用户名: 密码: 验证码:
天麻素和天麻苷元的体内外代谢和脑靶向性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天麻素(gastrodin,Gas)为名贵药材天麻(Gastrodia elata B1.)的有效单体,具有镇痛、镇静、抗惊厥、抗癫痫,增加脑血流量,保护神经细胞等功能。临床上,广泛用于神经衰弱、眩晕、头痛的治疗及癫痫的辅助治疗。最近发现,Gas对血管性痴呆有效。Gas现有肌注、静滴和口服制剂,其中注射液最为常用。
     脑是Gas的作用靶器官,由于其为水溶性药物,透过血脑屏障比较困难。早期有人认为,Gas本身并无中枢作用,而是其代谢产物天麻苷元(gastrodigenin,p-hydroxybenzyl alcohol,HBA)在起作用;后来发现,Gas和HBA都对神经有保护作用,有利于记忆的巩固和恢复,具有抗氧化和清除自由基等活性。Gas注射后入脑的量比较少,临床上为达到治疗效果,给药量比较大。另外,因Gas代谢迅速,大多在2小时内排泄,为维持疗效,临床使用时需频繁给药。虽然动物毒性试验表明Gas的毒性较低,但是频繁注射给药会增加病人的痛苦,口服给药时也有恶心等胃肠道副反应。
     Gas是作用于脑部而发挥药效的药物,所以对其进入脑部的量及在脑部的分布、代谢的研究尤为重要。至今,有关这方面的报道很少。为此,本工作较系统地研究了Gas的体内外代谢、脑药动学和提高其脑靶向性的给药方法,并对其代谢产物HBA的脑药动学及两者的细胞转运特性也进行了研究。
     1.天麻素在大鼠脑、肝、肾及脑不同区域组织匀浆中的代谢
     (1)天麻素在大鼠脑、肝、肾组织匀浆中的代谢
     采用Sprague-Dawley(SD)雄性大鼠的脑、肝、肾组织匀浆,研究了Gas在这些组织匀浆中的代谢特征。建立了高效液相色谱测定方法,分析柱:C18column(Diamonsil,4.6 min×250mm,5μm,Dikma);流动相:乙腈—水(2.5:97.5,v/v);流速:1.0 mL/min;检测波长:221 nm;柱温:33℃。方法对检测HBA的专属性较好,HBA在0.30—18.96μg/mL脑组织匀浆、0.30—9.48μg/mL肝组织匀浆、0.59—75.86;μg/mL肾组织匀浆的浓度范围内有良好的线性关系(n=3,r~2>0.999)。HBA在三种组织匀浆中的日内精密度均小于9.6%,日间精密度均杏?2.1%,准确度为97.5%—106.9%,脑、肝、肾组织匀浆中HBA的定量下限分别为0.290±0.045μg/mL,0.307±0.030μg/mL,0.627±00.047μg/mL(n=5)。稳定性良好。
     Gas在SD雄性大鼠组织匀浆中的体外代谢研究表明,Gas的代谢产物为HBA,其在大鼠脑、肝和肾匀浆中的生成速率常数分别为0.0305、0.0121和0.1409μg/mL/min。Gas在大鼠脑、肝和肾匀浆中的清除率分别为29.7±2.1、10.4±0.8和299.5±22.7 L/min/g(×10~(-6))。Gas在脑、肝匀浆中代谢较慢,在肾匀浆中能被迅速代谢。
     (2)天麻素在大鼠脑不同区域组织匀浆中的代谢
     研究了Gas在大鼠脑组织不同区域(小脑、丘脑、脑桥与延脑、脑皮层、海马区、纹状体)匀浆中的代谢特征。
     结果表明:Gas被代谢生成HBA的反应速度常数以小脑、脑桥与延脑、丘脑三个区比较高,皮层、纹状体、海马三个区比较低,前者为后者的约1.5倍。Gas在大鼠小脑、丘脑、皮层中的清除率分别为45.9±7.4、39.6±5.6和24.4±3.0 L/min/g(×10~(-6))。
     体外实验结果表明Gas在非酶体系中稳定,在肝、肾、脑组织匀浆中Gas可被代谢为HBA,在组织中的代谢,以肾最快,脑次之,肝最小;在脑中,Gas在小脑、丘脑、脑桥与延脑区域代谢速度快于皮层、纹状体、海马区。
     2.天麻素静注给药的脑药动学
     建立的高效液相色谱测定方法,测定血、脑脊液时采用的流动相:乙腈—水(2.5:97.5,v/v),测定脑微透析液采用的流动相:乙腈—水(5:95,v/v)。方法对检测Gas和HBA的专属性良好。Gas在0.28-571.70μg/mL血浆,0.16-40.02μg/mL脑脊液,0.07-17.86μg/mL透析液中线性关系良好(n=5,r~2>0.999)。Gas的定量下限为血浆0.269±0.028μg/mL;脑脊液0.147±0.011μg/mL;透析液0.072±0.008μg/mL(n=6)。Gas的日内日间RSD<12.4%,血浆、脑脊液、透析液中的平均准确度分别为101.4%、96.6%、103.8%。
     HBA在0.15-2.36μg/mL血浆,0.07-1.18μg/mL脑脊液,0.04-0.59μg/mL透析液中线性关系良好(n=3,r~2>0.999)。HBA的定量下限为血浆0.139±0.015μg/mL,脑脊液0.072±0.006μg/mL,透析液0.038±0.005μg/mL(n=6)。HBA的日内日间RSD<13.7%,血浆、脑脊液、透析液中的平均准确度分别为99.7%、98.8%、101.6%。稳定性良好。
     SD雄性大鼠静注给予200 mg/kg Gas,尾静脉取血,延髓池取脑脊液,四个脑区进行微透析[皮层(AP:2.1;ML:2.0,DV:-0.9 mm),海马区(AP:-6.0;ML:-4.5,DV:-3.0 mm),或丘脑(AP:-3.0;ML:1.0,DV:-4.5 mm)和小脑(AP:-11.0;ML:-1.3,DV:-2.0 mm)]。微透析探针的平均回收率为0.209±0.018(流速2.5μL/min,37℃)。
     大鼠Gas静注给药后,血中药物浓度下降较快,进入脑的速度也很快,但是入脑量(AUC_(brain)/AUC_(plasma))不高,脑脊液、皮层、海马、丘脑和小脑的AUC分别为血浆AUC的4.8±2.4,3.3±1.2,3.0±0.7,3.3±1.3和6.1±1.9%,小脑AUC明显高于其它三个脑区(P<0.05)。在脑和血浆中有HBA代谢生成,但量很低,浓度下降很快。
     3.天麻素十二指肠给药的脑药动学
     SD雄性大鼠在十二指肠给予200 mg/kg Gas,收集血、脑脊液和脑微透析液。微透析探针的平均回收率为0.233±0.021(流速2.0μL/min,37℃)。
     Gas十二指肠给药后,血T_(max)与脑脊液T_(max)相似,分别为55.6和57.5 min,四个脑区以小脑中C_(max)最高(5.3±1.2μg/mL),AUC最大(491.2±220.6 minμg/mL)。脑脊液、皮层、海马、丘脑和小脑的AUC分别为血浆AUC的4.9±1.2,2.4±1.0,2.5±0.8,2.6±0.8和4.7±2.2%。Gas小脑的AUC明显高于其它三个脑区(P<0.05),与静注相似。脑和血浆中代谢生成的HBA量也很低。Gas血浆的绝对生物利用度为55.0%。相同剂量给药,口服Gas后代谢产生的HBA要比静注稍多,血中HBA的AUC为静注的1.4倍(但无显著性差异,P>0.05),而脑脊液AUC约为静注2.3倍(P<0.01)。结果显示Gas十二指肠给药后,其药动学特性与静注相似。
     4.天麻素静注与鼻腔给药的药动学比较
     建立的高效液相色谱测定方法,对检测在脑脊液和血样中的Gas有较好的专属性,Gas在0.16-9.98μg/mL脑脊液,0.39-99.85μg/mL血浆范围线性关系良好(n=5,r~2>0.999)。日内日间RSD<6.4%,平均准确度脑脊液和血浆分别为100.4、100.6%。定量下限为脑脊液0.148±0.008μg/mL,血浆0.397±0.020μg/mL(n=6)。稳定性良好。
     SD雄性大鼠鼻腔或静注给予50 mg/kg Gas。
     Gas鼻腔给药与相同剂量的静注比较,鼻腔给药后进入血中的量比较低,而相应地进入脑脊液中的量比较高,脑脊液中Gas的AUC与静注的相似。鼻腔给药的血浆AUC与静注AUC的比值为8.8%,而脑脊液AUC与静注AUC比值为105.5%,从而可使脑靶向指数达12.3。提示,通过鼻腔给药可提高Gas的脑靶向性。
     5.天麻苷元与天麻素静注给药的药动学比较
     建立的高效液相色谱测定方法,对于检测脑脊液中HBA的流动相:乙腈—水(4:96,v/v);对于检测血中HBA的流动相:乙腈—水(3:97,v/v)。方法对检测脑脊液和血浆中的HBA有较好的专属性,HBA在0.07-37.73μg/mL脑脊液,0.23-30.34μg/mL血浆范围内线性关系良好(n=3,r~2>0.999)。定量下限为脑脊液0.074±0.007μg/mL,血浆0.258±0.016μg/mL(n=5)。脑脊液、血浆中的日内日间RSD<9.4%,平均准确度分别为100.5%、105.5%。稳定性良好。
     SD雄性大鼠静注给予50 mg/kg HBA。Gas静注给药(50 mg/kg)同第4部分内容。
     研究了HBA直接静注后的药动学,结果表明HBA血和脑脊液中的t_(1/2)分别为9.2±1.7和12.4±3.1min,明显短于Gas,表明HBA的消除比Gas更快。脑脊液中HBA的C_(max)和AUC高于血浆。
     6.天麻苷元静注与鼻腔给药的药动学比较
     SD雄性大鼠鼻腔或静注给予10 mg/kg HBA。
     HBA同剂量鼻腔给药与静注给药相比,都表现出脑脊液中AUC和C_(max)高于血浆的特点。两种途径给药,HBA都可迅速进入脑脊液,鼻腔给药的脑脊液或血浆AUC与静注的比较无显著性差异。提示,HBA鼻腔给药后能快速完全地进入体循环,再透过血脑屏障,鼻腔给药可望替代静注给药。
     7.天麻素和天麻苷元在Caco-2、MDCK-MDR1和MDCK细胞的转运研究
     采用Caco-2细胞、MDCK-MDR1和MDCK细胞进行Gas和HBA的转运研究。
     Gas和HBA在Caco-2细胞转运研究结果表明Gas口服吸收利用度可能不高,这与其自身脂溶性较差有关;而HBA的吸收较好。Gas和HBA在MDCK-MDR1和MDCK细胞转运研究结果表明Gas较难透过,Gas的R值小于2,不是P-gp的底物;HBA易透过,R值也小于2,对Rho123的外排也无显著影响,不是P-gp的底物,也不是P-gp的抑制剂。两个细胞转运试验结果表明,Gas的跨膜转运较差,不是P-gp底物,可能存在非P-pg介导的外排。HBA的跨膜转运好,也不是P-gp底物或抑制剂,低浓度时有较弱的非P-pg介导的外排机制存在,这种外排机制可为高浓度的HBA逆转。
