri V., Singh S. N., et al, Skewed velocity profile effect on turbine flwometer performance, In: Proc. of the Institution of Mechanical Engineers, Part E (Journal of Process Mechanical Engineering), v 217, n EI, 2003: 25~32
    [56]应启戛,陈光富,涡轮流量传感器在旋转来流中的特性研究,2000,仪器仪表学报,21 (5):508~510
    [57] Mickan B., Wendt G., Kramer R., Systematic investigation of flow profiles in pipes and their effects on gas meter behavior, Measurement, 1996, 22: l~14
    [58] Mickan B., Wendt G., Kramer R., Systematic investigation of pipe flows and installation effects using laser Doppler anemometry-Part, The effect disturbed flow profiles on turbine gas meters - a describing empirical mode, Flow Measurement and Instrumentation, v7, n3-4, Sep-Dec, 1996: 151~160
    [59] Peace D. W., Installation effects on turbine meters, In: Proc. of the American Gas Association, Operating Section, May 7-10 1995, Las Vegas, NV, USA: 619~636
    [60] Schmidits M., Mariiani G., Vasanta R. V. I., A study of the meter in error of turbine flow meters caused by swirling the flow, Proceedings 9th International Conference on Flow Measurement, FLOMEKO, 98, 1998: 399~403
    [61]张新平,旋流对涡轮流量计精度的影响及实验研究,硕士学位论文,哈尔滨:哈尔滨工业大学,2004
    [62] Watson G. A., Furness R. A., Development and application of the turbine meter, In: Proc. Transducer 77 Conf. Flow Measurement Session, Wembley, London, June 1977
    [63] Grey J., Calibration of turbine meters for cryogenic operation, American Rocket Society Journal, February 1960: 192~193
    [64]王江,上游速度分布对涡轮流量计的影响,学位论文,上海:上海机械学院,1990
    [65]吴海燕,秦永凛,秦红新,涡轮流量计转子内流动特性与仪表特性的关系,上海建材学院学报,1994,7 (3):209~213
    [66] Lavante E. V., Thomas H., Schieber W. M., Numerical investigation of the flow field in a 2-stage turbine flowmeter, In: Proc. of the 9th International Conference on Flow Measurement, 2001
    [67] Lavante E. V., Kettner T., Lazaroski N., et al, Numerical simulation unsteady three-dimensional flow fields turbine flowmeter, In: Proc. of the 1lth International conference on Flow Measurement, 2003
    [68] Lavante E. V., Banaszak U., Kettner T., Numerical simulation of Reynolds number effects in a turbine flowmeter,In: Proc. of the 12th International Conference on Flow Measurement, 2004: 575~582.
    [69] Johnson M. W., Farroll S., Development of a turbine meter of two-Phase flow measurement in vertical pipes, Flow Measurement and Instrumentation, v6, n4, Oct. 1995: 279~82
    [70] Minemura K., Fuurta H., Fuurkawa H., et al, Simultaneous measurement of mass and volumetric flowrate and void fraction using a turbine flow meter, American Society of Mechanical Engineers, Petroleum Division (Publication) PD, v69, Pipeline Engineering 1995, 1995: 107~112
    [71] Minemura K., Egashira K., Ihara K.,et al, Simultaneous measuring method for both volumetric flowrates of air-water mixture using a turbine flowmeter, Journal of Energy Resources Technology, Transactions of the ASME, v118, nl, Mar, 1996: 29~35
    [72] Ogawa Y., Kawaoto H., Gu R. L., et al, Experiments of a turbine meter of multiphase flow, In: Proc. 9th International Conference on Flow Measurement, FLOMEKO, 98, 1998: 285~290
    [73]沈红梅,顾璠,周芳德,管内气液两相流的绕流圆柱压差-涡轮流量测量,化工学报,1995,46 (4):501~506
    [74] Amad A. R., Mamdouh S., Chang J. S., Measurement of two-Phase refrigerant liquid-vapor mass flowrate-PartⅢ: combined turbine and venturi meters and comparison with other methods, ASHRAE Transactions, v101, n Pt 2, 1995: 532~538
    [75] Amad A. R., Mamdouh S., Chang J. S., Measurement of two-Phase refrigerant liquid-vapor mass flowrate-PartⅡ: turbine and void fraction meter ASHRAE Transactions, v101, n Pt 2, 1995: 523~531
    [76]黄志尧,李霞,李海青,基于文丘里管和涡轮流量计的液液两相流测量,2007,28(5):808~810
