用户名: 密码: 验证码:
三轴ATP运动平台若干关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光电捕获、跟踪与瞄准(Acquisition,Tracking and Pointing,ATP)系统以高于微波频率的光波为信号载体,使跟瞄系统战术性能产生了质的飞跃,其在武器控制、天文观测、靶场测量、航空航天和激光通信等领域取得了日益广泛的应用。虽然在不同领域对ATP系统要求侧重点各不相同,但总的趋势都是向高精度、高速度、强适应性发展。
     随着对光电ATP系统要求的不断提高,特别是光电ATP系统自身机动性的要求以及为避开大气对目标观测或者光束传输的影响等原因,基座固定于大地的光电ATP系统已经不能满足使用要求,发展基座固定于运动平台上的光电ATP系统成为当前研究的重要内容。
     但是相对于地基ATP系统,运动平台ATP系统面临更多问题。要达到高精度、高速度、强适应性,除了要有高性能的光电传感元件之外,快速、灵活而精度高的伺服系统也是关键。跟瞄装置执行机构的结构形式、传动装置存在的摩擦、齿隙等非线性的影响等是制约伺服系统精度进一步提高的重要因素。另外,随着现代战争、航天航空、检测技术、智能控制等领域技术的不断进步,无人驾驶、智能避障、路径智能规划的自动化运动平台,也成为运动平台ATP系统研究的一个重要领域。
     基于以上现状,本文对三轴跟踪架ATP运动平台系统中的跟瞄特性、三轴跟踪架结构的动力学建模、三轴跟瞄策略优化、齿隙摩擦补偿、路径规划等方面进行了研究:
     基于自主设计制造的运动平台ATP系统,介绍了三轴跟踪架结构存在冗余自由度、跟瞄策略多样化的特点,分析了偏距对系统跟瞄性能的影响,指出了偏距引入的不可见区域以及误差的处理方法。
     基于刚体定轴转动的四元数描述方法,采用Lagrange-Maxwell方程,建立了三轴跟踪架结构ATP系统的机电动力学模型。基于建立的动力学模型,分析了三轴ATP系统的运动形式,仿真和实验结果基本一致,验证了该动力学模型的正确性。
     将非线性权值递减策略引入改进的Meta粒子群(M2PSO)算法,提出了一种改进的M2PSO算法,采用经典函数Sphere和Rosnbrock测试了M2PSO算法和改进M2PSO算法的寻优性能,测试结果表明,改进M2PSO算法较M2PSO算法有更快的收敛速度。
     通过分析三轴ATP系统的跟瞄运动过程,在给定当前三轴位置角和探测器误差角的条件下,将求解三轴角增量的方法转化为求最优值问题,并采用改进的M2PSO算法求得了不同初始条件下满足目标要求的三轴角增量组合,通过与方位俯仰两轴结构的仿真结果比较,验证了三轴跟踪架系统全空间无跟踪盲区的优点。将RBF神经网络引入到滑模变结构控制中,阐述了RBF神经网络滑模变结构复合控制器的设计过程,并对复合控制器进行了稳定性分析,提出了满足控制器稳定性要求的条件。复合控制方法采用RBF网络的在线学习功能,调节滑模变结构控制切换项的增益,能降低滑模变结构控制的抖振现象。
     将集合摩擦模型和滞环齿隙模型引入三轴传动系统机电动力学模型,建立了同时考虑摩擦、齿隙以及传动轴刚度变化特性等因素的系统动力学模型。基于以上模型,采用RBF神经网络滑模变结构复合控制方法对系统存在的齿隙和摩擦现象进行了补偿控制。仿真比较了PD控制、固定增益滑模变结构控制和RBF神经网络滑模变结构控制三种方法的控制效果,仿真结果表明RBF神经网络滑模变结构控制的补偿效果优于PD控制和固定增益滑模变结构控制,是一种有效的齿隙和摩擦补偿方法。
     建立了运动平台小车的运动学和动力学数学模型,提出了一种基于传感器检测实时更新的动态环境地图的栅格法描述方法。针对传统人工势场法存在局部最小值的问题,采用一种基于PSO算法的改进人工势场法,给出了改进方法的实现流程,仿真结果表明,改进的人工势场法能够解决传统人工势场法存在的局部最小值问题,是一种有效的路径规划方法。
The signal of photoelectric ATP (Acquisition,Tracking and Pointing) system is carried by light-wave, whose frequency is higher than microwave. Therefore, the tactical performance of ATP system was constitutionally improved. The applications in arms control, celestial observation, shooting range determine, aeronautics and astronautics, laser communication and etc. were constantly extended. The performance demand of ATP system is dissimilar in different fields, but the trend of development is higher precision, faster speed and more extensive applicability.
     Because of the continuously demand for higher performance of photoelectric ATP system, especially for the maneuverability, keeping away from atmosphere and light transfers and etc. the photoelectric ATP system based on the earth can not meet the demand. The development of photoelectric ATP system setup on moving platform becomes the significant question for discussion recently.
     Comparing with the ATP system based on the earth, the ATP system setup on moving platform has more questions to deal with. Arm to achieve higher precision, faster speed and more extensive applicability, besides the high performance photoelectric transducer, the servo system providing with fast speed, flexibility and high precision is also the key question. The configuration of executive machine, the backlash and friction consisting in gearing are all the primary factors limiting to improve the precision of servo system. Otherwise, along with the development of modern war, aeronautics and astronautics, detection technology and intelligent control, the moving bed of unpiloted, avoiding collision intelligently and self-acting path planning becomes one of the dominant fields of ATP system.
     Base on the above perception, the tracking and pointing characteristic of three-axis ATP system, the dynamic modeling of three-axis structure, the three-axis optimization of tracking and pointing, backlash and friction compensation and path planning and etc. were investigated as follows.