Gastrodin(Gas) is the major and bioactive component in Tianma(Gastrodia elata Bl.) and has sedative,anticonvulsive and neuroprotective effects.It has been approved as a drug for the treatment of neurasthenia,dizzy,headache and adjunctive therapy to epilepsy in China.The results of recent clinical trials showed that it was efficient in treatment of patients with vascular dementia.Currently,the marketed preparations of Gas are intramuscularly,intravenously or orally administered,with injection as the most common dosage form.
     The target organ of Gas is brain,but it is difficult to pass blood-brain barrier (BBB) because of its water-solubility.There has a controversy about the active form of Gas.Some experts believe only the metabolite of Gas(p-hydroxybenzyl alcohol, HBA) can permeate through the blood-brain barrier(BBB) and have pharmacologic effect.Others think both of Gas and HBA have pharmacologic effect.But the dose of Gas is high in clinic in order to achieve pharmacologic activity because the amount of Gas permeation through BBB to brain is too low.The elimination of Gas is fast and the accumulation is very low in body.In order to keep effect,it is needed to administer several times each day in clinic.Although the toxicity of Gas is low,the frequent injection can increase the patient's pain and oral administration has some gastrointestinal side effect.
     Since little was known about the neuropharmacokinetics and brain metabolism of Gas,it would be meaningful to investigate the brain pharmacokinetics of Gas and HBA and their brain target in Sprague-Dawley(SD) male rat.In this paper,we also studied the cell transport of Gas and HBA.
     1.Metabolism in vitro
     (1) The metabolism of Gas in rat brain,liver and kidney homognate
     The metabolism of Gas in brain,liver and kidney was studied in rat tissue homogenate.A HPLC method was established to determine the metabolite,HBA concentration after incubation.HBA was analyzed on Diamonsil C18 column(4.6 mm×250mm,5μm),with a mobile phase consisting of methanol-water(2.5:97.5,v/v), and detected with UV detector at 221nm.The flow rate was set at 1.0 mL/min.The temperature of the column oven was maintained at 33℃.The assay was linear over the concentration range of 0.30—18.96μg/mL in brain homogenate,0.30—9.48μg/ mL in liver homogenate and 0.59—75.86μg/mL in kindey homogenate(n=3, r~2>0.999).The intra-and inter-day precision over these ranges were not more than 9.6%and 12.1%,respectively.The Accuracy was in the range of 97.5%—106.9%. The lower limit of quantification(LLOQ) was 0.290±0.045μg/mL,0.307±0.030μg/mL and 0.627±00.047μg/mL in brain,liver and kidney homogenate(n=5), respectively.
     The results showed the velocity constants of formation metabolite,HBA,were 0.0305,0.0121 and 0.1409μg/mL/min in brain,liver and kidney,respectively.The clearance rates of Gas were 29.7±2.1,10.4±0.8 and 299.5±22.7 L/min/g(×10~(-6)) in the brain,liver and kidney,respectively.The metabolism rate of Gas was slow in brain and liver,while it was fast in kidney.
     (2) The metabolism of Gas in rat different brain regions
     The metabolism of Gas was studied in six different brain regions(the cerebellum,thalamus,pons and medulla oblongata,frontal cortex,hippocampus and striatum).
     In brain homogenate,the formation velocity of HBA was fast in the cerebellum, thalamus,pons and medulla oblongata,and slow in the frontal cortex,hippocampus and striatum.The velocity constants of the formers were about 1.5 times higher than those of the latters.Clearance rates of Gas were 45.9±7.4,39.6±5.6 and 24.4±3.0 L/min/g(×10~(-6)) in cerebellum,thalamus and cortex,respectively.
     The results suggested that Gas is stable in non-enzyme system and can be metabolized to HBA in brain,liver and kidney homogenate in vitro.And Gas is metabolized most rapidly in the kidney homogenate.The metabolism rates of Gas in the cerebellum,thalamus,pons and medulla oblongata are faster than other three brain regions.
     2.Brain pharmacokinetics and metabolism of Gas after intravenous administration
     A HPLC method was established to determine Gas and its metabolite HBA after Gas intravenous(i.v.) administration(200 mg/kg).The samples were analyzed on a Diamonsil C18 column(5μm,250 mm×4.6 mm) with a mobile phase consisting of acetonitrile-water(5%acetonitrile for brain microdialysate,2.5%acetonitrile for plasma and cerebrospinal fluid(CSF)),and detected with a UV detector at 221 nm.
