用户名: 密码: 验证码:
高效研究多肽结合结构域结合特性新策略的建立及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
●结构域是蛋白质相互作用研究的一个简单高效的入手点
     在蛋白质组学规模上研究蛋白质相互作用网络是全面了解蛋白质功能、揭示疾病发病机制的有效手段之一。节点蛋白在相互作用网络中占据关键位置,在生命调控机制中发挥重要功能,可作为研究相互作用网络的一个有效突破点。很多蛋白由单个或多个结构域组成;绝大多数蛋白质相互作用是通过相互作用结构域(如PDZ,SH2,WW,SH3等)与其识别模体的结合完成的。深入研究节点蛋白的相互作用结构域,不仅可以了解详细的相互作用分子机制,为蛋白质相互作用的药物研发提供理论基础,而且可以在全蛋白质组水平上发现其所有的潜在配体蛋白,绘制以节点蛋白的相互作用为骨架的蛋白质相互作用网络图,从而系统地揭示蛋白质在复杂体系中的多样功能。
     本研究中,我们以最重要的蛋白质相互作用结构域之一的PDZ结构域作为入手点,建立了高效研究结构域结合特性的新策略,全面系统地研究了数个PDZ结构域的结合特性,发现了它们潜在的新配体蛋白。研究结果表明,PDZ结构域的结合特性同时具有较强的规律性和一定的多样性。由于我们研究的PDZ在多种组织和细胞结构中均有各种功能的潜在新配体被发现,提示PDZ蛋白在不同的体系中执行不同的功能具有生物化学基础,可能是一个相当普遍的现象。PDZ蛋白潜在的多功能性超过了我们的预期。我们猜想可能许多具有常见蛋白质相互作用结构域的蛋白也会具有超过我们以往估计的配体数量和功能多样性。这个猜想需要更多结构域的系统研究方法和大规模研究才能证实。
     ●高效研究多肽结合结构域(peptide-binding domain)结合特性新策略的提出
     近年来常用的高通量研究结构域的方法主要有定向肽库(oriented peptidelibrary)、SPOT合成、噬菌体展示(phage display)和酵母双杂交(yeast two-hybrid)等。但是这些传统方法都是针对某一个特定结构域所进行的大规模筛选,相对费时费力。为了适应于在蛋白质组学规模上研究结构域的结合特性、提高研究通量和效率,我们提出了一种高效地验证性筛选目的结构域结合配体文库的新研究策略。先用目的结构域家族中有代表性的成员筛选随机多肽文库,收集得到的阳性克隆构建成一个配体库,其它成员直接验证筛选配体库研究其识别特性。根据验证筛选得到的阳性和阴性结合序列推知识别规律,再以此识别规律在蛋白质数据库中预测潜在的天然配体,最后在酵母双杂交系统中验证并发现新的配体蛋白。如果直接验证筛选配体库得到的阳性配体数量不足以得出某个结构域的识别特性,该结构域就从头筛选随机多肽文库,所获得的新阳性克隆添加到配体库,作为对配体库的补充,可提高以后通过直接验证筛选来研究此类PDZ的效率。另外在验证预测的天然配体时,构建的克隆也添加到配体库中,这也是对配体库的重要补充,这样直接验证筛选就有可能找到新的配体蛋白。验证筛选体系最大的优点是,与传统筛选相比研究效率得到了极大的提高,而且整个体系是动态发展的,配体库会在体系的应用过程中不断得到补充,扩充后的配体库又会进一步提高研究效率。
     ●高效研究多肽结合结构域结合特性新策略的建立
     我们首先将验证筛选的研究策略应用于PDZ结构域结合特性的研究。
     首先,我们收集ZO-1 PDZ1、ZO-1 PDZ3和Erbin PDZ筛选随机多肽文库得到的阳性克隆,构建成一个初始的配体库。通过验证筛选该配体库快速研究了HtrA2 PDZ和LNX1 PDZ2的识别特性。MAGI3 PDZ4等PDZ通过验证筛选没有得到满意的结果,因此从头筛选随机多肽文库研究其结合特性,并将得到的阳性克隆补充到配体库中,作为对配体库的补充和发展。
     在验证筛选体系建立和初步发展的过程中,我们对上述目的PDZ结构域的结合特性进行了详细的分析。研究结果不仅涵盖了以往大规模研究方法报道的结果,而且还发现了新的PDZ结构域识别特性,即:ZO-1 PDZ3在配体-5位偏好疏水性氨基酸,ZO-1PDZ3、LNX1 PDZ2和MAGI3 PDZ4在配体的0位可选择极性氨基酸,除MAGI3 PDZ4外的五个PDZ在配体-1位都强烈偏好芳香族氨基酸,除ZO-1 PDZ3和MAGI3 PDZ4外的四个PDZ都可识别Ⅰ、Ⅱ、Ⅲ三种类型的PDZ配体,HtrA2 PDZ和LNX1 PDZ2的选择特异性都呈现出一定的前后氨基酸之间的连锁关系。这些新的PDZ结合特性的揭示,为PDZ结构域的重新定义和分类提供了有价值的信息。同时,我们发现了以此六个目的PDZ结构域为节点的40对新的蛋白质相互作用,为深入研究这些PDZ蛋白的生物学功能提供了重要线索。
     ●高效研究多肽结合结构域结合特性新策略的应用
     LNX蛋白是第一个被发现的含有PDZ结构域的RING类型的泛素连接酶E3,但是其PDZ结构域的生物学功能还不清楚。为了揭示LNX PDZ结构域的功能,我们应用已建立的高效验证筛选体系对人类LNX家族的4个蛋白含有的9个PDZ结构域的结合特性和相互作用蛋白进行了系统的研究。
     LNX1 PDZ1、LNX1 PDZ2、LNX1 PDZ3、LNX2 PDZ2和LNX4 PDZ通过验证筛选和/或随机多肽文库筛选得到的阳性配体在C末端呈现明显的规律,经分析发现这5个PDZ结构域的结合特性有共性但也有显著的不同。同时,我们发现了LNX家族PDZ结构域之间的三对相互作用,即:LNX1 PDZ1和LNX1 PDZ4、LNX1 PDZ1和LNX2 PDZ4、LNX2 PDZ1和LNX2 PDZ4之间的相互作用。另外,根据总结的LNXPDZ结构域的识别规律,我们在人类蛋白质组水平上发现了新的LNX配体蛋白。这些配体蛋白种类多样且分布广泛,提示LNX可能在多种复杂体系中发挥多样的功能。
     同时,在PDZ结构域高效验证筛选体系应用的过程中,我们对原PDZ配体库又补充了新的配体,这是对配体库的再次发展,将会使验证筛选体系的高效性在更大规模的PDZ结构域研究中得以体现。
     ●Liddle综合症分子治疗的初步探索
     Liddle综合症是一种上皮细胞钠离子通道相关的遗传性疾病,是1963年由Liddle等人首先发现的一种常染色体显性、盐敏感型的高血压综合症。Liddle综合症的分子发病机制现已较为明确地认为是上皮钠离子通道(epithelial Na~+ channel,ENaC)的β亚基或γ亚基的胞质侧羧基端的PY模体低频率的点突变或缺失突变,使其与泛素连接酶Nedd4的WW结构域之间的相互作用被打断,导致ENaC不能正常泛素化和降解,因而在质膜上的半寿期延长、活性增加,导致钠离子重吸收的增加,引起Liddle综合症。
     由于Liddle综合症的发病机制已经研究的比较清楚,而且仅是单基因的突变所致,这为分子治疗提供了可能。我们提出了一种从分子水平上治疗Liddle综合症的设想,即构建一种可识别Liddle病人中ENaC蛋白突变的PY模体的人工泛素连接酶E3,使其结合并降解突变的ENaC蛋白,从而使质膜上ENaC的表达数量和活性恢复到正常水平。而可识别PY突变体的E3,可通过用病人中的PY突变体筛选随机多肽库获得与之结合的随机肽段,然后用其替换PY模体天然配体蛋白Nedd4中的WW结构域,从而得到一个新的人工E3。