     Base on the ATP system setup on moving platform designed all by us, the multifarious characteristic of tracking and pointing strategy was introduced. The effects of deflection distance on tracking capability were analyzed, and the methods deal with the sightless area and error caused by deflection distance were introduced.
     The dynamic model of three-axis ATP system was established base on Lagrange-Maxwell functions and the quaternary method for describing the rigid body rotation. The movement of three-axis ATP system was analyzed based on the dynamic model. The validity of this dynamic model was validated by simulation and experiment results.
     The idea of nonlinear decreasing inertia weight strategy was introduced in modified Meta particle swarm optimization (M2PSO), and an improved M2PSO was presented. The performance of M2PSO and improved M2PSO was tested by Sphere and Rosnbrock functions. The test results suggested that the convergent speed of improved M2PSO is higher than that of M2PSO.
     Based on the movement analysis of three-axis ATP system, the solution of angle increment was transformed to a question of optimization. If the current angles and the detect errors are known, the angle increment of three-axis can be solved by improved M2PSO.
     A method of RBF neural network sliding mode variable structure compound control was presented. The design process of compound controller was introduced in detail. The stability of compound controller was analyzed, and the stable condition of compound controller was put forward. The compound control can reduce the buffeting of sliding mode variable structure control by adopting the learning function online of RBF neural network, which can adjust the switch gain of sliding mode variable structure control.
     The dynamic model of three-axis drive system including backlash and friction was established based on the backlash hysteresis model and friction aggregation model. The RBF neural network sliding mode variable structure compound control was adopted as the backlash and friction compensate control method. The effectiveness of PD control, sliding mode variable structure control and RBF neural network sliding mode variable structure control were simulated and compared. Results suggest that RBF neural network sliding mode variable structure control can achieve higher precision than PD control and sliding mode variable structure control.
     The kinematic and dynamic model of the moving platform was established, and a grid method for uncertain environments based on sensors was presented. Because the classical potential field method has the problem of local minimum, a modified potential field method base on PSO was put forward. The program flow of improved method was presented in detail. Simulation results suggest that the modified potential field method can avoid the local minimum of classical potential field method.
引文
[1] Guelman M., Kogan A., Kazarian, A., et al. Acquisition and pointing control for inter-satellite laser communications[J], IEEE Transactions on Aerospace and Electronic Systems, 2004, Vol.40: 1239–1248.
    [2] Michael G. Spencer, Brij N. Agrawal, Marcello Romano, et al. Acquisition, tracking, pointing, and line-of-sight control laboratory experiments for a space-based bifocal relay mirror[J], Acquisition, Tracking, and Pointing XVI, Proc. SPIE, 2002, Vol.4714: 54-64.
    [3] Shenmin Song, Zhuoyi Song, Bintong Zhang, et al. Adaptive Wavelet Network Friction Compensation of Inter-Satellite Optical Communication Coarse Pointing Subsystem[C], The Sixth World Congress on Intelligent Control and Automation, 2006, Vol.1: 2768–2772.
    [4] Borrello M.. A multi stage pointing acquisition and tracking (PAT) control system approach for air to air laser communications[C], Proceedings of the 2005 American Control Conference, 2005 , vol. 6: 3975-3980.
    [5] Takashi Jono, Masahiro Toyoda, Keizo Nakagawa, et al. Acquisition, tracking, and pointing systems of OICETS for free space laser communications[J], Acquisition, Tracking, and Pointing XIII Proc. SPIE, 1999,Vol.3692: 41-50.
    [6] Lee S., Ortiz G. G.. Inertial sensor assisted acquisition, tracking, and pointing for high data rate free space optical communications[C], The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003, vol.1: 87-88.
    [7]Tong Luo, Yu Hu. Vibration suppression techniques for optical inter-satellite communications[C], IEEE 2002 International Conference on Communications, Circuits and Systems and West Sino Expositions, 2002, Vol.1: 585-589.
    [8]刘智,卢益民,罗萌,星间光通信中的瞄准、捕获和跟踪[J],计算机与数字工程, 2006, 34(5): 71-74.
    [9]王泽和,迈向21世纪的舰用光电设备[J],应用光学,1998,19(5): 1-5.
    [10]胡浩军.运动平台捕获、跟踪与瞄准系统视轴稳定技术研究[D],长沙:国防科学技术大学博士论文,2005.
    [11] B. L. Ulich. Overview of acquisition, tracking and pointing system technologies[J], Acquisition, Tracking, and Pointing II, Proc. SPIE, 1988 , Vol.887: 40-63.
    [12] G. Downey. Electro-Optiacl tracking system considerations[J], Acquisition, Tracking, and Pointing IV, Proc. SPIE, 1989, Vol.1111: 70-84
    [13]马佳光,捕获跟踪与瞄准系统的基本技术问题[J],光学工程,1989, 3:1-42.
    [14]贾平,张葆,航空光电侦察平台关键技术及其发展[J],光学精密工程,2003,11(1):82-88.
    [15] L. M. Brandley,J. P. Corriveau, and N. E. Tindal. Launch area theodolite system[J]. Acquisition, Tracking and Pointing V. Proc. SPIE,1991, vol. 1482: 48-60.
    [16]傅承毓,姜凌涛,任戈,等.快速反射镜成像跟踪系统[J],光电工程,1994,21 (3 ): 1- 8.
    [17]任戈.复合轴结构的运动关系分析[J],光电工程,1995,22 (6 ):41 -46.
    [18]傅承毓,马佳光,叶步霞,等.复合轴控制系统应用研究[J],光电工程,1998,25(4): 1-12.
    [19]刘廷霞.光电跟踪系统复合轴伺服控制技术的研究,长春:中国科学院研究生院(长春光学精密机械与物理研究所)博士论文,2005.