     No peaks interfered with the analytes in the chromatograms of plasma and brain samples.
     The calibration curves of Gas were linear over the concentration range of 0.28-571.70μg/mL in plasma,0.16-40.02μg/mL in CSF and 0.07-17.86μg/mL in microdialysate(n=5,r~2>0.999).The LLOQ of Gas was 0.269±0.028μg/mL in plasma,0.147±0.011μg/mL in CSF and 0.072±0.008μg/mL in microdialysate (n=6).The intra-and inter-day precision of Gas over these ranges were not more than 12.4%.The Accuracy was 101.4%,96.6%,103.8%in plasma,CSF and microdialysate,respectively.
     The calibration curves for HBA were also linear over the range of 0.15-2.36μg/mL in plasma,0.07-1.18μg/mL in CSF and 0.04-0.59μg/mL in brain microdialysate(n=3,r~2>0.999).The LLOQ of HBA was 0.139±0.015μg/mL,0.072±0.006μg/mL in CSF and 0.038±0.005μg/mL in brain microdialysate(n=6).The intra-and inter-day precision of HBA over these ranges were not more than 13.7%. The Accuracy was 99.7%,98.8%,101.6%in plasma,CSF and microdialysate, respectively.
     SD male rats were administered with Gas at a dose of 200 mg/kg via the femoral vein.The blood sample was taken from the tail vein and CSF sample was collected using the cistern puncture.The microdialysis was applied in the frontal cortex (coordinates:AP 2.1,ML 2.0,DV 1.0) and hippocampus(AP-6.0,ML-4.6,DV 3.0), or thalamus(AP-3.0,ML 1.0,DV 4.5) and cerebellum(AP-11.0,ML-1.3,DV 2.0) according to the Paxinos and Watson atlas.Each probe was subjected to in vitro recovery studies before in vivo experiments for validation.The mean value of Gas recovery for all of the microdialysis probes was 0.209±0.018 at a microdialysate flow rate of 2.5μl/min at 37℃.
     The results from distribution of Gas in rat showed that the levels of Gas declined rapidly after drug administration and the entry of Gas into the brain was rapid. However,the ratios of AUC_(brain)/AUC_(plasma) were not high.The individual ratios of the AUC in the CSF,frontal cortex,hippocampus,thalamus and cerebellum to the AUC in the plasma were 4.8±2.4%,3.3±1.2%,3.0±0.7%,3.3±1.3%and 6.1±1.9%, respectively.The AUC in the cerebellum was significantly higher than that in other brain regions(P<0.05).The concentrations of HBA,the main metabolite of Gas,were very low in both of the CSF and plasma.
     3.Brain pharmacokinetics and metabolism of Gas after duodenum admininstraion
     SD male rats were administered with Gas via duodenum at a dose of 200 mg/kg and the samples of blood,CSF and brain microdialysate were collected at the indicated time points.
     The mean value of Gas recovery for the microdialysis probes was 0.233±0.021 at a microdialysate flow rate of 2.0μl/min at 37℃.
     The results showed T_(max) in plasma and CSF was similar.The C_(max) and AUC were the biggest in cerebellum among four brain regions.The individual ratios of the AUC in the CSF,frontal cortex,hippocampus,thalamus and cerebellum to the AUC in the plasma were 4.9±1.2%,2.4±1.0%,2.5±0.8%,2.6±0.8%and 4.7±2.2%, respectively.The absolute bioavailability of Gas in plasma after duodenum admininstration was 55.0%.The metabolism of Gas in both of brain and plasma were low.The AUC of HBA in brain and plasma after oral was higher than that after i.v.. The AUC of HBA in CSF and plasma were 2.3 and 1.4 times compared with those after i.v..
     4.Brain pharmacokinetics of Gas after intranasal and intravenous admininstraion
     The pharmacokinetic behavior of Gas in rat plasma and CSF after intranasal (i.n.) and intravenous(i.v.) administration(50 mg/kg) was investigated.
     A HPLC method for the determination of Gas in rat CSF and plasma was developed and validated.The assay was linear over the concentration range of 0.156—9.985μg/mL in CSF and 0.390-99.85μg/mL in plasma(n=5,r~2>0.999),and intra-and inter-day precision over these range were not more than 6.4%.The LLOQ in CSF and plasma were 0.148±0.008μg/mL and 0.397±0.020μg/mL(n=6), respectively.The mean accuracy in plasma and CSF were 100.4%and 100.6%, respectively.
     Intranasal administration of Gas provided a comparable AUC in CSF compared with the intravenous administration.But Gas level in plasma was very low.The ratios of AUC values of intranasal to intravenous administration were 8.8%and 105.5%in plasma and CSF,respectively.The drug targeting index(DTI) was 12.3. Intranasal administration of Gas is a promising alternative to traditional administration.Olfactory mucosa did present another pathway for transport Gas to the brain.