    [77] Huang Z. Y., Li X., Liu Y., Experimental study on performance of turbine flowmeter and venturi meter in oil-water two-Phase flow measurement, In: Proc. of The 5th Int. Symp. on Measurement Techniques for Multiphase Flows, 2006, Zhuhai Volume 914: 678~682
    [78] NEL, The evaluation of dry gas meters in wet gas condition, NEL, London, 2002: 12~19
    [79]郭海敏,吴锡令,涡轮流量计在多相流动中的响应方程,江汉石油学院学报,1993,15 (2):39~44
    [80] Guo H. M., Chou C. D. Jin Z. W., An interpretative method for production logs in three Phase Flow, In: SPE Asia-Pacific Conference, Held in Perth, Perth, Weastern Australia, 4-7 Nov, 1991, SPE22970
    [81]李占咸,金宁德,油井中三相流总流量确定方法,大庆石油学院学报,1993,17:6~10
    [82] Jin N. D., Zhang B. Q., Yang G. G., et al, Physical modeling of the packer type turbine flowmeters used of PL in three-phase flow downholes, In: Chen X J, Chen T K, Zhou F D, eds. Proc. of the Third International Symposium on Multiphase Flow and Heat Transfer, Xi’an, China: Xi’an Jiao tong University Press, 1994: 1393~1398
    [83]金宁德,乔贺堂,张淑英,垂直管中油、气、水三相流总流量测量模型研究,化学反应工程与工艺,1997,13 (l):30~37
    [84] Turnage K. G., Davis C. E., Advanced spool piece development, Presented at the 7th Water Reactor Safety Research Information Meting, Gaithersburg, Maryland, Nov, 1979
    [85] Rouhani S. Z., Application of the turbine type flowmeter in the measurement of steam quality and void, Symposium on In-Core Instrumentation,Oslo, June, 1974
    [86] Aya I., A model to calculate mass flow rate and other quantifies of two phase flow in a pipe with a densitometer, a Drag Disk, and a Turbine Meter, Report No ORNL-TM-4795, Oak Ridge National Laboratory, Tennessee, USA, Nov., 1975
    [87]张淑英,环空三相流测井仪,测井技术,1994,18 (2):133~137
    [88]赵延文,吴锡令,聂在平,涡轮流量计的原理、应用及其测井曲线的解释,西南石油学院学报,1995,17 (3):44~52
    [89] Qiao H. T., Jin N. D., Zhong X. F., et al, Response of packer type turbine flowmeters in multiphase vertical flow, In: Proc. of the International Symposium on Measuring Techniques of Multiphase Flow, Nanjing, China: Southeast University Press, 1995: 364~371
    [90]赵忠健,王培烈,杨继兵,LJS-Ф25伞式集流型测试仪在斜井中的实验研究,测井技术,2000,24 (2):145~147
    [91]徐爱舫,许兰婷,胡永锋等,流量测量方法在环空测井中的应用,油气测试,2001,10 (l,2):52~53
    [92]刘寿平,赵长庆,万其力等,HDC集流法产液剖面测井仪的研制,石油仪器,2004,18 (l):22~23,43
    [93]高标,李洪林,注入剖面三种测井方法的应用比较,测井与射孔,2001,(l):60~63
    [94]钟兴福,吴应湘,田树祥等,用涡轮流量计测量多相流流量,仪器仪表学报,2002,23 (6):858~859
    [95]王进旗,白林海,多相流测量中涡轮流量计的影响因子分析,石油仪器, 2005,19 (2):71~72
    [96]金宁德,周勇桂,王微微,伞集流油气水三相流涡轮流量计统计模型研究,测井技术,2007,31 (1):4~9
    [97]金宁德,胡凌云,郑华,皮球集流油气水三相流涡轮流量计测量模型研究,测井技术,2006,30 (2):105~108
    [98]金宁德,赵鑫,郑华,油井伞集流油气水三相流流动参数的软测量方法,化工学报,2006,57 (12):2847~2853
    [99] Salami L. A., Towards standardization of turbine-type flowmeter, In: Proc. of the international conference on the Advance in Flow Measurement Techniques, 9-11, September 1981, University of Warwick: 279~292
    [100] Salami L. A., Effects of upstream velocity profile and integral flow straightenrs on turbine flowmeters, J. Heat and Fluid Flow, 1984, n5: 155~164
    [101] Xu Y., A model for the prediction of turbine flowmeter performance, Flow Measurement and Instrumentation, 1992, 3: 37~43
    [102] Schlichting H., Application of boundary-layer theory in turbomachinery, J. Basic Engineering, Trans. ASME, Dec. 1959: 543~55
    [103] Tsukamoto H., Hutton S. P., Theoretical prediction of meter factor for a helical turbine flowmeter, In: Proc. of the conference of fluid control and measurement, Tokyo, Japan, Pegramon Press, 1986: 973~978
    [104]章梓雄,董曾南,粘性流体力学,北京:清华大学出版社,1998:153~155,411~414
    [105] [美]瓦夫拉M. H.,徐家驹译,涡轮机械中的气动热力学和流动,北京:机械工业出版社,1984
    [106] Schlichting H., Boundary layer theory, 7th ed., New York: Mcgraw-Hill Book Company, 1979: 647~649
    [107]潘文全,流体力学基础(下册),北京:机械工业出版社,1982:137~139
    [108]徐士良,常用算法程序集(第二版),北京:清华大学出版社,1996
    [109] [美国]普雷斯W. H.,C语言数值算法程序大全(第二版),北京:电子工出版社,1995.