     本论文中,我们以一种Liddle综合症突变体Y620H为诱饵蛋白,通过筛选随机多肽文库获得了一个至少能与两种PY突变体(Y620H和P618L)特异性结合的随机肽段。为下一步的深入研究和探索积累了实验数据。
●Protein interaction domain is a valuable starting point for high-efficiency protein-protein interaction research
     Compiling protein-protein interaction network provides many new insights into protein functions and disease mechanisms.Some node proteins in the network usually play key roles in biological processes.A large set of proteins are composed of one or more domains and a substantial proportion of protein-protein interactions are mediated by families of protein interaction domains,such as PDZ,SH2,WW,SH3,etc.Therefore,the protein interaction domain of node proteins values as a simple and high efficient starting point for understanding the mechanisms and networks of protein interactions.
     In this study,with focus on PDZ domain,one of the most important protein interaction modules,we developed a high-efficiency strategy for binding property characterization of peptide-binding domains,and systematically characterized a number of PDZ domains and discovered a series of novel interactions.We found that the binding properties of the PDZ domains showed strong consensus as well as certain variability. Moreover,many of the identified ligand proteins of the PDZ domains were expressed extensively and had diverse functions.It provides the biochemical basis that PDZ proteins may play diverse roles in multiple systems.The complexity of protein functions exceeds our current understanding and expectation.We propose that proteins composed of common protein interaction domains might have many ligands and diverse functions in different biological systems.
     ●Development of a high-efficiency strategy for binding property characterization of peptide-binding domains
     In recent years,several powerful methods,including oriented peptide library,SPOT synthesis,phage display and yeast two-hybrid,have been successfully employed for characterization of the peptide recognition specificities of individual domain families. However,these methods are all based on large-scale screenings for individual bait domain, which are relatively labor-intensive and time-consuming.For more efficiently characterizing the binding properties of peptide-binding domains,on the basis of the facts that one domain can bind many ligands and one ligand can be recognized by multiple domains,we developed a systematic strategy of high-throughput validation screening of a specialized candidate ligand library using yeast two-hybrid mating array.The library was constructed mainly by collecting the ligand clones isolated from yeast two-hybrid screenings of random peptide libraries with representative members of the selected domain family.By validation screening,consensus sequences were deduced from both positive and negative binding ligands.Novel ligand proteins were identified through database searches with consensus-binding sequences and confirmed in yeast two-hybrid system.The domains that did not interact with enough numbers of ligands from the library were used as bait for de novo screenings of random peptide libraries in the traditional way.
