用户名: 密码: 验证码:
药用植物金荞麦辐射诱变的早期选择及分子标记鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金荞麦(Fagopyrum dibotrys(D.Don)Hara),为蓼科(Polygonaceae)荞麦属(Fagopyrum)多年生草本植物,其根茎具有清热解毒、消肿止痛、治疗肺癌等功效。由于过度盲目采挖以及生态环境污染等,野生金荞麦资源遭到毁灭性破坏,1999年列入《国家重点保护野生植物名录(第一批)》中。进行优良品种选育,创造新的种质资源成为金荞麦资源可持续发展的关键。辐射处理具有较高的突变频率,诱发植物的体细胞发生变异,经无性繁殖遗传给后代,后代性状稳定快,育种周期缩短,成为获得新种质资源的有效途径之一。
     本研究首次对北京地区引种的江苏产地金荞麦(绿茎)的根茎进行~(60)Co-γ射线辐射,辐射剂量分别为0、5、10、15、20和30Gy,剂量率2.005Gy/min。在M_2代辐射剂量分别为5、10、15和20Gy的处理中,获得红茎突变株,并在本生长季进行扦插繁殖。从中选择生长健壮的绿茎和红茎植株,对不同发育时期(苗期、生长期和开花期)的农艺性状、光合特性、生理指标变化及有效成分含量差异等方面进行分析评价,研究辐射处理对金荞麦生长发育的影响,并利用AFLP分子标记进行植株的遗传多态性分析。研究结果概括如下:
     1农艺性状分析
     辐射效应对不同类型金荞麦的生物学效应具有很大差异,绿茎植株的开花期较对照提前,且单株根茎干重提高;红茎植株的开花期则相对滞后且单株根茎干重降低。辐射除对两类金荞麦(绿茎、红茎)的株高具有明显抑制作用外,各时期的一级分枝数、主茎节数、叶柄长和叶面积等性状影响差异不显著。
     2光合特性研究
     绿茎植株不同发育时期的叶绿素a、叶绿素b及总叶绿素含量均高于对照,红茎植株各时期的叶绿素含量随辐射剂量增强而逐渐减少;两类会荞麦的类胡萝卜素含量分别与各自的叶绿素含量变化趋势相反。辐射对绿茎植株的叶绿素a/b无明显影响,红茎植株的叶绿素a/b增加。
     两类金荞麦的净光合速率P_n、气孔导度G_s和水分利用效率WUE随辐射剂量增强而逐渐降低,蒸腾速率T_r值则逐渐升高。胞间CO_2浓度C_i随辐射剂量增强而逐渐降低。这表明辐射处理对金荞麦光合作用的限制主要是由气孔限制因素引起的。
     两类金荞麦苗期和生长期的初始荧光F_o、原初光能转换效率F_v/F_m、光化学量子效率φPSⅡ、电子传递速率ETR和光化学猝灭系数qP逐渐降低,而开花期呈升高趋势。各时期非光化学猝灭系数NPQ显著提高,通过热耗散作用保护光合机构。
     同一辐射剂量内,绿茎植株各时期的叶绿素含量均高于红茎植株,类胡萝卜素仅开花期较高。绿茎植株苗期和生长期的P_n、、F_o、F_v/F_m和qP均高于红茎植株,开花期各参数值较低。NPQ在各时期均表现为红茎植株较高于绿茎植株。
     3生理指标测定
     细胞膜透性、过氧化物酶活性和类黄酮含量等是衡量植物在辐射胁迫条件下抗性强弱的重要生理指标。辐射处理导致金荞麦的质膜透性加大,膜脂质过氧化,MDA含量增加。SOD、CAT、APX、GR酶活性和类黄酮含量均显著高于对照,保护膜系统减少活性氧危害。除SOD、POD、CAT和花青素含量在个别时期随辐射剂量增强而逐渐降低外,其它指标均随辐射剂量增强而逐渐升高。
     同一辐射剂量内,SOD、类黄酮、质膜透性各时期均表现绿茎植株较高,GR变化趋势相反;POD、APX酶活性苗期和生长期时绿茎植株较高,CAT变化趋势相反。MDA、花青素含量表现苗期和开花期绿茎植株较高,生长期各指标含量降低。
     4有效成分含量研究
     辐射处理对金荞麦的有效成分含量具有显著影响,绿茎植株除15Gy与对照无差异外,其它处理与对照之间的(-)-表儿茶素含量均达到极显著差异(p<0.01)。红茎植株除5Gy外,其它处理的(-)-表儿茶素含量与对照均达到极显著差异(p<0.01)。本试验中,作为研究对象的辐射处理植株的(-)-表儿茶素含量均高于对照,其中红茎植株15Gy的(-)-表儿茶素含量最高达到0.1027%,绿茎植株20Gy的(-)-表儿茶素含量最高为0.0841%。这表明利用辐射处理对金荞麦进行(-)-表儿茶素含量的改良是可行的。
     5 AFLP分子鉴定
     利用AFLP技术能在早期从分子水平上对金荞麦辐射后代进行鉴定和选择,提高育种效率。8对引物组合共扩增出944条清晰可辨的带,其中700条为多态性带,平均多态性位点为73.99%。用UPGMA法进行聚类分析,相似系数在0.74~0.87之间。辐射后金荞麦植株的基因组变异程度与辐射剂量成正相关,即随辐射剂量增强,植株的变异程度逐渐增加。
     总之,金荞麦通过降低光合色素含量、提高抗氧化酶活性及生理物质含量等方式调节并适应辐射处理的伤害。辐射处理不仅提高金荞麦的有效成分含量,还能增加种质的遗传多态性。辐射诱变技术的应用,为金荞麦的新品种选育工作开拓崭新的领域,对于提高中药材的产量和质量具有重要意义。
Buckwheat(Fagopyrum dibotrys(D.Don.) Hara.),an erect perennial herb of Polygonaceae,whose rhizome is a traditional folk medicine for treatment of lung abscess, dysentery,rheumatism and tumefaction.It had been one of the "List of National Key Conservative Wild Plants in China(the first group) "because of destruction by blind harvest and environment pollution.γray had been one of the most efficient ways to create mutants in plants,with the advantages of convenient operation,short cycle and high somatic mutation.