    [20]王惠林,纪明,齐华.一种新颖的瞄准线高精度稳定补偿方法研究[J],应用光学, 2001,22 (5): 40-42.
    [21]纪明.武装直升机瞄准线粗精组合二级稳定技术[J],航空学报,1997),18 (3:28 9-293.
    [22]纪明.反射镜稳定系统的仿真与误差分析[J],应用光学,2000, 21(5): 19-22.
    [23] Cao Qixin,Huang Yanwen,Zhou Jingliang. An Evolutionary Artificial Potential Field Algorithm for Dynamic Path Planning of Mobile Robot[C],2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006:3331-3336.
    [24] Moshaiov A.,Avigad G.. The Extended Concept-based Multi-objective Path Planning and its A-life implications[C],IEEE Symposium on Artificial Life,2007:259-265.
    [25]徐秀娜,赖汝.移动机器人路径规划技术的现状与发展[J],计算机仿真,2006,23(10):1-4.
    [26]戴光明,避障路径规划的算法研究[D],武汉:华中科技大学博士论文,2004.
    [27] Chen J., Li-Ren Li. Path planning protocol for collaborative multi-robot systems,2005 IEEE International Symposium on Computational Intelligence in Robotics and Automation, 2005: 721– 726.
    [28]肖本贤,齐东流,刘海霞,等.动态环境中基于模糊神经网络的AGV路径规划[J],系统仿真学报,2006,18(9):2401-2404.
    [29] Shou-Tao LI,Yuan-Chen LI. Neuro/Fuzzy Behavior-Based Control of a Mobile Robust in Unkown Environments[C],IEEE Proceedings of Third International Conference on Machine Learning and Cybemetics, Shanghai, August 2004:26-29.
    [30]申晓宁,郭毓,陈庆伟,等.多目标遗传算法在机器人路径规划中的应用[J],南京理工大学大学学报,2006,30(6):659-663.
    [31] Chasparis G.C., Shamma J.S. Linear-programming-based multi-vehicle path planning with adversaries[C] , Proceedings of the 2005 American Control Conference, 2005,vol. 2: 1072– 1077.
    [32]岳富占,崔平远,崔祜涛.基于改进蚁群算法的星球探测机器人路径规划技术[J],控制与决策,2006,21(12):1437-1440.
    [33]鲁艺,周德云.无人机初始路径规划空间建模方法研究[J] ,系统仿真学报,2007,19(3):491-493.
    [34] Lin Lei, Houjun Wang, Qinsong Wu. Improved Genetic Algorithms Based Path planning of Mobile Robot Under Dynamic Unknown Environment[C] ,Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, 2006:1728– 1732.
    [35] Kaneshige A., Akamatsu T., Terashima K.. The development of an autonomous overhead traveling crane with real time path planning based on the potential method[C] , International Conference on Control and Automation, 2005 ,Vol.2:1079-1084.
    [36] B.Armatrong-Helouvry, P.Dupont, C.Canudas de Wit. A Survey of Analysis Tools and Compensation Methods for the Control of Machines with Friction[J], Automatic, 1994, 30(7):1083-1138.
    [37] P. Dahl. A solid Friction Model. Technical Report TOR-0158(3107-18)-1,The Aerospace Corporation, El Segundo, CA, 1968.
    [38] B. Armstrong. Stick-slip and Control in low–speed Motion[J]. IEEE Transactionson Automatic Control, 1993, 38(10):1483-1496.
    [39] P. E. Dupont, E. P. Dunlap. Friction Modeling and PD Compensation at very Low Velocities[J]. Journal of Dynamic System,Measurement and Control, 1998, 117(1): 8-14.
    [40] C. Canudas de Wit, P. Noel, A. Aubin , et al. Adaptive Friction Compensation in Robot Manipulators: Low Velocities[J], International Journal of Robotics Research, 1991, 10(3):189-199.
    [41] N. E. Leonard, P. S. Krishnaprasad. Adaptive Friction Compensation for Bi-Directional Low Velocity Position Tracking[C]. 31st Conference on Decision and Control, IEEE, Tucson, 1992:267-273.
    [42]翟百臣.直流PWM伺服系统低速平稳性研究,长春:中国科学院研究生院博士学位论文. 2005.
    [43] H. Olsson, K. J. Astrom, C. Canudas de Wit, et al. Friction Models and Friction Compensation[J]. European Journal of Control,1998, 4:176-195.
    [44] D. A. Haessig, B. Friedland. On the Modeling and Simulation of Friction[J]. Trans of ASME,1991,113(3):354-362.
    [45] C.Canudas De Wit, H.Olsson, K.J.Astrom, et al. A New Model for Control of System with Friction[J]. IEEE Trans. On Automatic Contro,1995, 40(3): 419-425.
    [46] Liu G, Goldenberg A A, Zhang Y. Precise slow motion control of a direct-drive robot arm with velocity estimation and friction compensation [J],Mechatronics,2004,14:821-834.
    [47] R. H. A. Hensen, M. J. G. van de Molengraft, M. Steinbuch. Friction Induced Hunting Limit Cycles: A Comparison Between the LuGre and Switch Friction Model[J]. Automatica. 2003, 39: 2131-2137.
    [48] S. Chatterjee, T. K. Singha, S. K. Karmakar. Effect of High-Frequency Excitation on a Class of Mechanical Systems With Dynamic Friction[J]. Journal of Sound and Vibration. 2004, 269: 61-89.
    [49] Suraneni S, Kar I N, Ramana Murthy O V, et al. Adaptive stick–slip friction and backlash compensation using dynamic fuzzy logic system[J],Applied Soft Computing,2005,6:26-37.
    [50]克晶.高精度转台摩擦补偿研究[D],哈尔滨:哈尔滨工业大学博士论文,2003.
    [51] Denis Garagic, Krishnaswamy Srinivasan. Adaptive friction compensation for precision machine tool drive[J],Control Engineering Practice,2004,12:1451-1464.