     This strategy is notably different from other approaches in several features.Firstly,the overall efficiency is dramatically improved by validation screening instead of traditional screening.It can be further improved,as the candidate ligand library expands with the addition of clones from more traditional screenings and clones constructed for confirmations.Secondly,we can achieve high throughput with yeast two-hybrid mating array approach.Multiple bait domains can be tested in parallel and thousands of candidate ligands can be screened on arrays simultaneously.Thirdly,since the library consists of ligands of known sequences,actual positive and negative binding sequences,which are both very important for precisely defining binding properties,can be directly read from arrays without resequencing.
     ●Construction of a high-efficiency strategy for binding property characterization of PDZ domain
     We have firstly demonstrated the feasibility of the newly developed strategy by employing it to investigate the PDZ domain interactions.
     We constructed an initial PDZ ligand library by yeast two-hybrid screenings of random peptide libraries with ZO-1 PDZ1,ZO-1 PDZ3 and Erbin PDZ.Next,we rapidly characterized HtrA2 PDZ and LNX1 PDZ2 by validation screenings of this initial library. MAGI3 PDZ4 and other interested PDZ domains,which could not find enough numbers of ligands from the initial library,were used as bait for de novo screenings of random peptide libraries in the traditional way.The PDZ ligand library was expanded with the addition of new positive clones isolated by new traditional screenings and clones constructed for confirmations.
     The binding properties of the interested PDZ domains have been successfully defined. Broader binding properties have been identified compared to other methods,including unique novel recognition specificities,such as ZO-1-PDZ3 favors hydrophobic residues at p~(-5),ZO-1 PDZ3,LNX1 PDZ2 and MAGI3 PDZ4 select polar or hydrophilic residues at p~0, five of the six PDZs prefer aromatic residues at p~(-1),four of the six PDZs can bind three conventional classes of PDZ ligands,and HtrA2 PDZ and LNX1-PDZ2 exhibit linkage selectivity at the C-termini of ligands.All these findings not only are important for predicting PDZ binding partners but also provide the basis for new definition of PDZ domain and major revision of conventional PDZ classification.In addition,40 novel interactions have been discovered,serving as significant clues for further functional investigation.
     ●Application of the high-efficiency strategy for binding property characterization of PDZ domain
     LNX is the first described PDZ domain containing member of the RING type E3 ubiquitin ligase.However,the functions of LNX PDZ domains are poorly understood.We systematically characterized the binding properties of human LNX PDZ domains and discovered their potential ligand proteins in human proteome,using our newly developed high-efficiency validation screening method.
     By validation screenings of the PDZ ligand library and/or yeast two-hybrid screenings of random peptide libraries,the C-terminal binding properties of LNX1 PDZ1,LNX1 PDZ2,LNX1 PDZ3,LNX2 PDZ2 and LNX4 PDZ were characterized.The recognition specificities between these five PDZs showed certain common features and some distinct properties.3 novel PDZ-PDZ interactions in LNX family were identified,which were the interactions between LNX1 PDZ1 and LNX1 PDZ4,LNX1 PDZ1 and LNX2 PDZ4, LNX2 PDZ1 and LNX2 PDZ4.In addition,a few of novel ligand proteins of LNX PDZ domains were discovered.These novel identified interactors are known to be functionally different and expressed extensively.This prompts LNX family proteins may play diverse roles in multiple systems.
     ●Preliminary investigation on molecular therapy of Liddle syndrome
     Liddle syndrome,first described by Grant Liddle et al in 1963,is an autosomal dominant form of salt-sensitive hypertension.The pathogenesis of Liddle syndrome has been attributed to missense,deletion or frameshift mutations of PY motifs in cytoplasmic carboxyl termini of beta or gamma subunits of the amiloride-sensitive epithelial sodium channel(ENaC).Disease mutations lead to absence of ENaC interaction with the WW domain of Nedd4,an ubiquitin ligase.The abnormalities result in increased channel activity and excessive Na~+ absorption in the kidney.
     We proposed a novel strategy for molecular therapy of Liddle syndrome,which was use of an artificial ubiquitin ligase to target mutational ENaC.The artificial ubiquitin ligase was constructed by replacement of the WW domain of Nedd4 with a peptide that was able to interact with mutational PY motifs,and this peptide could be obtained from screenings of random peptide libraries.
     In this study,we firstly chose one of Liddle syndrome mutations,Y620H,to screen random peptide library and obtained one positive peptide.We further demonstrated the positive peptide specifically interacted with at least two Liddle syndrome mutations, Y620H and P618L.
引文
1.Cusick ME,Klitgord N,Vidal M,Hill DE:Interactome:gateway into systems biology.Hum Mol Genet 2005,14 Spec No.2:R171-181.
    2.Droit A,Poirier GG,Hunter JM:Experimental and bioinformatic approaches for interrogating protein-protein interactions to determine protein function.J Mol Endocrinol 2005,34(2):263-280.