     Buckwheat rhizomes of Beijing introduced from Jiangsu of green stem were radiated byγray with dosage of 0,5,10,15,20 and 30Gy at rate of 2.005Gy/min.Red stem mutants were induced in 5,10,15 and 20Gy of M_2 genenration.Agronomic traits, photosynthesis and chlorophyll fluorescence,antioxidative enzymes and(-) epicatechin of selected green and red plants were analyzed in the paper,and AFLP technology was applied for genetic diversity.Results showed as followed:
     (1) Radiation enhanced the flowering and root yield of green stem buckwheat,while delayed those of red mutant.In addition to the obvious inhibition of plant height,there were no significant effect on the other agronomic traits,such as number of branches, number of main stem,petiole length and leaf area during all period.All traits of green plant were larger than red mutant except for petiole length under the same radiation dose.
     (2) Chl a,Chl b and Chl a+b of green buckwheat were higher compared with control,while those of red mutant lowered,both decreasing with elevating dose ofγray.Car content of both green and red buckwheat was contrasted to Chl content,respectively.There was no significant effect on Chl a/b of green buckwheat,but that of red mutant increased byγradiation.
     P_n,Gs and WUE of both buckwheat reduced while Tr increased byγray,and Ci decreased withγray increasing,which showed that leaf photoinhibition was the result of stomatal limitations.
     Fluorescence parameters,such as F_o,F_v/F_m,ΦPS2,ETR and qP declined significantly as compared with control due to leaf photoinhibition during seedling and growth stage, while enhanced in flowing.NPQ increased significantly to protect PS2 by enhancing thermal dissipation during all period.
     Chlorophyll content of green buckwheat was higher than red mutant during all period, carotenoids just higher in flowering period under the same radiation dose.P_n,F_o,F_v/F_m and qP of green buckwheat were higher than those in red mutant in seedling and growth stage, while lower in flowering period.NPQ of red mutant were higher than green one on the whole period.
     (3) Membrane permeability,antioxidative enzyme and flavonoids are the significant index resistant to radiation.Membrane permeability was accelerated byγradiation,and MDA content increased as the result of membrane oxidation.The physiological index,such as SOD,CAT,APX,GR and flavonoids were significantly higher than those in control. Except that SOD,POD,CAT and anthocyanin content decreased in some period,others increased gradually with rising dose ofγray.
     Membrane permeability,SOD and flavonoids of red mutant were higher than those in green during all period under the same radiation dose,that opposited to GR.POD and APX of green buckwheat were higher than those of red mutant in seedling and growth period, while decreased in flowering period;that were contrary to CAT.MDA and anthocyanin of green buckwheat were higher than those of red mutant in seedling and flowering period, while decreased in growth period.
     (4) Active ingredient of buckwheat was affected significantly by radiation treatment.There was significant difference between that of green buckwheat and control except for 15Gy (p<0.01),and between red mutant and control except for 5Gy(p<0.01).(-)-epicatechin content of plant radiated byγray was higher compared with control,with high value of 0.0841%in 20Gy of green buckwheat and 0.1027%in 15Gy of red mutant.It was feasible to improve(-)-epicatechin content of buckwheat byγradiation.
     (5) AFLP technology was applied in mutant identification and selection to improve the breeding efficiency at the early stage.944 pieces of clear bands were amplified by 8 pairs of primers combinations,of which 700 were polymorphic with an average polymorphism site of 73.99%.UPGMA showed the resemble index from 0.74 to 0.87.Genome variation of buckwheat was positive related to radiation dose.