    [52] Wang Ying, Xiong Zhenhua, Ding Han. Robust controller based on frictioncompensation and disturbance observer for a motion platform driven by a linear motor[J],Proc. IMechE,Part I: J. Systems and Control Engineering,2006,220:33-39.
    [53]刘金琨.滑模变结构控制MATLAB仿真[M],北京:清华大学出版社, 2005.
    [54] Mattias Nordin, Per-Olof Gutman. Controlling mechanical systems with backlash—a survey[J], Automatica,2002,38:1633~1649.
    [55] Rastko R. Selmic, Frank L. Lewis,Neural net backlash compensation with Hebbian tuning using dynamic inversion[J],Automatica,2001,37:1269~1277.
    [56] Yan Jun-Juh, Shyu Kuo-Kai, Lin Jui-Sheng, Adaptive variable structure control for uncertain chaotic systems containing dead-zone nonlinearity[J], Chaos, Solitons and Fractals,2005,25:347~355.
    [57]赵国峰.一类齿隙非线性控制系统的研究,南京:南京理工大学博士论文,2005.
    [58] Gang Tao, Xiaoli Ma. Yi Ling. Optimal and nonlinear decoupling control of systems with sandwiched backlash[J], Automatica, 2001, 37: 165-176.
    [59] Gang Tao, Xiaoli Ma. Backlash compensation for multivariable nonlinar systems with actuator dynamics[C], In Proceedings of the 38th IEEE conference on decision and control, 1999: 596-602.
    [60] Nordin M., Galic J., Gutman P. O. . New models for backlash and gear play[J], International Journal of Adaptive Control and Signal Processing, 1997,1: 9–63.
    [61] Nordin M., Gutman P. O. . Nonlinear speed control of elastic systems with backlash[C]. In Proceedings of the 39th IEEE conference on decision and control, 2000: 4060-4065.
    [62] Chestnut H. . Approximate frequency-response methods for representing saturation and dead band[J], Transactions of the ASME, 1954: 1345–1363.
    [63] Brandenburg G., SchLafer U. . Influnence and adaptive compensation simultaneously acting backlash and Coulomb friction in elastic two-mass systems of robots and machine tools[C]. In Proceedings of ICCON'89, 1989: 4-5.
    [64] TAO G, Recker D A, Kokotovic P V. Adaptive control of plants with unknown dead-zones[J]. IEEE Trans on Automatic Control, 1994, 39(1): 59-68.
    [65] Mata-Jimenez M T, Brogliato B, Goswami A. On the control of mechanical systems with dynamic backlash[C]. Proc of the 36th Conf on Decision and Control,1997: 990-995.
    [66] Stein J L, Wang C. Estimation of gear backlash: theory and simulation[J]. Journal of Dynamic Systems, Measurement, and Control, 1998, 120(1): 74-82.
    [67] Azenha A, Machado J A T. Variable structure control of robots with nonlinear friction and backlash at the joints[C]. Proc of the IEEE Conf on Robotics and Automation, 1996: 366-371.
    [68] Taware A, Tao G, Teolis C. Design and analysis of a hybrid control scheme for sandwich nonsmooth nonlinear systems[J]. IEEE Trans on Automatic Control, 2002, 47(1): 145-150.
    [69] Taware A, Tao G. An adaptive dead-zone inverse controller for systems with sandwiched dead-zones[J]. Int. Journal of Control, 2003, 76(8): 755-769.
    [70] Orlov Y, Aguilar L, Cadiou J C. Switching chattering control vs. backlash/friction phenomena in electrical servo-motors[J] .Int. Journal of Control, 2003, 76: 959-967.
    [71] Dong Sun, James K Mills. Adaptive synchronized control for coordination of multi-robot assembly tasks[J], IEEE Trans on Robotics and Automation, 2002, 18(4): 498-510.
    [72]陈庆伟,郭毓,杨非.双电机同步联动控制系统[J],南京理工大学学报,2005,Vol.29:103-107.
    [1]马佳光.捕获跟踪与瞄准系统的基本技术问题[J],光电工程,1989,81(3):1-42.
    [2] B. L. Ulich. Overview of acquisition, tracking and pointing system technologies[J], Acquisition, Tracking, and Pointing II, Proc. SPIE, 1988 , Vol.887: 40-63.
    [3] G. Downey. Electro-Optiacl tracking system considerations[J], Acquisition, Tracking,and Pointing IV, Proc. SPIE, 1989, Vol.1111: 70-84
    [4]刘兴法.高仰角目标光电跟踪技术研究[D],中国科学院光电技术研究所博士论文,2006.
    [5]胡浩军.运动平台捕获、跟踪与瞄准系统视轴稳定技术研究[D],长沙:国防科学技术大学博士论文, 2005.
    [6]周宗锡.刚体姿态控制及其在机器人控制中的应用研究[D],西安:西北工业大学博士论文,2002.
    [1]刘兴堂,吴晓燕.现代系统建模与仿真技术[M],西安:西北工业大学出版社,2001.
    [2]理查德摩雷,李泽湘,夏恩卡萨思特里著.徐卫良,钱瑞明译.机器人操作的数学导论[M],北京:机械工业出版社,1998.
    [3] Mark Siemens, Jason Hancock, David Siminovitch. Beyond Euler angles: Exploiting the angle–axis parametrization in a multipole expansion of the rotation operator[J], Solid State Nuclear Magnetic Resonance, 2007, 31: 35–54.
    [4]周宗锡.刚体姿态控制及其在机器人控制中的应用研究[D],西安:西北工业大学博士论文,2002.
    [5] Hamilton W. R. . Lectures on Quaternions: Containing a Systematic Statement of a New Mathematical Method, Dublin: Hodges and Smith, 1853.