    3.Bader GD,Donaldson I,Wolting C,Ouellette BF,Pawson T,Hogue CW:BIND-The Biomolecular Interaction Network Database.Nucleic Acids Res 2001,29(1 ):242-245.
    4.Pawson T,Nash P:Assembly of cell regulatory systems through protein interaction domains.Science 2003,300(5618):445-452.
    5.Pawson T,Raina M,Nash P:Interaction domains:from simple binding events to complex cellular behavior.FEBS Left 2002,513(1 ):2-10.
    6.Pawson T:Domains.http://paw sonlabmshrionca/indexphp?option=com_content&task=view&id=222&I temid=67.
    7.Craven SE,Bredt DS:PDZ proteins organize synaptic signaling pathways.Cell 1998,93(4):495-498.
    8.Hung AY,Sheng M:PDZ domains:structural modules for protein complex assembly.J Biol Chem 2002,277(8):5699-5702.
    9.Songyang Z,Fanning AS,Fu C,Xu J,Marfatia SM,Chishti AH,Crompton A,Chan AC,Anderson JM,Cantley LC:Recognition of unique carboxyl-terminal motifs by distinct PDZ domains.Science 1997,275(5296):73-77.
    10.Ponting CP:Evidence for PDZ domains in bacteria,yeast,and plants.Protein Sci 1997,6(2):464-468.
    11.Christopherson KS,Hillier B J,Lira WA,Bredt DS:PSD-95 assembles a ternary complex with the N-methyl-D-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain.J Biol Chem 1999,274(39):27467-27473.
    12.London TB,Lee HJ,Shao Y,Zheng J:Interaction between the internal motif KTXXXI of Idax and mDvl PDZ domain.Biochem Biophys Res Commun 2004,322(1):326-332.
    13.Dev KK:Making protein interactions druggable:targeting PDZ domains.Nat Rev Drug Discov 2004,3(12):1047-1056.
    14.Jelen F,Oleksy A,Smietana K,Otlewski J:PDZ domains - common players in the cell signaling.Acta Biochim Pol 2003,50(4):985-1017.
    15.Schlieker C,Mogk A,Bukau B:A PDZ switch for a cellular stress response.Cell 2004,117(4):417-419.
    1. Montgomery JM, Zamorano PL, Garner CC: MAGUKs in synapse assembly and function: an emerging view. Cell Mol Life Sci 2004, 61(7-8):911-929.
    2. Itoh M, Furuse M, Morita K, Kubota K, Saitou M, Tsukita S: Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol 1999, 147(6): 1351-1363.
    3. Itoh M, Sasaki H, Furuse M, Ozaki H, Kita T, Tsukita S: Junctional adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the recruitment of PAR-3 to tight junctions. J Cell Biol 2001, 154(3):491-497.
    
    4. Fields S, Sternglanz R: The two-hybrid system: an assay for protein-protein interactions. Trends Genet 1994, 10(8):286-292.
    5. Bartel P, Chien CT, Sternglanz R, Fields S: Elimination of false positives that arise in using the two-hybrid system. Biotechniques 1993,14(6):920-924.
    6. Fields S: The two-hybrid system to detect protein-protein interactions. METHODS: A Companion to Meth Enzymaol 1993, 5:116-124.
    7. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S et al: A human protein-protein interaction network: a resource for annotating the proteome. Cell 2005, 122(6):957-968.
    8. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N el al: Towards a proteome-scale map of the human protein-protein interaction network. Nature 2005,437(7062): 1173-1178.
    
    9. Zhu L, Hannon GJ: Yeast Hybrid Technologies; 2000.
    10. Estojak J, Brent R, Golemis EA: Correlation of two-hybrid affinity data with in vitro measurements. Mol Cell Biol 1995,15(10):5820-5829.
    11. Guarente L: Strategies for the identification of interacting proteins. Proc Natl Acad Sci U S A 1993, 90(5): 1639-1641.
    12. Chevray PM, Nathans D: Protein interaction cloning in yeast: identification of mammalian proteins that react with the leucine zipper of Jun. Proc Natl Acad Sci U S A 1992, 89(13):5789-5793.
    13. Iwabuchi K, Li B, Bartel P, Fields S: Use of the two-hybrid system to identify the domain of p53 involved in oligomerization. Oncogene 1993, 8(6): 1693-1696.
    14. Gyuris J, Golemis E, Chertkov H, Brent R: Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 1993, 75(4):791-803.
    15. Rodriguez M, Li SS, Harper JW, Songyang Z: An oriented peptide array library (OPAL) strategy to study protein-protein interactions. J Biol Chem 2004, 279(10):8802-8807.
    16. Vojtek AB, Hollenberg SM, Cooper JA: Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 1993, 74(1):205-214.
    17. Huang H, Gao Y: A method for generation of arbitrary peptide libraries using genomic DNA. Mol Biotechnol 2005, 30(2): 135-142.
    18. Pawson T, Nash P: Assembly of cell regulatory systems through protein interaction domains. Science 2003, 300(5618):445-452.
    19. Huang HM, Zhang L, Cui QH, Jiang TZ, Ma SC, Gao YH: Finding potential ligands for PDZ domains by tailfit, a JAVA program. Chin Med Sci J 2004, 19(2):97-104.