     5.Brain pharmacokinetics of HBA after intravenous administraion
     A HPLC method for the determination of Gas in rat cerebrospinal fluid and plasma was developed and validated.A mixture of acetonitrile-water was employed as a mobile phase,with a flow rate of 1.0 mL/min(3%acetonitrile for the plasma and 4%acetonitrile for the CSF).The assay was linear over the concentration range of 0.07-37.73μg/mL in CSF and 0.23-30.34μg/mL in plasma(n=3,r~2>0.999).The intra-and inter-day precision over these ranges were not more than 9.4%.The mean accuracy were 100.5%and 105.5%in CSF and plasma,respectively.The LLOQ in CSF and plasma were 0.074±0.007μg/mL and 0.258±0.016μg/mL(n=5), respectively.
     SD male rats were administered with HBA or Gas at 50mg/kg via i.v..
     The result of pharmacokinetics of HBA after i.v.(50 mg/kg) showed that t_(1/2) in CSF and plasma was 12.4±3.1 and 9.2±1.7 min,respectively,which was only 35%of those of Gas with same dosage.The concentration of HBA was declined faster than that of Gas.The C_(max) and AUC of HBA in CSF were higher than those in plasma,while the C_(max) and AUC of Gas in CSF were much lower than those in plasma.
     6.Brain pharmacokinetics of HBA after i.n.and i.v.admininstraion
     SD male rats were administered with HBA at a dose of 10 mg/kg via i.v.or i.n.. The results showed that HBA rapidly enters CSF after administration.There was no significant difference in AUC_(CSF) or AUC_(plasma) between i.n.and i.v.administration.In conclusion,HBA can be absorbed into the systemic circulation rapidly and completely after i.n.administration.Intranasal HBA is a promising alternative to intravenous administration.
     7.The cell transport of Gas or HBA on Caco-2,MDCK and MDCK-MDR1 cells
     The cell transport of Gas or HBA was studied on Caco-2,MDCK and MDCK-MDR1 cells which were seeded on polycarabonate microporous membrane filters and allowed to grow to confluence as an in vitro model to assess the membrane permeability properties of drugs.
     The result from the transport experiment of Caco-2 cells showed that oral absorbed availability of Gas may be poor and related to its poor liposolubility,while HBA can be absorbed well.The result from the transport experiment of MDCK and MDCK-MDR1 cells showed Gas permeated cells very difficult.The R ratio of Gas was lower than 2 and it suggested that Gas is not the substrate of P-gp.HBA permeated cells easily.HBA had no significant effect on the efflux ratio of Rho123 and its R ratios was also lower than 2,which suggested HBA is not the substrate or inhibitor of P-gp.The results from two cells transport experiments showed that Gas is not the substrate of P-gp.HBA can be absorbed well and not the substrate or inhibitor of P-gp.The mechanism of non-P-pg mediated effiux may be existed at low HBA concentration and can be reversed by high concentration of HBA.
引文
1.冯孝章,陈玉武,杨峻山.天麻化学成分的研究.化学学报,1979;37(3):175-182.
    2.周俊,杨雁宾,杨崇仁.天麻的化学研究Ⅰ天麻化学成分的分离和鉴定.化学学报,1979;37(3):183-189.
    3.Wu CR,Hsieh MT,Huang SC,Peng WH,Chang YS,Chen CF.Effects of Gastrofia elata and its active constituents on scopolamine-induced amnesia in rats.Planta Med,1996;62:317-321.
    4.Hsieh MT,Wu CR,Chen CF,Gastrodin and p-hydroxybenzyl alcohol facilitate memory consolidation and retrieval,but not acquisition,on the passive avoidance task in rats,J Ethnopharmacol,1997;56:45-54.
    5.Kim HJ,Moon KD,Oh SY,Kim SP,Lee SR,Ether fraction of methanol extracts of gastrodia elata,a traditional medicinal herb,protects against kainic acid-induced neuronal damage in the mouse hippocampus,Neurosci Lett,2001;314:65-68.
    6.An SJ,Park SK,Hwang IK,Choi SY,Kim SK,Kwon OS,Jung SJ,Baek NI,Gastrodin decreases immunoreactivities of gamma-aminobutyric acid shunt emzymes in the hippocampus of seizure-sensitive gerbils,J Neurosci Res,2003;71:534-543_
    7.李运曼,陈芳萍,刘国卿.天麻素抗谷氨酸和氧自由基诱导的PC12细胞损伤的研究.中国药科大学学报,2003;34:456-460.
    8.刘中华,胡海涛,冯改丰,赵志英,毛乃颖.天麻素对Aβ25-35诱导的Alzheimer 病细胞模型的保护作用.四川大学学报医学版,2005;36(4):537-540.
    9.Ojemann LM,Nelson WL,Shin DS,Rowe AO,Buchanan RA,Tian ma,an ancient Chinese herb,offers new options for the treatment of epilepsy and other conditions.Epilepsy Behav,2006;8:376-383.
    10.Zeng X,Zhang Y,Zhang S,Zheng X.A microdialysis study of effects of gastrodin on neurochemical changes in the ischemic/reperfused rat cerebral hippocampus.Biol Pharm Bull,2007;30(4):801-804.
    11.胡京红,司银楚,洪庆涛,黄翔,唐一鹏,青雪梅,李澎涛.天麻素对体外模拟脑缺血损伤大鼠脑微血管内皮细胞的保护作用.中华中医药杂志,2007;22(2):124-126.