    [110]川田裕郎,小宫勤一,山崎弘郎,流量测量手册,计量出版社,1982:15
    [111]苏金明,Matlab工具箱应用,北京:电子工业出版社,2004
    [112]苏金明,阮沈勇,王永利,MATLAB工程数学,北京:电子工业出版社,2005
    [113]苏彦勋,盛健,梁国伟,流量计量与测试,北京:中国计量出版社,1992
    [114] Zhao X. D., Chen K. M., Hu P. X., The numerical analysis of variational finite element for flow field in the rotor of turbine flowmeter and turbine performance curve (part one), in Proc. of the 2nd Int. Conf. on Flow Measurement, 11-13, May 1988, London: 91~102
    [115] Reynolds O., On the dynamical theory of incompressible viscous fluids and determination of the criterion, Phil. Trans. Roy. Soc, London 1894: 186~213
    [116] Chou P. Y., On velocity correlations and the solution of equation of turbulent fluctuates, Quaterly applied Mathematics, 1945, 3~38
    [117] Chou P. Y., Chou R. L., Fifty years turbulence research in China, Annual Review of Fluid Mechanics, 1995, 27~31
    [118]陈懋章,粘性流体动力学基础,北京:高等教育出版社,2002
    [119]刘晓波,华祖林,何国建,计算流体力学的科学计算可视化研究进展,水动力学研究与进展,2004,19 (1):120~125
    [120]是勋刚,湍流,天津:天津大学出版社,1994
    [121] Spalart P., Allmaras S., A one-equation turbulence model for aerodynamic flows, Technical Report AIAA - 92 - 0439, American Institute of Aeronatics and Astronautics, 1992
    [122]王福军,计算流体动力学分析—CFD软件原理与应用[M],北京:清华大学出版社,2004
    [123] Launder B. E., Spalding D. B., Lectures in mathematical models of turbulence, London: Academic Press, 1972
    [124]郭鸿志,传输过程数值模拟,北京:冶金工业出版社,1998
    [125] Shih T. H., Liou W. W., Shabbir A., et al., A new k-εeddy viscosity model for high Reynolds number turbulent flow, J. Comp. Fluids, 1995, 24 (3): 227~238
    [126] Wilcox D. C., Turbulence modeling for CFD, California: DCW Industries, 1998
    [127]李海青,两相流参数检测及应用,杭州:浙江大学出版社,1991
    [128] Hewitt G.F., Measurement of two phase flow parameter, Academic Press, London, 1978
    [129] Reimann J., Developments in two-phase mass flowrate instrumentation, Proc. of the NATO, Advanced Research workshop on the advances in two phase flow and heat transfer, 1982: 339~402
    [130]刘大有,两相流体动力学,北京:高等教育出版社,1993
    [131] Tompson J. F., Thanes F. C., Mastion C. W., Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies, J. Comp. physics, 1974, 15: 299~319
    [132] 6.3 User’s Guide, Fluent Inc, 2003
    [133]余志毅,叶片式气液混输泵叶轮内部流场分析及试验研究,博士论文,北京:清华大学,2005
    [134]陈次昌,两相流泵的理论与设计,兵器工业出版社,1994
    [135] Hewitt G. F., Harrison P. S., Parry S. J., Development and testing of the mixmeter multiphase flowmeter , Norway: Proc. 13th North Sea Flow Measurement, 1995: 211~217
    [136] Thorn R., Johansen G. A., Hammer E. A., Recent development in three-phase flow measurement, Measurement Science and Technology, 1998, 8: 691~701