    20. London TB, Lee HJ, Shao Y, Zheng J: Interaction between the internal motif KTXXXI of Idax and mDvI PDZ domain. Biochem Biophys Res Commun 2004,322(1):326-332.
    21. Songyang Z, Fanning AS, Fu C, Xu J, Marfatia SM, Chishti AH, Crompton A, Chan AC, Anderson JM, Cantley LC: Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 1997, 275(5296):73-77.
    22. Frank R: The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports-principles and applications. J Immunol Methods 2002, 267(1): 13-26.
    23. Landgraf C, Panni S, Montecchi-Palazzi L, Castagnoli L, Schneider-Mergener J, Volkmer-Engert R, Cesareni G: Protein interaction networks by proteome peptide scanning. PLoS Biol 2004, 2(1):E14.
    24. Zhang Y, Yeh S, Appleton BA, Held HA, Kausalya PJ, Phua DC, Wong WL, Lasky LA, Wiesmann C, Hunziker W et at. Convergent and divergent ligand specificity among PDZ domains of the LAP and zonula occludens (ZO) families. J Biol Chem 2006, 281(31):22299-22311.
    25. Appleton BA, Zhang Y, Wu P, Yin JP, Hunziker W, Skelton NJ, Sidhu SS, Wiesmann C: Comparative structural analysis of the Erbin PDZ domain and the first PDZ domain of ZO-1. Insights into determinants of PDZ domain specificity. J Biol Chem 2006, 281(31):22312-22320.
    26. Hung AY, Sheng M: PDZ domains: structural modules for protein complex assembly. J Biol Chem 2002, 277(8):5699-5702.
    27. Bezprozvanny I, Maximov A: Classification of PDZ domains. FEBS Lett 2001, 509(3):457-462.
    28. Kausalya PJ, Reichert M, Hunziker W: Connexin45 directly binds to ZO-1 and localizes to the tight junction region in epithelial MDCK cells. FEBS Lett 2001, 505( 1 ):92-96.
    29. Martins LM, Turk BE, Cowling V, Borg A, Jarrell ET, Cantley LC, Downward J: Binding specificity and regulation of the serine protease and PDZ domains of HtrA2/Omi. J Biol Chem 2003, 278(49):49417-49427.
    30. Hoover KB, Liao SY, Bryant PJ: Loss of the tight junction MAGUK ZO-1 in breast cancer: relationship to glandular differentiation and loss of heterozygosity. Am J Pathol 1998, 153(6): 1767-1773.
    31. Palmer HG, Gonzalez-Sancho JM, Espada J, Berciano MT, Puig I, Baulida J, Quintanilla M, Cano A, de Herreros AG, Lafarga M et al: Vitamin D(3) promotes the differentiation of colon carcinoma cells by the induction of E-cadherin and the inhibition of beta-catenin signaling. J Cell Biol 2001,154(2):369-387.
    32. Gonzalez-Mariscal L, Betanzos A, Nava P, Jaramillo BE: Tight junction proteins. Prog Biophys Mol Biol 2003, 81(1): 1 -44.
    33. Kwon B, Yu KY, Ni J, Yu GL, Jang IK, Kim YJ, Xing L, Liu D, Wang SX, Kwon BS: Identification of a novel activation-inducible protein of the tumor necrosis factor receptor superfamily and its ligand. J Biol Chem 1999, 274( 10):6056-6061.
    1. Bader GD, Donaldson I, Wolting C, Ouellette BF, Pawson T, Hogue CW: BIND--The Biomolecular Interaction Network Database. Nucleic Acids Res 2001, 29(1):242-245.
    2. Pawson T, Nash P: Assembly of cell regulatory systems through protein interaction domains. Science 2003, 300(5618):445-452.
    3. Pawson T, Raina M, Nash P: Interaction domains: from simple binding events to complex cellular behavior. FEBS Lett 2002, 513( 1 ):2-10.
    4. Marengere LE, Songyang Z, Gish GD, Schaller MD, Parsons JT, Stern MJ, Cantley LC, Pawson T: SH2 domain specificity and activity modified by a single residue. Nature 1994, 369(6480):502-505.
    5. Songyang Z, Fanning AS, Fu C, Xu J, Marfatia SM, Chishti AH, Crompton A, Chan AC, Anderson JM, Cantley LC: Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 1997, 275(5296):73-77.
    6. Rodriguez M, Li SS, Harper JW, Songyang Z: An oriented peptide array library (OPAL) strategy to study protein-protein interactions. J Biol Chem 2004, 279(10):8802-8807.
    7. Frank R: The SPOT-synthesis technique. Synthetic peptide arrays on membrane supports-principles and applications. J Immunol Methods 2002, 267(1): 13-26.
    8. Boisguerin P, Leben R, Ay B, Radziwill G, Moelling K, Dong L, Volkmer-Engert R: An improved method for the synthesis of cellulose membrane-bound peptides with free C termini is useful for PDZ domain binding studies. Chem Biol 2004, 11(4):449-459.
    9. Weiser AA, Or-Guil M, Tapia V, Leichsenring A, Schuchhardt J, Frommel C, Volkmer-Engert R: SPOT synthesis: reliability of array-based measurement of peptide binding affinity. Anal Biochem 2005, 342(2):300-311.