     In conclusion,buckwheat adapted to radiation injury through lower chlorophyll content,higher antioxidative enzyme and active ingredient content.(-) epicatechin content and genetic diversity increased byγradiation.The application ofγradiation opened new field for medicinal plants variety selection,and had great significance in yield and quality improvement.
引文
[1]艾群,王斌,王国清.金荞麦制剂的抑菌研究[J].黑龙江医学,2002,26(9):666.
    [2]陈晓锋,顾振纶.金荞麦抗肿瘤作用研究进展[J].中草药,2000,31(9):715-718.
    [3]陈玉霞,张朝成,严志刚,等.水稻植株生殖细胞发育时期辐照与育性研究[J].核农学报,1999,13(1):55-58.
    [4]陈云飞,强继业.γ-射线辐照对植物保护性酶活性和MDA含量的影响[J].安徽农业科学,2006,34(10):2034-2035.
    [5]程茂高.东亚飞蝗Locustam igratoriam anilensis(Meyen)不同种群和不同体色的分子多态性研究[D].河南农业大学,2005.
    [6]程荣花,邓菊芬,吴维群,等.~(60)Co-γ射线对白三叶种子发芽影响的研究[J].草业与畜牧,2006,7:17-20.
    [7]冯建灿,胡秀丽,毛训甲.叶绿素荧光动力学在研究植物逆境生理中的应用[J].经济林研究,2002,20(4):14-18.
    [8]郭交熙,范家淼,杨保安,等.菊花花色辐射诱变效应研究[J].核农学报,1997,11(2):65-73.
    [9]高健,彭镇华.~(60)Co-γ射线辐射中国水仙的细胞学诱变效应[J].激光生物学报,2006,15(2):179-183.
    [10]郭连旺,沈允钢.高等植物光合机构避免强光破坏的保护机制[J].植物生理学通讯,1996,32(1):1-8.
    [11]国家药典委员会.《中华人民共和国药典》2005年版一部[M].北京:化学工业出版社,2005.
    [12]国家中医药管理局《中华本草》编委会.中华本草[M].上海:上海科学技术出版社,1999,629-632.
    [13]海棠,马鹤林.草木樨不同种对~(60)Co-γ射线敏感性及生物学效应的研究[J].内蒙古草业,1991,1:22-24.
    [14]何显忠.金荞麦的药理作用和临床应用[J].李时珍国医国药,2001,12(4):316-317.
    [15]洪亚辉,朱兆海,张学文,等.运用RAPD分析菊花辐射后代遗传变异[J].湖南农业大学学报(自然科学版),2003,29(6):462-467.
    [16]候建华,耿庆汉.荞麦愈伤组织培养及分化研究[J].内蒙古农牧学院学报,1995,16(3):21-25.
    [17]胡超,洪亚辉,黄丽华,等.菊花辐射后代生理生化特性的研究[J].湖南农业大学学报(自然科学版),2003,29(3):471-473.
    [18]黄建吕,肖艳.~(60)Co-γ射线与GA_3复合处理对番木瓜的遗传诱变效应研究[J].核农学报,2003,17(5):332-335.
    [19]黄燕,蔡业峰,缪晓路.任继学教授论治“非典型肺炎”[J].长春中医学院学,2003,19(2):1-2,34.
    [20]惠红霞,许兴,李前荣.外源甜菜碱对盐胁迫下枸杞光合功能的改善[J].西北植物学报,2003,23(12):2137-2422.
    [21]贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1996,29(4):1-10.
    [22]贾月慧,张克中,赵祥云,等.辐射亚洲百合"Pollyanna"雄性不育突变体的RAPD分析[J].核农学报,2005,19(1):29-32.
    [23]金红,贾敬芬,郝建国.荞麦高频离体再生及发根农杆菌转化体系的建立[J].西北植物学报,2002,22(3):611-616.
    [24]鞠志国,原永兵,刘成连,等.苹果果皮中酚类物质合成规律的研究[J].莱阳农学院学报,1992,9(3):222-225.
    [25]金清波.作物育种知识讲座[J].生物学通报,1996,31(1):28-31.
    [26]雷晓,强继业.~(60)Co-γ射线辐射对车前草六项生理指标的影响[J].种子,2005,1(24):17-18.
    [27]李安仁.中国植物志[M].北京:科学出版社,1998,25(1):108-117.
    [28]李成东,黄正芳.金荞麦栽培技术的研究[J].中国中药杂志,1997,22(12):726-728.
    [29]李春秋,祁永红,杨建刚,等.~(60)Co-γ射线慢照射处理玉米不同生育期的活体植株及其诱变效果的研究初报[J].黑龙江农业科学,1993,5:25-28.
    [30]李海渤,袁美.作物杂种优势预测研究进展[J].河南农业科学,2004,12:30-33.
    [31]李合生主编.植物生理生化实验原理与技术[M].北京:高等教育出版社,2000.
    [32]李晓林,郭诚,梁国鲁,等.~(60)Co-γ辐射对小苍兰生长发育及酯酶同工酶的影响[J].西南农业大学学报(自然科学版),2005,27(3):840-843.