    [6] James Clerk Maxwell. Treatise on Electricity and Magnetism, Britain: Oxford, 1873.
    [7]翁梓华.狄拉克γ矩阵与四元数空间[J].大学物理,1994,13(1):17-19.
    [8]王勇,马立元,王忠强.四元数法在计算机图形学中的应用[J],军械工程学报,2001,13(2):48-51.
    [9] Shoemake Ken. Animating rotation with quaternion curves[C]. Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques, 1985: 245-254.
    [10] Choi Hyeong In, Han Chang Yong. Euler-Rodrigues frames on spatial Pythagorean-hodograph curves[J], Computer Aided Geometric Design, 2002, 19: 603-620.
    [11] Harada Koichi, Anzai Takeshi. Multiple sweeping using quaternion operations[J], Computer-Aided Design, 2002, 34: 815-822.
    [12]沈军行,孙守迁,潘云鹤.从运动捕获数据中提取关键帧,计算机辅助设计与图形学学报, 2004, 16(5): 719-723.
    [13]李文亮.四元数矩阵[M],长沙:国防科技大学出版社,2002.
    [14] Jean-Marc Battini. A modified corotational framework for triangular shell elements[J], Comput. Methods Appl. Mech. Engrg.,2007, 196: 1905–1914.
    [15]曾凡,朱建太.刚体姿态仿真方法研究[J],航空计算技术,2003,33(3):14-17. [16 ]Morton Blaise, Elgersma Michael. A new computational algorithm for 7R spatial mechanisms[J], Mechanism and Machine Theory, 1996, 31(1): 23-43.
    [17] Ho Ming-Che, Hwang Yean-Ren and Hu Chang-Hsia. Five-axis tool orientation smoothing using quaternion interpolation algorithm[J], International Journal of Machine Tools and Manufacture, 2003, 43: 1259-1267.
    [18] Jan Cernosek. Simple geometrical method for analysis of elliptical polarization. Journal of the Optical Society of America A, 1971, 39: 324-330.
    [19] Ding Guangtao. A quaternion representation of polarization optics[J], Journal of Anhui Normal University (Natural Science), 1993, 16(1): 31-38.
    [20]陈贵敏.振动环境下光束指向稳定及其光机电一体化关键技术[D],西安:西安电子科技大学博士论文,2005.
    [21] Zhang Yi, Ting Kwun-Lon. On point-line geometry and displacement[J], Mechanism and Machine Theory, 2004, 39: 1033-1050.
    [22]Willem H. Steyn. A view finder control system for an earth observation satellite[J], Aerospace Science and Technology, 2006, 10: 248–255.
    [23]许佩珍,董长虹.四元数在战斗机飞行仿真中的应用[J],北京航空航天大学学报, 1997, 23(4): 487-490.
    [24] G. Hu, W. E. Dixon, S. Gupta, et al. A Quaternion Formulation for Homography-based Visual Servo Control[C],Proceedings of the 2006 IEEE International Conference on Robotics and Automation, 2006:2391-2396.
    [25] Chanho Song, Sang-Jae Kim, Seung-Hwan Kim, et al. Robust control of the missile attitude based on quaternion feedback[J], Control Engineering Practice, 2006,14: 811-818.
    [26] Kerem Koprubas,May-Win L. Thein. Attitude and Angular Rate Estimation Using the Sliding Mode Observer With Additive Quaternion Corrections[C], Proceedings of the 2006 American Control Conference, 2006,ThB15.1: 3302-3307.
    [27] Charles F.F. Karney. Quaternions in molecular modeling[J], Journal of Molecular Graphics and Modelling, 2007, 25: 595–604.
    [28] Wang Fei, Wang Shuxun, Wu Yonggui. 2-D DOA Estimation In The Presence of Gaussian Noise With Quatermon[C],2005 IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications Proceedings, 2005: 1-5.
    [29] Xiaoping Yun, Eric R. Bachmann. Design, Implementation, and Experimental Results of a Quaternion-Based Kalman Filter for Human Body Motion Tracking[C], IEEE TRANSACTIONS ON ROBOTICS, 2006, 22:1216-1227.
    [30]赵国文,吴菊生,段秀敏等.四元数在机械工程计算中的应用[J],农业机械学报, 1994, 25(S): 58-66.
    [31]刘俊峰.三维转动的四元数表述[J],大学物理,2004,23(4):39-43.
    [32]姚俊,马松辉. Simulink建模与仿真[M],西安:西安电子科技大学出版社, 2002.
    [33]方新. I—DEAS产品三维设计指南[M],机械工业出版社,2000.
    [34]张策.机械振动学[M],高等教育出版社,2000.4.
    [35] maxcon motor ag. High precision Driver and System. 2004.
    [1] Kennedy J., Eberhart R. Particle swarm optimization[C]. IEEE International Conference on Neural Networks, 1995, 4:1942-1948.
    [2] Liang J.J., Qin A.K., Suganthan P.N., et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions[J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 281-295.
    [3]陈贵敏,贾建援,韩琦.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1): 53-56.
    [4] Elegbede C. Structure Reliability Assessment Based on Particles Swarm Optimization[J]. Structural Safety, 2005, 27(10):171-186.
    [5] Li-Wei Chen, Ye Zhang. Speech recognition based on cooperative particle swarm optimizer wavelet neural network[C]. International Conference on Wavelet Analysis and Pattern Recognition, 2007, 2: 716-720.
    [6] Donelli M., Massa A. Computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(5): 1761-1776.
    [7] Gao Ying, Li Zhaohui, Hu Xiao, et al. A Multi-population Particle Swarm Optimizer and its Application to Blind Multichannel Estimation. Third International Conference on Natural Computation, 2007, 4: 654-658.