    12.王忠良,吴国伟,万红建,刘军,毛世文.天麻素针治疗中风认知障碍临床观察.浙江中西医结合杂志,2005;15(11):675-676.
    13.郭宏伟.天麻素高氧液对多发性脑梗死痴呆病人生活能力的影响.中西医结合心脑血管病杂志,2006;4(9):828-829.
    14.刘克辛,韩国柱,张雅伦,苏成业,唐南原,陈玉仁.天麻素在生物样品中的测定及其药物动力学.中国药理学报,1987;8(5):409-413.
    15.程刚,郝秀华,刘国良,邹梅娟,崔福德.天麻素在大鼠体内的药动学研究.中国药学杂志,2003;38(2):127-129.
    16.郭正平,谭天秩,钟裕国,吴聪.天麻素及天麻甙元作用机理的研究.华西医大学报,1991;22(1):79-82.
    17.游金辉,谭天秩,匡安仁,钟裕国,何沙.~3H—天麻甙元和~3H—天麻素在小鼠体内的分布和代谢.华西医大学报,1994;25(3):325-328.
    18.Wu CR,Hsieh MT,Liao J.p-Hydroxybenzyl alcohol attenuates learning deficits in the inhibitory avoidance task:involvement of serotonergic and dopaminergic systems.Chin J Physiol,1996;39(4):265-273.
    19.Yu SJ,Kim JR,Lee CK,Han JE,Lee JH,Kim HS,Hong JH,Kang SG.Gastrodia elata blume and an active component,p-hydroxybenzyl alcohol reduce focal ischemic brain injury through antioxidant related gene expressions.Biol Pharm Bull,2005;28(6):1016-1020.
    20.邓士贤,莫云强.天麻的药理作用(一)天麻素及天麻苷元的镇静抗惊作用.云南植物研究,1979;1(2):66-73.
    21.陆光伟,邹元杰,莫启忠.~3H—天麻素在大鼠体内的吸收、分布、代谢和排泄.药学学报,1985;20(3):167-172.
    22.Romeo VD,deMeireles J,Sileno AP,Pimplaskar HK,Behl CR.Effects of physicochemical properties and other factors on systemic nasal drug delivery.Adv Drug Deliv Rev,1998;29:89-116.
    23.Illum L.Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci,2000;11:1-18.
    24.Illum L.Nasal drug delivery:new developments and strategies.Drug Discov Today,2002;7(23):1184-1189.
    25.Illum L.Nasal drug delivery—possibilities,problems and solutions.J Control Release,2003;87:187-198.
    26.Pardridge WM.The Blood-Brain Barrier:Bottleneck in Brain Drug Development.J Am Soc Exp Neuro Ther,2005;2:3-14.
    27.王东兴,高永良,恽榴红.脑靶向性鼻腔给药的研究进展.中国新药杂志,2005;14(2):135-140.
    28.陆光伟,邹元杰,储德全.天麻素在大鼠体内代谢.中国药理学通报,1986;2(2):23-25.
    29.Liu KX,Han GZ,Chang YL,Su CY,Tang NY,Chen YR.Simultaneous determination of gastrodin and its metabolite by HPLC.Biomed Chromatogr,1987;2:17-19.
    30.Li LL,Zhang ZR,Gong T,He LL,Deng L.Simultaneous determination of Gastrodin and Ligustrazine hydrochloride in dog plasma by gradient high-performance liquid chromatography.J Pharm Biomed Anal,2006;41:1083-1087.
    31.曾苏主编.药物代谢学.浙江大学出版社,2004年.
    32.陈聪颖,周金娥,严国峰,张健,杜宁,陆阳.槐苷在大鼠肝匀浆中的代谢.上海第二医科大学学报,2005;25f3):232-234.
    33.李文兰,杨玉楠,季宇彬,杨波.邻苯二甲酸丁基苄酯在鼠肝匀浆中的生物降解及代谢产物鉴定.环境科学学报,2004;24(3):498-503.
    34.徐叔云,卞如濂,陈修主编.药理实验方法学.第三版.2002年,附录P1849.
    35.Lowry O H,Rosebrough N J,Farr A L,Randall J.Protein measurement with the Folin phenol reagent.J Biol Chem,1951;193:265-275.
    36.朱林,朱家壁.微透析取样技术及其在药代动力学中的应用.国外医学药学分册,2002;29(5):296-301.
    37.H(o|¨)cht C,Opezzo JAW,Taira CA.Microdialysis in Drug Discovery.Curr Drug Discov Technol,2004;1:269-285.
    38.Lin LCh,Chen YF,Tsai TR,Tsai TH.Analysis of brain distribution and biliary excretion of a nutrient supplement,gastrodin,in rat.Anal Chim Acta,2007;590:173-179.
    39.Van den Berg MP,Romeijn SG,Verhoef JC,Merkus FW.Serial cerebrospinal fluid sampling in a rat model to study drug uptake from the nasal cavity.J Neuosci.Meth,2002;116:99-107.
    40.Paxinos G,Watson C.The rat brain in stereotaxic coordinates.Fourth Edition,Academic Press,USA,1998.
    41.Shi ZQ,Zhang QZ,Jiang XG.Pharmacokinetic behavior in plasma,cerebrospinal fluid and cerebral cortex after intranasal administration of hydrochloride meptazinol.Life Sci,2005;77:574-2583.
    42.Wang X,Ratnaraj N,Patsalos PN.The pharmacokinetic inter-relationship of tiagabine in blood,cerebrospinal fluid and brain extracellular fluid(frontal cortex and hippocampus).Seizure,2004;13:574-581.
    43.罗军,吴中亮,王惠先.天麻素注射液人体药动学的研究.解放军药学学报,2006;22(5):391-393.
    44.Gunaratna PC,Kissinger PT,Kissinger CB,Gitzen JF.An automated blood sampler for simultaneous sampling of systemic blood and brain microdialysates for drug absorption,distribution,metabolism,and elimination studies.J Pharmacol Toxicol Methods,2004,49:57-64.
    45.Lv Y,Zhang Z,Gong Z,Hu Y,He D.Determination and pharmacokinetics of ergometrine maleate in rabbit blood with on line microdialysis sampling and fluorescence detection.J Pharm Biomed Anal,2005;38:29-33.
    46.Ye M,Rossi DT,Lunte CE.Microdialysis sampling of the isothiazolone,PD-161374,and its thiol and disulfide metabolites.J Pharm Biomed Anal,2000;24:273-280.
    47.Stahle L.Microdialysis in pharmacokinetics.Eur J Drug Metab Pharmacokinet,1993;18:89-96.
    48.Verbeeck RK.Blood microdialysis in pharmacokinetic and drug metabolism studies.Adv Drug Deliver Rev,2000;45:217-228.
    49. Golden PL, Pollack GM. Blood-brain barrier efflux transport. J Pharm Sci, 2003;92(9):1739-1753.
    