    [33]梁红,刘胜洪,欧利叶.银杏幼苗耐辐射性初步研究[J].核农学报,2001,15(4):219-223.
    [34]林洪生.金荞麦抗肿瘤研究进展[J].中西医结合学报,2004,2(1):72-74.
    [35]林汝法.中国荞麦[M].北京:农业出版社.1994.
    [36]刘光德,祝钦泷,郭余龙,等.资源植物金荞麦高类黄酮含量愈伤系的获得及其cDNA文库的构建[J].农业环境科学学报,2006,25(6):1679-1684.
    [37]刘铁城,刘惠卿.金荞麦的引种栽培与类型选择[J].中草药,1993,16(1):5-7.
    [38]刘彦中,吴道慧,王忠跃,等.~(60)Co-γ射线辐射对长寿花某些生理指标的影响[J].安徽农业科学,2006,34(20):5205,5207.
    [39]卢圣栋.现代分子生物学实验技术(第二版)[M].北京:中国协和医科大学出版社,1999.
    [40]罗景桂.放射生物学[M].北京:中国农业出版社,1996.
    [41]吕桂兰,张荫麟,李英,等.金荞麦营养成份的研究:Ⅰ.全草及制剂中微量元素含量比较研究[J].中国兽药杂志,1995,29(3):22-23.
    [42]吕桂兰,张荫麟,李英,等.金荞麦营养成分的研究:Ⅱ.金荞麦不同部位及制剂中蛋白质氨基酸及分析[J].中国兽药杂志,1996,30(1):19-21.
    [43]潘瑞炽,董愚得.植物生理学[M].北京:高等教育出版社,1995.
    [44]彭勇,孙载明,肖培根.金荞麦的研究与开发[J].中草药,1996,27(10):629-631.
    [45]Pui-Kwong Chan.金荞麦体外抑制肿瘤细胞生长的研究[J].中西医结合学报,2003,1(2):128-131.
    [46]强继业.陈宗瑜.~(60)Co-γ射线辐射对滇特色花卉生长速率及叶绿素含量的影响[J].中国生态农业学报,2003,11(4):21-23.
    [47]覃新程,王飞,王晓娟,等.~(60)Co-γ射线与EMS复合处理对山黧豆抗氧化酶活力及ODAP含量的影响[J].应用生态学报,2000,11(6):957-958.
    [48]申慧芳,李国柱.~(60)Co-γ射线对苦荞干种子辐射效应的研究[J].山西农业大学学报,2002,22(4):338-341.
    [49]沈晓霞,王志安,俞旭平,等.γ射线对薏苡诱变效应的初步研究[J].中国中药杂志,2007,32(11):1016-1018.
    [50]沈永宝,施季森.银杏、板栗不同组织DNA的提取[J].南京林业大学学报,2001,25(6):80-82.
    [51]盛明智.金荞麦的栽培与商品化开发[J].现代医药卫生,2005,21(1):81-82.
    [52]宋道军,陈若雷,尹若春,等.粒子束介导植物分子超远缘杂交研究[J].自然科学进展,2001,11(3):327.
    [53]宋立人,丁绪亮,洪恂,等.现代中药大辞典[M].北京:北京人民卫生出版社,2001.
    [54]宋英凯,孔繁春,王仲青.普通荞麦花药培养植株再生获得成功[J].华北农学报,1991,2:107.
    [55]苏重娣.月季辐射诱变育种研究[J].激光生物学,1995,4(4):748-750.
    [56]孙君灵,杜雄明,孙其信,等.棉花γ射线诱变后代的SSR标记遗传多样性[J].中国农业科学,2006,39(10):1967-1976.
    [57]唐传核,彭志英.类黄酮的最新研究进展(Ⅰ)-抗氧化研究[J].中国食品添加剂,2001,5:12-17.
    [58]唐宁,赵钢,曾显斌.~(60)钴-γ射线诱发突变改良苦荞的研究[J].西昌农业高等专科学校学报,2003,17(4):1-3.
    [59]田磊,徐丽珍,杨世林.金荞麦地上部分化学成分的研究[J].中国中药杂志,1997,22(12):743.
    [60]田砚亭,刘青林,吴涤新.鸢尾属花卉辐射敏感性比较[J].西北植物学报,1994,14(4):267-272.
    [61]王安虎,戴红燕.~(60)Co-γ射线辐射苦荞麦种子的诱变效应研究[J].作物杂志,2005,6:140-142.
    [62]王宝山,王兴军,姚敦义.~(60)Co-γ射线处理对木槿愈伤组织膜伤害机理的探讨[J].核农学通报,1992,13(4):161-163.
    [63]王莉花,殷富有,刘继梅,等.利用RAPD分析云南野生荞麦资源的多样性和亲缘关系[J].分子植物育种,2004,2(6):807-815.