    10. Landgraf C, Panni S, Montecchi-Palazzi L, Castagnoli L, Schneider-Mergener J, Volkmer-Engert R, Cesareni G: Protein interaction networks by proteome peptide scanning. PLoS Biol 2004, 2(1):E14.
    11. Scott JK, Smith GP: Searching for peptide ligands with an epitope library. Science 1990, 249(4967):386-390.
    12. Vaccaro P, Brannetti B, Montecchi-Palazzi L, Philipp S, Helmer Citterich M, Cesareni G, Dente L: Distinct binding specificity of the multiple PDZ domains of INADL, a human protein with homology to INAD from Drosophila melanogaster. J Biol Chem 2001, 276(45):42122-42130.
    13. Nakayama M, Kikuno R, Ohara O: Protein-protein interactions between large proteins: two-hybrid screening using a functionally classified library composed of long cDNAs. Genome Res 2002, 12(11): 1773-1784.
    14. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N el al: Towards a proteome-scale map of the human protein-protein interaction network. Nature 2005, 437(7062):1173-1178.
    15. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S et al: A human protein-protein interaction network: a resource for annotating the proteome. Cell 2005, 122(6):957-968.
    16. Titz B, Schlesner M, Uetz P: What do we learn from high-throughput protein interaction data? Expert Rev Proteomics 2004, 1(1): 111 -121.
    17. Brone B, Eggermont J: PDZ proteins retain and regulate membrane transporters in polarized epithelial cell membranes. Am J Physiol Cell Physiol 2005, 288( 1 ):C20-29.
    
    18. Yu H, Zhu X, Greenbaum D, Karro J, Gerstein M: TopNet: a tool for comparing biological sub-networks, correlating protein properties with topological statistics. Nucleic Acids Res 2004, 32(1):328-337.
    19. Huber TB, Schmidts M, Gerke P, Schermer B, Zahn A, Hartleben B, Sellin L, Walz G, Benzing T: The carboxyl terminus of Neph family members binds to the PDZ domain protein zonula occludens-1. J Biol Chem 2003, 278(15): 13417-13421.
    20. Song X, Zhao Y, Narcisse L, Duffy H, Kress Y, Lee S, Brosnan CF: Canonical transient receptor potential channel 4 (TRPC4) co-localizes with the scaffolding protein ZO-1 in human fetal astrocytes in culture. Glia 2005, 49(3):418-429.
    21. Itoh M, Furuse M, Morita K, Kubota K, Saitou M, Tsukita S: Direct binding of three tight junction-associated MAGUKs, ZO-1, ZO-2, and ZO-3, with the COOH termini of claudins. J Cell Biol 1999,147(6):1351-1363.
    22. Li X, Olson C, Lu S, Nagy JI: Association of connexin36 with zonula occludens-1 in HeLa cells, betaTC-3 cells, pancreas, and adrenal gland. Histochem Cell Biol 2004, 122(5):485-498.
    23. Itoh M, Sasaki H, Furuse M, Ozaki H, Kita T, Tsukita S: Junctional adhesion molecule (JAM) binds to PAR-3: a possible mechanism for the recruitment of PAR-3 to tight junctions. J Cell Biol 2001,154(3):491-497.
    
    24. Laura RP, Witt AS, Held HA, Gerstner R, Deshayes K, Koehler MF, Kosik KS, Sidhu SS, Lasky LA: The Erbin PDZ domain binds with high affinity and specificity to the carboxyl termini of delta-catenin and ARVCF. J Biol Chem 2002, 277(15): 12906-12914.
    25. Huang H, Gao Y: A method for generation of arbitrary peptide libraries using genomic DNA. Mol Biotechnol 2005,30(2): 135-142.
    26. Jelen F, Oleksy A, Smietana K, Otlewski J: PDZ domains - common players in the cell signaling. Ada Biochim Pol 2003, 50(4):985-1017.
    27. Martins LM, Turk BE, Cowling V, Borg A, Jarrell ET, Cantley LC, Downward J: Binding specificity and regulation of the serine protease and PDZ domains of HtrA2/Omi. J Biol Chem 2003, 278(49):49417-49427.
    28. Lim IA, Hall DD, Hell JW: Selectivity and promiscuity of the first and second PDZ domains of PSD-95 and synapse-associated protein 102. J Biol Chem 2002, 277(24):21697-21711.
    29. Huang HM, Zhang L, Cui QH, Jiang TZ, Ma SC, Gao YH: Finding potential ligands for PDZ domains by tailfit, a JAVA program. Chin Med Sci J 2004, 19(2):97-104.
    30. Kuninaka S, Nomura M, Hirota T, Iida S, Hara T, Honda S, Kunitoku N, Sasayama T, Arima Y, Marumoto T et al: The tumor suppressor WARTS activates the Omi / HtrA2-dependent pathway of cell death. Oncogene 2005, 24(34):5287-5298.
    31. Gupta S, Singh R, Datta P, Zhang Z, Orr C, Lu Z, Dubois G, Zervos AS, Meisler MH, Srinivasula SM et al: The C-terminal tail of presenilin regulates Omi/HtrA2 protease activity. J Biol Chem 2004, 279(44):45844-45854.