    [8] Shi Y., Eberhart R.. Empirical study of particle swarm op timization [A]. Proceeding of IEEE International Conference on Evolutionary Computation [C]. Washington, USA: 1999,1945-1950.
    [9] Shi Y., Eberhart R.. Fuzzy asaptive particle swarm optimization [A]. Proceeding of Congress on Evolutionary Computation [C]. San Francisco, USA: 2001, 101-106.
    [10] Eberhart R., Shi Y.. Tracking and optimizing dynamic systems with particle swarms [A]. Proceeding of Congress on Evolutionary Computation [C]. San Francisco, USA: 2001, 94-100.
    [11]陈贵敏.振动环境下光束指向稳定及其光机电一体化关键技术[D],西安:西安电子科技大学博士论文,2005.
    [12] Stfano Selleri,Marco Mussetta, Paola Pirinoli, et al. Some Insight Over New Variations of the Particle Swarm Optimization Method[J],IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS,2006,5:235-238.
    [13] maxcon motor ag. High precision Driver and System. 2004.
    [1] Mattias Nordin, Per-Olof Gutman. Controlling mechanical systems with backlash—a survey[J], Automatica,2002,38:1633~1649.
    [2] Rastko R. Selmic, Frank L. Lewis,Neural net backlash compensation with Hebbian tuning using dynamic inversion[J],Automatica,2001,37:1269~1277.
    [3] Yan Jun-Juh, Shyu Kuo-Kai, Lin Jui-Sheng, Adaptive variable structure control for uncertain chaotic systems containing dead-zone nonlinearity[J], Chaos, Solitons and Fractals,2005,25:347~355.
    [4] Gang Tao, Xiaoli Ma. Yi Ling. Optimal and nonlinear decoupling control of systems with sandwiched backlash[J], Automatica, 2001, 37: 165-176.
    [5] Suraneni S, Kar I N, Ramana Murthy O V, et al. Adaptive stick–slip friction and backlash compensation using dynamic fuzzy logic system[J],Applied Soft Computing,2005,6:26-37.
    [6] B.Armatrong-Helouvry, P.Dupont, C.Canudas de Wit. A Survey of Analysis Tools and Compensation Methods for the Control of Machines with Friction[J], Automatic, 1994, 30(7):1083-1138.
    [7]翟百臣.直流PWM伺服系统低速平稳性研究,长春:中国科学院研究生院博士学位论文. 2005.
    [8] B. Armstrong. Stick-slip and Control in low–speed Motion [J]. IEEE Transactions on Automatic Control, 1993, 38(10):1483-1496.
    [9] Denis Garagic, Krishnaswamy Srinivasan. Adaptive friction compensation forprecision machine tool drive[J],Control Engineering Practice,2004,12:1451-1464.
    [10]刘金琨.滑模变结构控制MATLAB仿真[M],北京:清华大学出版社, 2005.
    [11] WUNCH W S. Reproduction of an Arbitrary Function of Time by Discontinuous Control [D]. Stanford (CA, USA): Stanford University, 1953.
    [12]姚琼荟,黄继起,吴汉松.变结构控制系统[M],重庆:重庆大学出版社,1997.
    [13]高为炳.变结构控制理论基础[M],北京:中国科学技术出版社,1990.
    [14]高为炳.变结构控制的理论及设计方法[M],北京:科学出版社,1996.
    [15] Hiroshi Ohtake, Kazuo Tanaka, Hua O. Wang. Fuzzy Model-based Control for Dynamic Variable Structure Systems[C]. 2005 American Control Conference, Portland, USA, 2005: 496-500.
    [16] Jun-Juh Yan, Wei-Der Chang, Jui-Sheng Lin, et al. Adaptive chattering free variable structure control for a class of chaotic systems with unknown bounded uncertainties[J]. Physics Letters A, 2005, 335: 274-281.
    [17] Mehmet Onder Efe, Cem Unsal, Okyay Kaynak, et al. Variable structure control of a class of uncertain systems[J]. Automatica, 2004, 40: 59–64.
    [18] M. Innocenti, L. Greco, L. Pollini. Sliding mode control for two-time scale systems: stability issues[J]. Automatica, 2003, 39: 273–280.
    [19]姚琼荟,宋立忠,鄢圣茂.离散变结构控制理论研究现状与展望[J],海军工程大学学报,2004,16(6):23-29.
    [20] Slotine J. J., Sastry S. S.. Tracking control of nolinear system using sliding surfaces with application to robot manipulation. International Journal of Control, 1983, 38(2):465-492.
    [21] Slotine J. J., Sastry S. S.. Robustness issues in the sliding control of non-linear systems. The 22nd IEEE Conference on Decision and Control, 1983, 22 : 1125-1127.
    [22] Xu J. X., Lee T. H., Pan Y. J.. On the sliding mode control for DC servo mechanisms in the presence of unmodeled dynamics. Mechatronics, 2003, 13: 755-770.
    [23] Erbatur K., Kawamura A.. Chattering elimination via fuzzy boundary layer tuning. IEEE 28th Annual Conference of the Industrial Electronics Society, 2002, 3: 2131-2136.
    [24] Chen M. S., Hwang Y. R., Tomizuka M.. A state-dependent boundary layer design foe sliding mode control. IEEE Transactions on Automatic Control, 2002, 47(10): 1677-1681.
    [25] Seshagiri S., Khalil H. K.. On introducing integral action in sliding mode control. Proceeding of the 41st IEEE Conference on Decision and Control, 2002, 2: 1473-1478.
    [26]翟长连,吴智铭.一种离散时间系统的变结构控制方法.上海交通大学学报,2003,34(5):719-722.
    [27]于双和,强文义,傅佩琛.无抖振离散准滑模控制.控制与决策,2001,16(6):380-382.
    [28] K. Jiang, Zhang J. G., Chen Z. M.. A new approach for the sliding mode control based on fuzzy reaching law. Proceedings of the 4th World Congress on Intlligent Contrl and Automation, 2002, 1: 656-660.