    [64]王继锋,王石泉,汤国枝,等.山楂原花色素的抗氧化作用研究[J].天然产物研究与开发,2001,13(2):46-49.
    [65]王秀娥,陈佩度,周波,等.小麦-大赖草易位系的RFLP分析[J].遗传学报,2001,28(12):1142-1150.
    [66]王玉萍,刘庆吕,李爱贤,等.慢照射与茎尖培养相结合筛选甘薯同质突变体[J].作物学报,2002,28(1):18-23.
    [67]王忠芬,闰树林,苏学合.~(60)Co-γ射线辐照菘蓝种子的生物学效应[J].核农学报,2006,20(1):47-48.
    [68]温平,赵资智,朱永亮,等.菊花电子束辐射诱变育种的研究[J].核农学通报,1992(3):113-115.
    [69]温贤芳.中国核农学[M].郑州:河南科学技术出版社,2001,763-767.
    [70]翁伯琦,徐国忠,郑向丽,等.~(60)Co-γ射线辐照处理对决明若干生长特性的影响[J].热带作物学报,2005,26(2):94-99.
    [71]吴殿星,夏英武,舒庆尧.辐射诱变和组织培养复合育种技术的研究进展[J].中国农学通报,1994,10(6):20-22.
    [72]吴惠群,李光德.金荞麦生态环境研究[J].云南师范大学学报,1994,14(4):102-109.
    [73]吴清,向素琼,阎勇,等.金荞麦的离体快繁及同源四倍体的诱导[J].西南农业大学学报,2001,23(2):108-110.
    [74]席玙芳,钱冬梅,边其均,等.γ辐照对洋葱生长点细胞微结构的影响[J].科技通报,1993,9(5):326-329.
    [75]夏明忠,华劲松,戴红燕,等.光照、温度和水分对野生荞麦光合速率的影响[J].西昌学院学报(自然科学版),2006,20(2):1-4.
    [76]夏英武,吴殿星,舒庆尧.植物诱变育种技术的研究进展及其新的领域[J].核农学通报,1995,16(1):39-42.
    [77]徐冠仁主编.植物诱变育种学[M].北京:中国农业出版社,1996.
    [78]熊大胜,朱金桃,张自亮,等.三叶木通理化诱变技术及其成熟期变异研究[J].常德师范学院学报(自然科学版),2001,13(4):79-81.
    [79]徐明照,郭宁,张永凤,等.~(60)Co-γ射线辐照玉米种子对基因组DNA分子的影响[J].激光生物学报,2007,16(3):276-278.
    [80]闫芳芳,强继业.~(60)Co-γ射线辐射对红掌儿种酶活性及.MDA含量的影响[J].云南农业大学学报,2006,21(5):690-692.
    [81]叶力勤.小剂量~(60)Co-γ射线辐照对甘草单株根茎干重及品质的影响[J].核农学通报,1997,18(6):267-269.
    [82]叶挺梅,强继业,秦文弟,等.~(60)Co-γ射线辐射对芦荟生理指标的影响[J].安徽农业科学,2005,33(2):234-235.
    [83]叶春海,丰锋,吕庆芳,等.香蕉~(60)Co-γ辐射诱变效应的研究[J].西南农业大学学报,2000,22(4):301-303.
    [84]尹迪信,唐华彬,罗红军,等.野生牧草金荞麦与贵州省推广牧草栽培效益比较试验初报[J].草业科学,2006,23(7):45-48.
    [85]尹淑霞.空间飞行与γ射线辐射对草坪草诱变效应研究[D].北京中国林业科学研究院林业研究所,2005.
    [86]曾骧.果树生理学[M].北京:北京农业大学出版社,1992,259-264.
    [87]张华,曹日强,杨永华.γ-射线对滇紫草细胞产生色素的影响[J].植物资源与环境,1990,8(1):42-45
    [88]张克中,赵祥云,陆长旬,等.辐射百合雄性不育突变体的RAPD分析[J].林业科学研究,2003,16(3):372-375.
    [89]张美萍,王义,孙春玉,等.辐照西洋参培养物皂苷次生代谢凋控的研究[J].核农学报,2003,17(3):207-211.
    [90]张荫麟,吕桂兰.金荞麦发状根培养的研究[J].植物学报,1992,34(8):603-608.
    [91]张政,王转花,刘凤艳,等.苦荞蛋白质复合物的营养成分及其抗衰老作用的研究[J].营养学报,1999,21(2):159-162.
    [92]赵德修,汪沂,赵敬芳.不同理化因子对雪莲培养细胞中黄酮类形成的影响[J].生物工程学报,1998,14(3):251-264.
    [93]赵钢,唐宇,王安虎.金荞麦的营养成分分析及药用价值研究[J].中国野生植物资源,2002,21(5):39-41.
    [94]赵孔南.植物辐射遗传育种研究进展[M].北京:原子能出版社,1990.
    [95]赵佐成,周明德,罗定泽,等.中国荞麦属果实形态特征[J].植物分类学报,2000,38(5):486-489.