    [137]郭烈锦,两相与多相流动力学,西安:西安交通大学出版社,2002
    [138]林宗虎,王树众,王栋,气液两相流和沸腾传热,西安:西安交通大学出版社,2003
    [139]陈学俊,多相流热物理学,西安:西安交通大学出版社,2005
    [140] JB/T9246-1999,涡轮流量传感器,机械工业出版社,1999
    [141]张鸣远,杨建,朱宪然等,水平管气液两相泡状流紊流结构的准三维测量,工程热物理学报,2004,4:619~621
    [142]杨建,张鸣远,张超杰等,用热膜测速仪测量水平管内气液泡状流的液相速度和紊流结构,核动力工程,2003,3:260~263
    [143]张也影,流体力学,北京:高等教育出版社,1999
    [144]陈卓如,金朝铭,王洪杰,工程流体力学,北京:高等教育出版社,2004
    [145] Gill L.E., Hewitt G.F., Hitchon J.W., et al., Sampling probe studies of the gas core distribution in annular two-phase flow, I. The effect of length on phase and velocity distribution. Chem. Eng. Sci., 1963, 18: 525~535
    [146]孙科霞,陈学俊,张明远,水平管泡状流相分布特性,化工学报,1999,50 (5):719~726
    [147]张远君,王慧玉,张振鹏等,两相流体动力学,北京:北京航空学院出版社,1987
    [148] Paolo A., Alessandro P., Dispersed bubble flow in horizontal pipes, Chemical Engineering Science, 1999, 54: 1101~1107
    [149] Hewitt G.F., Measurement of two phase flow paramaters, Academic Press, London, 1978
    [150] Pfleger D., Gomes S., Gilbert N., et al, Hydrodynamic simulations of laboratory scale bubble columns fundamental studies of the Eulerian-Eulerian modeling approach, Chemical Engineering Science, 1999, 54: 5091~5099
    [151] Sokoliehin A., Eigenberger G., Bubble column reactor‘applicablity of the standard k’turbulence model to the dynamic simulation of bubble column: Part I. Detailed Numerical Simulations, Chemical Engineering Science, 1999, 54: 2273~2284
    [152] Brauer H., Turbulenz in mehrphasigen Str omungen, Chemie Ingenieur Technik, 1979, 51: 934~948
    [153]马希金,郭俊杰,吴蓓,CFD法设计轴流式油气混输泵初探,流体机械,2004,32 (7):15~19
    [154]马希金,孙永平,多级轴流泵叶轮的三维建模,机械研究与应用,2003,16 (4):76~77
    [155]郑俐丹,朱宏斌,薛敦松,油气多相泵转轮叶片中液流角探讨,工程热物理学报,2003,24 (3):426~428
    [156]马希金,秦霞,吴蓓,混输泵半螺旋形吸入室不同含气率的气相分布,农业机械学报,2007,38 (4):77~81
    [157]苗一,潘家祯,张国娟等,双层涡轮桨搅拌槽内混合过程的数值模拟,华东理工大学学报(自然科学版),2006,32 (1):352~357
    [158]陈庆光,吴墒锋,吴玉林等,轴流式水轮机内部空化流动的数值预测,工程热物理学报,2006,27 (5):769~771
    [159]陈庆光,吴玉林,刘树红,轴流式水轮机内三维空化湍流的数值研究,水力发电学报,2006,25 (6):130~136
    [160]陈庆光,吴玉林,刘树红,轴流式水轮机全流道内非定常空化湍流的数值模拟,机械工程学报,2006,42(6):211~217
    [161]马希金,郭俊杰,孙永平,轴流式油气混输泵内部的CFD分析及优化设计,化工机械,2004,31 (2):90~93
    [162]徐宇,吴玉林,刘文俊等,用两相流模型模拟混流式水轮机内空化流动,水利学报,2002,(8):57~62
    [163] Kunz R. F., A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction, Compute Fluids, 2000, 29: 849~875
    [164] Singhal A. K., Mathematical basis and validation of the full cavitation model, ASME J. Fluids Eng., 2002, 12 (4): 617~624

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700