    [29] Su W. C., Drakunov S. V., Ozguner U. An O( T2) boundary layer in sliding mode for sampled 2 data systems [J ] . IEEE Trans. Automatic control , 2000 ,45(3) :482 - 485.
    [30] Kachroo P., Tomizuka M.. Chattering reduction and error convergence in the sliding mode control of a class of nonlinear systems[J]. IEEE Transactions on Automatic Control, 1996, 41(7): 1063-1068.
    [31] Kang B. P., Ju J. L.. Sliding mode controller with filtered signal for robot manipulators using virtual plant/controller[J]. Mechatronics, 1997, 7(30): 441-448.
    [32] Yanada H., Ohnishi H.. Frequency-shaped sliding mode control of an electrohydraulic servomotor[J]. Journal of Systems and Control and Dynamics, 1999, 213(1): 441-448.
    [33] Krupp D., Shtessel Y. B.. Chattering-free sliding mode control with unmodeled dynamics[C]. American Control Conference, 1999: 530-534.
    [34] Xu J. X., Pan Y. J., Lee T. H.. A gain scheduled sliding mode control using filtering techniques with applications to multi-link robotic manipulators[J]. Journal of Dynamics Systems, Measurement, and Contrl, 2000, 122: 641-649.
    [35] Kawamura A., Itoh H., Sakamoto K.. Chattering reduction of disturbance observer based sliding mode control[J]. IEEE Transactions on Industry Applications, 1994, 30(2): 456-461.
    [36] Kim Y. S., Han Y. S., You W. S.. Disturbance observer with binary control theory[C]. Power Electronics Specialists Conference, 1996, 2: 1229-1234.
    [37] Liu H.. Smooth sliding mode control of uncertain systems based on a prediction error[J]. International Journal of Robust and Nolinear Control, 1997, 7(4): 353-372.
    [38] Eun Y., Kim J. H., Kim K., et al. Discrete-time variable structure controller with adecoupled disturbance compensator and its application to a CNC servomechanism[J]. IEEE Transactions on Control Systems Technology, 1999,7(40: 414-422.
    [39]宋立忠,陈少昌,姚琼荟.多输入不确定系统离散变结构控制设计[J].控制与决策, 2003, 18(4): 468-470.
    [40] Bartolini G., Ferrara A., Usai E., et al. On multi-input chattering-free second-order sliding mode contrl[J]. IEEE Transactions on Automatic Control, 2000: 1711-1717.
    [41] Hamerlain M. Youssef T., Belhocine M.. Switching on the derivative of control to reduce chatter[C]. IEEE Proceedings on Control Theory and Applications, 2001, 148(1): 88-96.
    [42]晁红敏,胡跃明.动态滑模控制及其在移动机器人输出跟踪中的应用[J].控制与决策,2001,16(5):565-568.
    [43] Morioka H.,Waka K., Sbanovic A., et al. Neural network based chattering free sliding mode control[C]. Proceedings of the 34th SICE Annual Conference, 1995: 1303-1308.
    [44] Ertugrul M., Kaynak O.. Neuro sliding mode control of robotic manipulatiors[J]. Mechatronics, 2000, 10(1,2): 239-263.
    [45] Huang S. J., Huang K. S., Chiou K. C.. Development and application of a novel radial basis function sliding mode controller[J]. Mechatronics, 2003, 13: 313-329.
    [46]达鹏飞,宋文忠.基于输入输出模型的模糊神经网络滑模控制[J].自动化学报,2000,26(1):136-139.
    [47] Ng K. C., Li Y., Murray-Smith D. J., et al. Genetic algorithms applied to fuzzy sliding mode controller design[C]. First International Conference on Genetic Algorithms in Engineering System: Innovations and Applications, 1995: 220-225.
    [48] Lin F. J., Chou W. D.. An induction motor servo drive using sliding-mode controller with genetic algorithm[J]. Electric Power Systems Research, 2003, 64(2): 93-108.
    [49] Zhang C. F., Wang Y. N., He J., et al. GA-NN-integrated sliding-mode control system and its application in the printing press[J]. Control Theory & Applications, 2003, 20(2): 217-222.
    [50] Ha Q. P., Nguyen Q. H., Rye D. C., et al. Fuzzy sliding-mode controller with applications[J]. IEEE Transactions on Industrial Electronics, 2001, 48(1): 38-41.
    [51] Ryu S. H., Park J. H.. Auto-tuning of sliding mode control parameters using fuzzy logic[C]. American Control Conference, 2001: 618-623.
    [52]张天平.自适应模糊变结构控制器的一种新设计[J].控制与决策,2000,15(6):678-681.
    [53]孙宜标,郭庆鼎,孙艳娜.基于模糊自学习的交流直线伺服系统滑模变结构控制[J].电工技术学报,2001,16(1):52-56.
    [54] Furuta K., Pan Y.. Variable structure control with sliding sector [J]. Automatica , 2000 ,36 :211 - 228.
    [55] Xu J. X., Lee T. H., Wang M., et al. Design of variable structure controllers with continuous switching control[J]. International Journal of Control, 1996,65(3): 409-431.
    [56] Yang D. Y., Yamane Y., Zhang X. J., et al. Anew method for suppressing high-frequency chattering in sliding mode control system[C]. Proceedings of the 36th SICE Annual Conference, 1997: 1285-1288.
    [57] KonnoY. Hashmoto H.. Design of sliding mode dynamics in frequency domain[C]. IEEE Workshop on Variable Structure and Lyapunov Control of Uncertain Dynamical Systems, 1992: 120-125.
    [58] Edwards C.. A practical method for the design of sliding mode controllers using linear matrix inequalities[J]. Automatica, 2004,1-9.