    [96]郑海柔,叶正文,苏明申,等.酸枣(Zizyphus jujuba Mill)组织培养结合~(60)Co-γ射线辐照诱发突变株[J].上海农业学报,2004,20(1):13-18.
    [97]周立人,吴雪琴,魏晓飞,等.~(60)Co-γ射线辐照不同麻种种子的细胞学效应[J].安徽农业大学学报,2003,30(1):10-14.
    [98]庄楚雄,胡维民,梅曼彤.高能重离子辐射诱导水稻半矮生突变株系的RFLP分析[J].核农学报,1997,11(2):74-78.
    [99]Aladjadjiyan A.The use of physical methods for plant growing stimulation in Bulgaria[J].Journal of Central European Agriculture,2007,8(3):369-380.
    [100]Anderson JM,Aro EM.Grana stacking and protection of photosystem Ⅱ in thylakoid membranes of higher plant leaves under sustained high irradiance:a hypothesis[J].Photosynthesis Research,1994,41:315-326.
    [101]Asada K.The water-water cycle in chloroplasts:scavenging of active oxygens and dissipation of excess photons[J].Annu Rev Plant Physiol Plant Mol Biol,1999,50:601-639.
    [102]Bader MR,Ruuska S,Nakano H.Electron flow to oxygen in higher plants and algae:rates and control of direct photoreduction(Mehler reaction) and Nabisco oxygenase[J].Biological Sciences,2000,1402:1433-1445.
    [103]Barata RM,Chapparro A,Chabregas SM,et al.Targeting of the soybean leghemoglobin to tobacco chloroplasts:Effects on aerobic metabolism in transgenic plants[J].Plant Sci,2000,155(2):193-202.
    [104]Bowler C,Montagu MV,Inze D.Superoxide dismutase and stress tolerance[J].Annual Review of Plant Physiology and Plant Molecular Biology,1992,43:83-116.
    [105]Cecchini E, Mulligan BJ, Covey SN. Characterization of gamma irradiation-induced deletion mutations at a selectable locus in Arabidopsis [J]. Mutation Research, 1998,401(1-2): 199-206.
    [106]Celso LSL, Maria AE. Developmental changes induced by y irradiation in ipomoea batatas L.Lam (Sweet Potato) [J]. Radiation Research, 1992, 132(2): 237-241.
    [107]Chowdhury MR and Johri JK. Seasonal variations in chlorophyll content and chlorophyllase activity in Bangla and Mitha varieties of Betelvine (piper betle L.) grown in different soil treatments [J]. Nat. Bot. Res. Inst. 2003.
    [108]Chung BY, Lee YB, Baek MH, et al. Effects of low-dose gamma-irradiation on production of shikonin derivatives in callus cultures of Lithospermum erythrorhizon S [J]. Radiation Physics and Chemistry, 2006, 75(9): 1018-1023.
    [109]Colom MR, Vazzana C. Photosynthesis and PSII functionality of drought-resistant and drought-sensitive weeping lovegrass plants [J]. Environmental and Experimental Botany, 2003, 49:135-144.
    [110]Dalton DA, Hanus FJ, Russell SA, Evans HJ. Purification, properties and distribution of ascorbate peroxidase in legume root nodules [J]. Plant Physiol, 1987, 83: 789-794.
    [111]Demmig-Adams B. Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin [J]. Biochim Biophys Acta, 1990, 1020:1-24.
    [112]Dhindsa RS and Matowe W. Drought tolerance in two mosses: correlated with defense against lipid peroxidation [J]. J Exp Bot, 1981, 32: 79-91.
    [113]Farquhar GD, Sharkey TD. Stomatal conductance and photosyn thesis [J]. Annual Review of Plant Physiology, 1982,33:317-345.
    [114]Fine AM.Oligomeric proanthocyanidin complexes: history, structure and phytopharmaceutical applications [J]. Altern Med Rev, 2000, 5(2): 144-151.
    [115]Fukuzawa KY, Inokami A, Tokumura JT, et al. Rate constants for quenching singlet oxygen and activities for inhibiting lipid peroxidation of carotenoids and alpha-tocopherol in liposomes [J].Lipids, 1998,33:751-756.
    [116]Genty B, Briantais JM, Baker NR. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence [J]. Biochim Biophys Acta, 1989,990:87-92.
    [117]Goldbach HE. A critical review on current hypotheses concerning the role of boron in higher plants: Suggestions for further research and methodological requirements [J]. J Trace and Microprobe Tech, 1997, 15(1):51-91.
    [118]Griffin JJ, Ranney TG, Pharr DM. Photosynthesis chlorophyll fluorescence and carbohydrate content of Illicium taxa grown under varied irradiance [J]. Journal of the America Society for Horticultural Science, 2004, 129(1): 46-53.
    [119]Gundlach H, Muller MJ, Kutchan TM, et al. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures [J]. Proc Natl Acad Sci USA,1992, 89(6):2389-2393.