    32. Gray CW, Ward RV, Karran E, Turconi S, Rowles A, Viglienghi D, Southan C, Barton A, Fantom KG, West A et al: Characterization of human HtrA2, a novel serine protease involved in the mammalian cellular stress response. Eur J Biochem 2000, 267(18):5699-5710.
    33. Izawa I, Nishizawa M, Tomono Y, Ohtakara K, Takahashi T, Inagaki M: ERBIN associates with p0071, an armadillo protein, at cell-cell junctions of epithelial cells. Genes Cells 2002, 7(5):475-485.
    34. Barabasi AL, Oltvai ZN: Network biology: understanding the cell's functional organization. Nat Rev Genet 2004, 5(2): 101-113.
    35. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U: Network motifs: simple building blocks of complex networks. Science 2002, 298(5594):824-827.
    36. Strogatz SH: Exploring complex networks. Nature 2001, 410(6825):268-276.
    37. Nie J, McGill MA, Dermer M, Dho SE, Wolfing CD, McGlade CJ: LNX functions as a RING type E3 ubiquitin ligase that targets the cell fate determinant Numb for ubiquitin-dependent degradation. Embo J 2002, 21(1-2):93-102.
    38. Zhang Y, Yeh S, Appleton BA, Held HA, Kausalya PJ, Phua DC, Wong WL, Lasky LA, Wiesmann C, Hunziker W et al: Convergent and divergent ligand specificity among PDZ domains of the LAP and zonula occludens (ZO) families. J Biol Chem 2006, 281(31):22299-22311.
    39. Bezprozvanny I, Maximov A: Classification of PDZ domains. FEBS Lett 2001, 509(3):457-462.
    40. Schneider S, Buchert M, Georgiev O, Catimel B, Halford M, Stacker SA, Baechi T, Moelling K, Hovens CM: Mutagenesis and selection of PDZ domains that bind new protein targets. Nat Biotechnol 1999, 17(2): 170-175.
    
    41. Hu H, Columbus J, Zhang Y, Wu D, Lian L, Yang S, Goodwin J, Luczak C, Carter M, Chen L et al: A map of WW domain family interactions. Proteomics 2004, 4(3):643-655.
    42. Feng S, Kasahara C, Rickles RJ, Schreiber SL: Specific interactions outside the proline-rich core of two classes of Src homology 3 ligands. Proc Natl Acad Sci U S A 1995, 92(26): 12408-12415.
    43. Mayer BJ: SH3 domains: complexity in moderation. J Cell Sci 2001,114(Pt 7):1253-1263.
    44. Kofler M, Motzny K, Freund C: GYF Domain Proteomics Reveals Interaction Sites in Known and Novel Target Proteins. Mol Cell Proteomics 2005, 4(11): 1797-1811.
    45. Niebuhr K, Ebel F, Frank R, Reinhard M, Domann E, Carl UD, Walter U, Gertler FB, Wehland J, Chakraborty T: A novel proline-rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family. Embo J 1997, 16(17):5433-5444.
    46. Shiba T, Takatsu H, Nogi T, Matsugaki N, Kawasaki M, Igarashi N, Suzuki M, Kato R, Earnest T, Nakayama K et al: Structural basis for recognition of acidic-cluster dileucine sequence by GGA1. Nature 2002, 415(6874):937-941.
    47. Yaffe MB: Phosphotyrosine-binding domains in signal transduction. Nat Rev Mol Cell Biol 2002, 3(3): 177-186.
    1. Wu Y, Dowbenko D, Spencer S, Laura R, Lee J, Gu Q, Lasky LA: Interaction of the tumor suppressor PTEN/MMAC with a PDZ domain of MAGI3, a novel membrane-associated guanylate kinase. J Biol Chem 2000, 275(28):21477-21485.
    2. Thomas M, Laura R, Hepner K, Guccione E, Sawyers C, Lasky L, Banks L: Oncogenic human papillomavirus E6 proteins target the MAGI-2 and MAGI-3 proteins for degradation. Oncogene 2002, 21(33):5088-5096.
    3. Adamsky K, Arnold K, Sabanay H, Peles E: Junctional protein MAGI-3 interacts with receptor tyrosine phosphatase beta (RPTP beta) and tyrosine-phosphorylated proteins. J Cell Sci 2003, 116(Pt 7): 1279-1289.
    4. Yao R, Natsume Y, Noda T: MAGI-3 is involved in the regulation of the JNK signaling pathway as a scaffold protein for frizzled and Ltap. Oncogene 2004, 23(36):6023-6030.
    5. Franklin JL, Yoshiura K, Dempsey PJ, Bogatcheva G, Jeyakumar L, Meise KS, Pearsall RS, Threadgill D. Coffey RJ: Identification of MAGI-3 as a transforming growth factor-alpha tail binding protein. Exp Cell Res 2005,303(2):457-470.
    6. He J, Bellini M, Inuzuka H, Xu J, Xiong Y, Yang X, Castleberry AM, Hall RA: Proteomic analysis of beta1-adrenergic receptor interactions with PDZ scaffold proteins. J Biol Chem 2006, 281(5):2820-2827.