    50. Van den Berg MP, Verhoef JC, Romeijn SG, Merkus FW. Uptake of estradiol or progesterone into the CSF following intranasal and intravenous delivery in rats. Eur J Pharma Biopharm, 2004; 58 : 131-135.
    
    51. Van den Berg MP, Merkus P, Romeijn SG, Verhoef JC, Merkus FW. Uptake of melatonin into the cerebrospinal fluid after nasal and intravenous delivery: studies in rats and comparison with a human study. Pharm Res, 2004; 21(5) : 799-802.
    
    52. Hussain MA, Aungst BJ. Intranasal absorption of oxymorphone. J Pharma Sci,1997; 86(8): 975-976.
    
    53. Dahlin M, BjOrk E. Nasal absorption of (S)-UH-301 and its transport into the cerebrospinal fluid of rats. Int J Pharm, 2000; 195 : 197-205.
    
    54. Dahlin M, BjOk E. Nasal administration of a physostigmine analogue(NXX-066) for Alzheimer's disease to rats. Int J Pharm, 2001; 212(2): 267-274.
    
    55. Van den Berg MP, Merkus P, Romeijn SG, Verhoef JC, Merkus FW.Hydroxocobalamin uptake into the cerebrospinal fluid after nasal and intravenous delivery in rats and humans. J Drug Target, 2003; 11(6): 325-331.
    
    56. In't Veen JPM, Van den Berg MP, Romeijn SG, Verhoef JC, Merkus FW.Uptake of fluorescein isothiocyanate- labelled dextran into the CSF after intranasal and intravenous administration to rats. Eur J Pharm Biopharm, 2005;61 : 27-31.
    
    57. Sakane T, Akizuki M, Yoshida M, Yamashita S, Nadai T, Hashida M, Sezaki H.Transport of cephalexin to the cerebrospinal fluid directly from the nasal cavity. J Pharm Pharmacol, 1991; 43 : 449-451.
    
    58. Dahlin M, Bergman U, Jansson B, Bjork E, Brittebo E. Transfer of dopamine in the olfactory pathway following nasal administration in mice. Pharm Res, 2000;17:737-742.
    
    59. Kao HD, Traboulsi A, Itoh S, Dittert L, Hussain A. Enhancement of the systemic and CNS specific delivery of L-dopa by the nasal administration of its water soluble prodrugs. Pharm Res, 2000; 17 : 978-984.
    60.Wang F,Jiang X,Lu W.Profiles of methotrexate in blood and CSF following intranasal and intravneous administration to rats.Int J Pharm,2003;263:1-7.
    61.Wang D,Gao Y,Yun L.Study on brain targeting of raltitrexed following intranasal administration in rats.Cancer Chemother Pharmaco,2006;57(1):97-104.
    62.Chow HHS,Anavy N,Villalobos A.Direct Nose-Brain Transport of Benzoylecgonine Following Intranasal Administration in Rats.J Pharma Sci,2001;90(11):1729-1735.
    63.Westin UE,Bostr(O|¨)m E,Grasj(O|¨) J,Hammarlund-Udenaes M,Bj(O|¨)rk E.Direct Nose-to-Brain Transfer of Morphine After Nasal Administration to Rats.Pharm Res,2006;23(3):565-572.
    64.Pedersen PS,Braunstein TH,Jorgensen A,Larsen PL,Holstein-Rathlou NH,Frederiksen,O.Stimulation of aquaporin-5 and transepithelial water permeability in human airway epithelium by hyperosmotic stress.Pflugers Arch,2007;453(6):777-785.
    65.Illum L.Is nose-to-brain transport of drugs in man a reality.J Pharm Pharmacol,2004;56:3-17.
    66.姚彤伟.体内药物分析.浙江大学出版社,2002年.
    67.Giovanna,C.,Francesca,M.,Marzia,C.,Naima,Z.,Paola,M.,Development and evaluation of an in vitro method for prediction of human drug absorption Ⅱ.Demonstration of the method suitability.Eur J Pharm Sci,2006;27:354-362.
    68.胡晓渝;姚彤炜;曾苏.Caco-2细胞系及其在药物吸收、代谢中的应用.中国现代应用药学,2002;19(2):88-90.
    69.Yu L,Zeng S.Transport characteristics of zolmitriptan in a human intestinal epithelial cell line Caco-2.J Pharm Pharmacol,2007;59(5):655-660.
    70.Shen S,He Y,Zeng S.Stereoselective regulation of MDR1 expression in Caco-2cells by cetirizine enantiomers.Chirality,2007;19(6):485-490.
    71.He Y,Zeng S.Determination of the stereoselectivity of chiral drug transport across Caco-2 cell monolayers.Chirality,2006;18(1):64-69.
    72.He Y,Zeng S.Transport characteristics ofrutin deca(H-) sulfonate sodium across Caco-2 cell monolayers.J Pharm Pharmacol,2005;57(10):1297-1303.
    73.Wang Y,Cao J,Weng JH,Zeng S.Simultaneous determination of quercetin,kaempferol and isorhamnetin accumulated human beast cancer cells,by high-performance liquid chromatography.J Pharm Biomed Anal,2005;39(1-2):328-333.
    74.Wang Y,Cao J,Zeng S.Involvement of P-glycoprotein in regulating cellular levels of Ginkgo flavonols:quercetin,kaempferol,and isorhamnetin.J Pharm Pharmacol,2005;57(6):751-758.
    75.Yu LS,Zhao NP,Yao TW,Zeng S.Zolmitripan uptake by human intestinal epithelial Caco-2 cells.Pharmazie,2006;61(10):862-865.
    76.Braun A,H(a|¨)merle S,Suda K,Rothen-Rutishauser B,G(u|¨)nthert M,Kr(a|¨)mer SD,Wunderli- Allenspach H.Cell cultures as tools in biopharmacy.Eur J Pharm Sci,2000;11 Suppl 2:S51-S60.
    77.Veronesi B.Characterization of the MDCK cell line for screening neurotoxicants.Neurotoxicology,1996;17(2):433-444.
    78.Polli JW,Wring SA,Humphreys JE,Huang L,Morgan JB,Webster LO,Serabjit-Singh CS.Rational use of in vitro P-glycoprotein assays in drug discovery.J Pharmacol Exp Ther,2001;299(2):620-628.
    79.Irvine JD,Takahashi L,Lockhart K,Cheong J,Tolan JW,Selick HE,Grove JR.MDCK(Madin-Darby canine kedney) cells:A tool for membrane permeability screening.J Pharm Sci,1999;88(1):28-33.
    80.Pasten I,Gottesman MM,Ueda K,Lovelace E,Rutherford AV,Willingham MC.A retrovirus carrying an MDR1 cDNA confers multidrug resistance and polarized expression of P-glycoprotein in MDCK cells.Proc Natl Acad Sci USA,1988;85(12):4486-4490.
    81.Simons K,Ikonen E.Functional rafts in cell membranes.Nature,1997;387(6633):569-572.
    82.Luker GD,Pica CM,Kumar AS,Covey DF,Piwnica-Worms D.Effects of cholesterol and enantiomeric cholesterol on P-glycoprotein localization and function in low-density membrane domains.Biochemistry,2000;39(29): 7651-7661.
    83.Tang F,Horie K,Borchardt RT.Are MDCK cells transfected with the human MDR1 gene a good model of the human intestinal mucosa? Pharm Res,2002;19(6):765-772.
    84.Gumbleton M,Audus KL.Progress and limitations in the use of in vitro cell cultures to serve as a permeability screen for the blood-brain barrier.J Pharm Sci,2001;90(11):1681-1698.
    85.Ramaswamy M,Yau E,Wasan KM,Boulanger KD,Li M and Pritchard PH,Influence of phytostanot phosphoryl ascorbate,FM-VP4,on pancreatic lipase activity and cholesterol accumulation within Caco-2 cells.J Pharm Pharm Sci,2002;5(1):29-38.
    86.Walgren RA,Walle UK ancl Walle T,Transport of quercetin and its glucosides across human intestinal epithelial Caco-2 cells.Biochem Pharmacol,1998;55(10):1721-1727.
    87.Lee K,Ng C,Brouwer KL and Thakker DR,Secretory transport of ranitidine and famotidine across Caco-2 cell monolayers.J Pharmacol Exp Ther,2002;303(2):574-580.
    88.Naruhashi K,Tamai I,Li Q,Sai Y and Tsuji A,Experimental demonstration of the unstirred water layer effect on drug transport in Caco-2 cells.J Pharm Sci,2003;92(7):1502-1508.
    89.FDA Guidance for Industry.Drug Interaction Studies—Study Design,Data Analysis,and Implications for Dosing and Labeling.September 2006.
    1.相小强,陶涛,陈庆华.透血脑屏障制剂的研究进展.中国新药杂志,2002;11(7):519-523.
    2.Illum L.Transport of drugs from the nasal cavity to the central nervous system.Eur J Pharm Sci,2000;11:1-18.
    3.Illum L.Nasal drug delivery—possibilities,problems and solutions.J Control Release,2003;87:187-198.
    4.Illum L.Nasal drug delivery:new developments and strategies.Drug Discov Today,2002;7(23):1184-1189.
    5.Sakane T,Akizuki M,Yamashita S,et al.Direct drug transport from the rat nasal cavity to the eerebrospinal fluid: the relation to themolecular weight of drugs. J Pharm Pharmacol, 1995; 47(5): 379-381.
    