    [120]Gumerova EA, Galeeva EI, Chuyenkova SA, et al. Somatic embryogenesis and bud formation on cultured Fagopyrum esculentum hypocotyls [J]. Russian Journal of Plant Physiology, 2003, 50(5):640-645.
    [121]Hamidah S, Osman MS, Zainon O, et al. Development of gamma irradiation as a quarantine treatment of mites on cut flowers [J]. Acta Horticulturae, 2006, 710(4): 511-516.
    [122]Hagerman AE, Riedl KM, Jones GA, et al. High molecular weight plant polyphenolics (tannnins) as biological antioxidants [J].Agri Food Chem, 1998,46:1887-1892.
    [123]Holton TA, Cornish EC. Genetics and biochemistry of anthocyanin biosynthesis [J]. Plant Cell,1995,7: 1071-1083.
    [124]Iabal J. Effect of acute gamma irradiation, developmental stages and cultivar differences on growth and yield of wheat and sorghum plants [J]. Environmental and Experimental Botany, 1980,20: 219-232.
    [125]Johnson GN, Young AJ, Scholes JD, et al. The dissipation of excess excitation energy in British plant species [J].Plant Cell and Environment, 1993, 16:673-679.
    [126]KimY, Arihara J, Nakayama T, et al. Antioxidative responses and their relation to salt tolerance in Echinochloa oryzicola Vasing and Setaria virdis (L.) Beauv [J]. Plant Growth Regulation, 2004,44: 87-92.
    [127|Kishima Y, Ogura K, Mizukami K, et al. Chloroplast DNA analysis in buckwheat species:Phylogenetic relationships, origin of the reproductive systems and extended inverted repeats [J].Plant Science, 1995,108:173-179.
    [128]Koca H, Ozdemir F and Turkan I. Effect of salt stress on lipid peroxidation and superoxide dismutase and peroxidase activities of Lycopersicon esculentum and L. pennellii Biologia [J].Plantarum, 2006, 50(4): 745-748.
    [129]Koes RE, Van Blokland R, Quattrocchio F, et al.Chaclone synthase promoters in pentunia are active in pigment and unpigment cell types [J]. Plant Cell, 1990, 2:491-502.
    [130]Kootstra A. Protection from UV-B induced DNA damage by flavonoids [J]. Plant Mol. Biol., 1994,26:771-774.
    [131]Lee HY, Kim JS, Baek MH, et al. Effects of low dose y-radiation on photosynthesis of red pepper (Capsicum annuum L.) and the reduction of photoinhibition [J]. Kor J Environ Agr, 2002, 21:83-89.
    [132]Lichtenthaler HK. Chlorophylls and carotenoids, the pigments of photosynthetic biomembranes [M]. In: Methods in Enzymology, 148, Eds. R. Douce and L. Packer. Academic Press Inc., New York, 1987,350-382.
    [133]Maxwel K, Johnson GN. Chlorophyll fluorescence-A practical guide [J]. J Exp Bot, 2000,51(345):659-668.
    [134]Mepsted R, Paul ND, Stephen J, et al. Effects of enhanced UV-B radiation on pea (Pisum sativum L.) grown under field conditions in the UK [J]. Global Change Biology, 1996,2(4): 325-334
    [135]Mittler R. Oxidative stress, antioxidants and stress tolerance [J].Trends Plant Sci, 2002, 7:405410.
    [136]Mullineaux PM, Creissen GP. Glutathione reductase: Regulation and role in oxidative stress. In:Oxidative stress and the molecular biology of antioxidant defenses [M]. United Kingdom: Cold Spring Harbor Laboratory Press, 1997, 667-712.
    [137]Ohnishi O, Matsuoka Y. Search for the wild ancestor of buckwheat II. Taxonomy of Fagopyrum (Polygonaceae) species based on morphology, isozymes and cpDNA variability [J]. Genes and Genetic Systems, 1996,71: 383-390.
    [138]Ohnishi O. Search for the wild ancestor of buckwheat I. Description of new Fagopyrum (Polygonacea) species and their distribution in China and Himalayan hills [J]. Fagopyrum, 1998,15:18-28.
    [139]Ohsako T, Ohnishi O. Intra and inter-specific phylogeny of wild Fagopyrum (Polygonaceae) species based on nucleotide sequences of noncoding regions in chloroplast DNA[J]. Am J Bot,2000, 87(4):573-582.
    [140]Okamoto H, Tatara A. Effects of low-dose γ-irradiation on the cell cycle duration of barley roots [J]. Environmental and Experimental Botany, 1995, 35(3), 379-388.
    [141]Osmond CB. What is photoinhibition? Some insights from comparisons of shade and sun plants[A].Baker NR, Bowyer JR, et al. Photoinhibition of photosynthesis: from mechanisms to the field[C].Oxford: Bios Scientific Publishers, 1994,1-24.