    [59] Utkin A., Guldner J., Shi J. X.. Sliding Mode Control in Eletromechanical Systems[M]. Taylor & Francis, 1999.
    [60] Barambones O., Garrido A. J.. A sensorless variable structure control of induction motor drives[J]. Electric Power Systems Research, 2004, 72(1):21-32.
    [61] Yu X. H., Xu J. X.. Advances in Variable Structure Systems[M]. World Scientific Publishing, Singapore, 2000.
    [62] Emanuele Guglielmino, Kevin A. Edge. A controlled friction damper for vehicle applications[J]. Control Engineering Practice, 2004, 12: 431-443.
    [63] Liaw D. C., Liang Y. W., Cheng C. C.. Nonlinear Control for Missile Terminal Guidance[J]. Journal of Dynamic Systems, Measurement, and Control, 2000, 122: 663-668.
    [64] Yeh F. K., Chien H. H., Fu L. C.. Design of optimal midcourse guidance sliding-mode control for missiles with TVC[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 824-837.
    [65] Wen-Hou Chu, Pi-Cheng Tung. Development of an automatic arc welding system using a sliding mode control[J]. International Journal of Machine Tools & Manufacture, 2005, 45: 933-939.
    [66]张克勤,苏宏业,庄开宇,等.三级倒立摆系统基于滑模的鲁棒控制[J].浙江大学学报, 2002, 36(40): 404-409.
    [67] Chen Y. P., Chang J. L., Chu S. R.. Pc-based sliding-mode control applied to parallel-type double inverted pendulum system[J]. Mechatronics, 1999, 9: 553-564.
    [68]阎平凡,张长水.人工神经网络与模拟进化算法[M].北京:清华大学出版社,2005.
    [69]丛爽.神经网络、模糊系统及其在运动控制中的应用[M].合肥:中国科学技术大学出版社,2001.
    [70]徐丽娜.神经网络控制[M].哈尔滨:哈尔滨工业大学出版社,1999.
    [71] Lin F. J., Wai R. J.. Sliding-Mode-Controlled Slider–Crank Mechanism with Fuzzy Neural Network[J]. IEEE Transactions on Industrial Electronics, 2001, 48(1): 60-70.
    [1] Cao Qixin,Huang Yanwen,Zhou Jingliang. An Evolutionary Artificial Potential Field Algorithm for Dynamic Path Planning of Mobile Robot[C],2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006:3331-3336.
    [2] Moshaiov A.,Avigad G.. The Extended Concept-based Multi-objective Path Planning and its A-life implications[C],IEEE Symposium on Artificial Life, 2007:259-265.
    [3]戴光明,避障路径规划的算法研究[D],武汉:华中科技大学博士论文,2004.
    [4] Chen J., Li-Ren Li. Path planning protocol for collaborative multi-robot systems,2005 IEEE International Symposium on Computational Intelligence in Robotics and Automation, 2005: 721– 726.
    [5]丁学恭,机器人控制研究[M],浙江:浙江大学出版,2006.
    [6] Shou-Tao LI, Yuan-Chen LI. Neuro/Fuzzy Behavior-Based Control of a Mobile Robust in Unkown Environments[C],IEEE Proceedings of Third International Conference on Machine Learning and Cybemetics, Shanghai, August 2004:26-29.
    [7]石鸿雁,孙昌志,陈冬阳等.动态环境下自主移动机器人的导航复杂性[J].沈阳工业大学学报,2006,28(5):534-537.
    [8] Shuzhi Sam Ge, Xue-Cheng Lai, Abdullah Al Mamun. Sensor-based path planning for nonholonomic mobile robots subject to dynamic constraints[J]. Robotics and Autonomous Systems , 2007, 55: 513–526.
    [9] Oommen B., Iyengar S., Rao N., et al. Robot navigation in unknown terrains using learned visibility graphs, PartⅠ:The disjoint convex obstacle case[J]. IEEE Journal of Robotics and Automation, 1987, 3(6): 672~681.
    [10] Khatib O. Real-time obstacle avoidance for manipulators and mobile robots[J]. International Journal of Robotic Research, 1986, 5(1): 90-98.
    [11]艾海舟,张钹,基于拓扑的路径规划问题的图形解法[J],机器人,1990,5:20~24.
    [12] Liu Y H, Arimoto S. Computation of the tangent graph of polygonal obstacles by moving-line processing[J], IEEE Transactions on Robotics and Automation, 1994, 10(6): 823~830.
    [13]马兆青,袁曾任,基于栅格方法的移动机器人实时导航和避障[J],机器人,1996,18(6):344~348.
    [14] Latombe J C. Robot Motion Planning[M]. Boston, MA: Kluwer.1991.
    [15] J. Borenstein, Y. Koren. Real-time Obstacle Avoidance for Fast Mobile Robots[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1989, 19(5): 1179-1187.
    [16] Luca Schenato, Domenico Campolo, Shankar Sastry. Controllability issues in flapping flight for biomimetic Micro Aerial Vehicles(MAVs) [C],Proceedings of the 42nd IEEE International Conference on Decision & Control, Maui, Hawaii, USA. 2003: 6441-6447.
    [17] Y. Koren, J. Borenstein. Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation[C], Proceedings of the IEEE Conference on Robotics and Automation, Sacramento, California, April 7-12, 1991: 1398-1404.
    [18]肖本贤,余雷,李善寿等.逃逸人工势场法局部极小值策略的研究[J],系统仿真学报,2007,19(19):4495-4498.
    [19] J. Borenstein, Y. Koren. Real-time Obstacle Avoidance for Fast Mobile Robots[J], IEEE Transactions on Systems, Man, and Cybernetics, 1989, 19(5): 1179-1187.
    [20]方华京,魏然.人工势场法在多机器人运动中的研究[J],控制工程,2007,14(2):115-117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700