    6. Van den Berg MP, Verhoef JC, Romeijn SG, Merkus FW. Uptake of estradiol or progesterone into the CSF following intranasal and intravenous delivery in rats.Eur J Pharma Biopharm, 2004; 58 : 131-135.
    
    7. Van den Berg MP, Merkus P, Romeijn SG, Verhoef JC, Merkus FW. Uptake of melatonin into the cerebrospinal fluid after nasal and intravenous delivery: studies in rats and comparison with a human study. Pharm Res, 2004; 21(5): 799-802.
    
    8. Hussain MA, Aungst BJ. Intranasal absorption of oxymorphone. J Pharma Sci,1997; 86 (8) : 975-976.
    
    9. Shi ZQ, Zhang QZ, Jiang XG. Pharmacokinetic behavior in plasma, cerebrospinal fluid and cerebral cortex after intranasal administration of hydrochloride meptazinol. Life Sci, 2005; 77 : 2574-2583.
    
    10. Dahli- M, BjOrk E. Nasal absorption of (S)-UH-301 and its transport into the eerebrospinal fluid of rats. Int J Pharm, 2000; 195 : 197-205.
    
    11. Dahlin M, Bj Ok E. Nasal administration of a physostigmine analogue(NXX-066)for Alzheimer's disease to rats. Int J Pharm, 2001; 212(2):267-274.
    
    12. Van den Berg MP, Merkus P, Romeijn SG, Verhoef JC, Merkus FW.Hydroxocobalamin uptake into the eerebrospinal fluid after nasal and intravenous delivery in rats and humans. J Drug Target, 2003; 11(6): 325-331.
    
    13. In't Veen JPM, Van den Berg MP, Romeijn SG, Verhoef JC, Merkus FW.Uptake of fluorescein isothiocyanate- labelled dextran into the CSF after intranasal and intravenous administration to rats. Eur J Pharm Biopharm, 2005;61 : 27-31.
    
    14. Sakane T, Akizuki M, Yoshida M, Yamashita S, Nadai T, Hashida M, Sezaki H.Transport of cephalexin to the eerebrospinal fluid directly from the nasal cavity. J Pharm Pharmacol, 1991; 43 : 449-451.
    
    15. Dahlin M, Bergman U, Jansson B, Bjork E, Brittebo E. Transfer of dopamine in the olfactory pathway following nasal administration in mice. Pharm Res,2000; 17:737-742.
    16. Kao HD, Traboulsi A, Itoh S, Dittert L, Hussain A. Enhancement of the systemic and CNS specific delivery of L-dopa by the nasal administration of its water soluble prodrugs. Pharm Res, 2000; 17 : 978-984.
    
    17. Wang F, Jiang X, Lu W. Profiles of methotrexate in blood and CSF following intranasal and intravneous administration to rats. Int J Pharm, 2003; 263 : 1-7.
    
    18. Wang D, Gao Y, Yun L. Study on brain targeting of raltitrexed following intranasal administration in rats. Cancer Chemother Pharmaco, 2006; 57(1) :97-104.
    
    19. Van den Berg MP, Romeijn SG, Verhoef JC, Merkus FW. Serial cerebrospinal fluid sampling in a rat model to study drug uptake from the nasal cavity. J Neuosci Meth, 2002; 116: 99-107.
    
    20. Romeo VD, deMeireles J, Sileno AP, Pimplaskar HK, Behl CR. Effects of physicochemical properties and other factors on systemic nasal drug delivery.Adv Drug Deliv Rev, 1998; 29 : 89-116.
    
    21 Dufes C, Olivier JC, Gaillard F, Gaillard A, Couet W, Muller JM. Brain delivery of vasoactive intestinal peptide(VIP) following nasal administration to rats. Int J Pharm, 2003; 255(1-2) : 87-97.
    22. FetcherLD, Johnson DL, Lynch RA. The relationship of particle size to olfactory nerve uptake of a non-soluble form of manganese into brain. Neurotoxicol, 2002; 23(2): 177-183.
    23 Henry RJ, Ruano N, Casto D, Wolf RH. A pharmacokinetic study of midazolam in dogs nasal drop vs atomizer administration. Pediatr Dent, 1998; 20(5):321-326.
    
    24. Betbeser D, Sperandio S, Latapie JP, de Nadai J, Etienne A, Zajac JM, Frances B. Biovector nanoparticles improve antinoceptive efficacy of nasal morphine.Pharm Res, 2000; 17(6): 743-748.
    