    [142]Penuelas J, Filella I, Llusia J, et al.Comparative field study of spring and summer leaf gas exchange and photobiology of the Mediterranean trees Quercus ilex and Phillyrea latifolia [J].Journal of Experiment Botany, 1998,49(319):229-238.
    [143]Powell W, Thomas WT, Baird E, et al. Analysis of quantitative traits in barley by the use of amplified fragment polymorphism [J].Heredity, 1997, 79:48-59.
    [144]Sakaki T, Kondo N, Sugahara K. Breakdown of photosynthetic pigment and lipids in spinach leaves with ozone fumigation: role of active oxygen [J]. Physiol Plant, 1983, 59:28-34.
    [145]Sato Y, Murakami T, Funatsuki H. Heat shock-mediated APX gene expression and protection against chilling injury in rice seedlings [J]. Journal of Experimental Botany, 2001, 52:145-151.
    [146]Sharma R, Jana S. Species relationships in Fagopyrum revealed by PCR-based DNA fingerprinting [J]. Theor Appl Genet,2002, 105(2-3):306-312.
    [147]Springob K, Nakajima JI, Yamazaki M, et al. Recent advances in the biosynthesis and accumulation of anthocyanins [J]. Nat Prod Rep, 2003,20: 288-303.
    [148]Sun HW, Ying JW, Clayton GC. Interspecific hybrids with Fagopyrum cymosum in the genus Fagopyrum [J]. Fagopyrum, 1999, 16: 13-18.
    [149]Suvorova GN, Funatsuki H, Temmi F. Phylogenetic relationships among cultivars,species and hybrids in the genus Fagopyrum Mill.assessed by RAPD analysis[J]. Russian Journal of Genetics,1999, 35 (12):1428-1432.
    [150]Suvorova GN. The problem of interspecific cross of F. esculentum Moench × F. cymosum Meissn [J]. Advances in Buckwheat Research, 2001,311-318.
    [151]Takeuchi Y, Kubo H, Kasahara H, et al. Adaptive alterations in the activities of scavengers of active oxygen in cucumber cotyledons irradiated with UV-B [J]. Journal of Plant Physiology, 1996,147: 589-592.
    [152]Vlasuk PA, Manoric AV and Grodzenskil DM. The effect of presowing treatment of seeds with ionizing radiation on plant productivity, in presowing irradiation of seeds of agriculture crops [M].Izd. Akad. Nauk, SSSR, Moscow, 1963,42-45.
    [153]von Caemmerer S, Farqrar GD. Some relationship between the biochemistry of photosynthesis and gas exchange of leaves [J].Planta, 1981, 153: 376-387.
    [154]Vos P, Hoger R, Bleeker M, et al. AFLP: a new technique for DNA fingerprinting [J]. Nucleic Acids Research, 1995, 23(21):4407-4414.
    [155]Vos R. AFLP: a new technique for DNA fingerprint [M]. Nucl. Acids. Res., 1995, 23:4407-4414;Vos P, Kuiper M. AFLP analysis.In: Caetano-Anolles G.Gresshof PW eds. DNA Markers:Protocol, Applications and Overviews.Wiley.1997, 115-131.
    [156]Willekens H, Van Camp W, Van Montagu M, el al.Ozone,sulfur dioxide, and ozone ultraviolet B have similar effect on mRNA accumulation of antioxidant genes in Nicotiana plumbatginifolia [J].Plant Physiol ,1994,106:1007-1014.
    [157]Winkel-Shirley B. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology and biotechnology [J].Plant Physiol, 2001, 126:485-493.
    [158]Wolffk K. RAPD analysis of sporting and chimerism in Chrysanthemum [J]. Euphtica, 1996, 88:159-164.
    [159]Yamane K, Yasui Y, Ohnishi O. Intraspecific cpDNA variations of diploid and tetraploid perennial buckwheat, Fagopyrum cymosum (Polygonaceae) [J]. American Journal of Botany, 2003,90: 339-346.
    [160]Yasui Y, Ohnishi 0. Interspecific relationships in Fagopyrum (Polygonaceae) revealed by the nucleotide sequences of the rbcL and accD genes and their intergenic region [J]. American Journal of Botany, 1998a, 85: 1134-1142.
    [161]Yasui Y, Ohnishi O. Phylogenetic relationships among Fagopyrum species revealed by the nucleotide sequences of the ITS region of the nuclear rRNA gene [J].Genes Gene.Syst, 1998b,73(4):201-210.
    [162]Ye NG, Guo GQ. Classification, origin and evolution of genus Fagopyrum in China. In: Lin R,Zhou M, Tao Y, Li J, Zhang Z eds. Proceedings of the 5~(th) International Symposium on Buckwheat [C]. Taiyuan. Beijing: Chinese Agricultural Publishing House. 1992, 19-28.
    [163]Zheljazkov V, Margina A, Stoeva T. Effect of gamma irradiation on some quantitative and qualitative characteristics in mint and cornmint [J]. Acta Horticulturae, 1996, 426, 381-388.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700