    25. Gao X, Wu B, Zhang Q, Chen J, Zhu J, Zhang W, Rong Z, Chen H, Jiang X.Brain delivery of vasoactive intestinal peptide enhanced with the nanoparticles conjugated with wheat germ agglutinin following intranasal administration. J Control Release, 2007;121(3):156-67
    
    26. 中国药典第一部P587.
    27.赵保胜,刘启德.冰片促血脑屏障开放与病理性开放的比较.中药新药与临床药理,2002;13(5):287-288.
    28.刘养凤,张伯礼.冰片的药理学研究进展.中医药学报,2003;31(6):55-58.
    29.董先智,汤小爱,高秋华,徐辉碧.冰片对顺铂透血脑屏障促进作用的研究.中国药学杂志,2002;37(4):275-277.
    30 王勇,张忠义,徐峰,王秉均,张守尧.冰片对川芎嗪血药浓度和在脑中分布的影响.中国药业,2006;15(1):30-31.
    31.孙寒静,黄天来,宓穗卿,吴伟,陈宏珪.芎冰喷雾剂脑内药物动力学研究.中药新药与临床药理,2003;14(3):177-179.
    32.张瑞涛,王晖,陈丽,李昕。冰片滴鼻对豚鼠鼻粘膜血管和脑血管通透性的影响研究。中国药房,2005;16(17):1291-1293.
    33.陶涛,赵雁,岳鹏,董文心,陈庆华.石杉碱甲鼻用原位凝胶的制备及其经鼻脑靶向性评价.药学学报,2006;41(11):1104-1110.
    34.Yue P,Tao T,Zhao Y,R(?) J,Chai X.Huperzine A in rat plasma and CSF following intranasal administration.Inter J Pharm,2007;337(1-2):127-132.
    35.Zhao Y,Yue P,Tao T,Chen QH.Drug brain distribution following intranasal administration of Huperzine A in situ gel in rats.Acta Pharmacol Sin,2007;28(2):273-278.
    36.Davies MI,Cooper JD,Desmond SS,Lunte CE,Lunte SM.Analytical considerations for microdialysis sampling.Adv Drug Deliv Rev,2000;45:169-188.
    37.朱林,朱家壁.微透析取样技术及其在药代动力学中的应用.国外医学药学分册,2002;29(5):296-301.
    38.de Lange ECM,de Boer AG,Breimer DD.Methodological issues in microdialysis sampling for pharmacokinetic studies.Adv Drug Deliv Rev,2000;45:125-148.
    39.罗汀,郭义,王秀云.微透析校正的相关问题和方法.生物技术通讯,2004;15(2):182-185.
    40.Menacherry S,Hubert W,Justice JB Jr.In vivo calibration of microdialysis probes for exogenous compounds.Anal Chem,1992;64:577-583.
    41. Verbeeck RK. Blood microdialysis in pharmacokinetic and drug metabolism studies. Adv Drug Deliv Rev, 2000; 45(2-3): 217-228.
    
    42. Bergstrom SK, Markides KE . On-line coupling of microdialysis to packed capillary column liquid chromatography-tandem mass spectrometry demonstrated by measurement of free concentrations of ropivacaine and metabolite from spiked plasma samples. J Chromatogr B Analyt Technol Biomed Life Sci, 2002; 75(1): 79-87.
    
    43. Mathy FX, Vroman B, Ntivunwa D, De Winne AJ, Verbeeck RK, Preat V.On-line determination of fluconazole in bolld and dermal rat microdialysates by microbore high-performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci, 2003; 787(2): 323-331.
    
    44. Zhang L, Zhang Z, Wu K. In vivo and real time determination of ornidazole and tinidazole and pharmacokinetic study by capillary electrophoresis with microdialysis. J Pharm Biomed Anal, 2006; 41(4) : 1453-1457.
    
    45. Wang L, Zhang Z, Yang W. Pharmacokinetic study of trimebutine maleate in rabbit blood using in vivo microdialysis coupled to capillary electrophoresis. J Pharm Biomed Anal, 2005; 39(3-4): 399-403.
    
    46. Mayer BX, Namiranian K, Dehghanyar P, Stroh R, Mascher H, Muller M.Comparison of UV and tandem mass spectrometric detection for the high-performance liquid chromatographic determination of diclofenac in microdialysis samples. J Pharm Biomed Anal, 2003; 33 : 745-754.
    
    47. de la Pena A, Liu P, Derendorf H. Microdialysis in peripheral tissues. Adv Drug Deliv Rev, 2000; 45 : 189-216.
    
    48. Helmy A, Carpenter KL, Hutchinson PJ. Microdialysis in the human brain and its potential role in the development and clinical assessment of drugs. Curr Med Chem, 2007; 14(14) : 1525-1537.
    
    49. Tisdall MM, Smith M. Cerebral microdialysis: research technique or clinical tool. Br J Anaesth, 2006; 97(1): 18 -25.
    
    50. Kennergren C, Mantovani V, LOnnroth P, Nystrom B, Berglin E, Hamberger A.Monitoring of extracellular aspartate aminotransferase and troponin T by microdialysis during and after cardioplegic heart arrest. Cardiology, 1999; 92 :162-170.
    
    51. Herkner H, Muller MR, Kreischitz N, Mayer BX, Frossard M, Joukhadar C,et al. Closed chest microdialysis to measure antibiotic penetration into human lung tissue. Am J Resp Crit Care Med, 2002; 165 : 273-276.
    
    52. Muller M, Mader RM, Steiner B, Steger GG, Jansen B, Gnant M, Helbich T,Jakesz R, Eichler HG, Blochl-Daum B. 5-Fluorouracil kinetics in the interstitial tumor space: clinical response in breast cancer patients. Cancer Res,1997; 57: 2598-2601.
    
    53. Muller M. Microdialysis in clinical drug delivery studies. Adv Drug Deliv Rev,2000; 45: 255-269.
    
    54. Kerns EH, Volk KJ, Klohr SE, Lee MS. Monitoring in vitro experiments using microdialysis sampling on-line with mass spectrometry. J Pharm Biomed Anal,1999; 20: 115-128.
    
    55. Juan YP, Tsai TH. Measurement and pharmacokinetics of vincamine in rat blood and brain using microdialysis. J Chromatogr A, 2005; 1088 : 146-151.
    
    56. Nakashima K, Yamamoto K, Al-Dirbashi OY, Kaddoumi A, Nakashima MN.Semi-micro column HPLC of triazolam in rat plasma and brain microdialysate and its application to drug interaction study with itraconazole. J Pharm Biomed Anal, 2003; 30 : 1809-1816.
    
    57. Wang X, Ratnaraj N, Patsalos PN. The pharmacokinetic inter-relationship of tiagabine in blood, cerebrospinal fluid and brain extracellular fluid (frontal cortex and hippocampus). Seizure, 2004; 13 : 574-581.
    
    58. Chang YL,Tsai PL, Chou YC, Tien JH , Tsai TH. Simultaneous determination of nicotine and its metabolite, cotinine,in rat blood and brain tissue using microdialysis coupled with liquid chromatography: Pharmacokinetic application.J Chromatogr A, 2005; 1088 : 152-157.
    
    59. Bagger M, Bechgaard E. A microdialysis model to examine nasal drug delivery and olfactory absorption in rats using lidocaine hydrochloride as a model drug.Inter J Pharm, 2004; 269 : 311-322.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700