    7. Zhang H, Wang D, Sun H, Hall RA, Yun CC: MAGI-3 regulates LPA-induced activation of Erk and RhoA. Cell Signal 2007,19(2):261-268.
    8. Fuh G, Pisabarro MT, Li Y, Quan C, Lasky LA, Sidhu SS: Analysis of PDZ domain-ligand interactions using carboxyl-terminal phage display. J Biol Chem 2000, 275(28):21486-21491.
    9. Vaccaro P, Brannetti B, Montecchi-Palazzi L, Philipp S, Helmer Citterich M, Cesareni G, Dente L: Distinct binding specificity of the multiple PDZ domains of INADL, a human protein with homology to INAD from Drosophila melanogaster. J Biol Chem 2001, 276(45):42122-42130.
    1. Hershko A, Ciechanover A, Varshavsky A: Basic Medical Research Award. The ubiquitin system. Nat Med 2000, 6(10): 1073-1081.
    2. Pickart CM: Back to the future with ubiquitin. Cell 2004, 116(2): 181 -190.
    3. Conaway RC, Brower CS, Conaway JW: Emerging roles of ubiquitin in transcription regulation. Science 2002, 296(5571): 1254-1258.
    4. Ciechanover A: The Ubiquitin-Proteasome System: Death of Proteins is Required for Life of Cells. Sigma-aldrichcom/cellsignaling Celltransmissions, 19(3).
    5. Weissman AM: Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2001, 2(3): 169-178.
    6. Pickart CM: Mechanisms underlying ubiquitination. Annu Rev Biochem 2001, 70:503-533.
    7. Petroski MD, Deshaies RJ: Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol 2005, 6(1):9-20.
    8. Tyers M, Jorgensen P: Proteolysis and the cell cycle: with this RING I do thee destroy. Curr Opin Genet Dev 2000,10( 1 ):54-64.
    9. Dho SE, Jacob S, Wolting CD, French MB, Rohrschneider LR, McGlade CJ: The mammalian numb phosphotyrosine-binding domain. Characterization of binding specificity and identification of a novel PDZ domain-containing numb binding protein, LNX. J Biol Chem 1998, 273(15):9179-9187.
    10. Nie J, McGill MA, Dermer M, Dho SE, Wolting CD, McGlade CJ: LNX functions as a RING type E3 ubiquitin ligase that targets the cell fate determinant Numb for ubiquitin-dependent degradation. Embo J 2002,21(1-2):93-102.
    11. Katoh M, Katoh M: Identification and characterization of PDZRN3 and PDZRN4 genes in silico. Int J Mol Med 2004,13(4):607-613.
    12. Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM: RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc Natl Acad Sci USA 1999, 96(20): 11364-11369.
    13. Li W, Tu D, Brunger AT, Ye Y: A ubiquitin ligase transfers preformed polyubiquitin chains from a conjugating enzyme to a substrate. Nature 2007, 446(7133):333-337.
    14. Rice DS, Northcutt GM, Kurschner C: The Lnx family proteins function as molecular scaffolds for Numb family proteins. Mol Cell Neurosci 2001, 18(5):525-540.
    15. Songyang Z, Fanning AS, Fu C, Xu J, Marfatia SM, Chishti AH, Crompton A, Chan AC, Anderson JM, Cantley LC: Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 1997, 275(5296):73-77.
    16. Kim E, Sheng M: PDZ domain proteins of synapses. Nat Rev Neurosci 2004, 5(10):771-781.
    17. Jelen F, Oleksy A, Smietana K, Otlewski J: PDZ domains - common players in the cell signaling. Acta Biochim Pol 2003, 50(4):985-1017.
    18. Schlieker C, Mogk A, Bukau B: A PDZ switch for a cellular stress response. Cell 2004, 117(4):417-419.
    19. Sollerbrant K, Raschperger E, Mirza M, Engstrom U. Philipson L, Ljungdahl PO, Pettersson RF: The Coxsackievirus and adenovirus receptor (CAR) forms a complex with the PDZ domain-containing protein ligand-of-numb protein-X (LNX). J Biol Chem 2003, 278(9):7439-7444.
    20. Mirza M, Raschperger E. Philipson L, Pettersson RF, Sollerbrant K: The cell surface protein coxsackie- and adenovirus receptor (CAR) directly associates with the Ligand-of-Numb Protein-X2 (LNX2). Exp Cell Res 2005, 309(1): 110-120.
    21. Kansaku A, Hirabayashi S, Mori H, Fujiwara N, Kawata A, Ikeda M, Rokukawa C, Kurihara H, Hata Y: Ligand-of-Numb protein X is an endocytic scaffold for junctional adhesion molecule 4. Oncogene 2006, 25(37):5071-5084.
    22. Higa S, Tokoro T, Inoue E, Kitajima I, Ohtsuka T: The active zone protein CAST directly associates with Ligand-of-Numb protein X. Biochem Biophys Res Commum 2007, 354(3):686-692.
    23. Young P, Nie J, Wang X, McGlade CJ, Rich MM, Feng G: LNX1 is a perisynaptic Schwann cell specific E3 ubiquitin ligase that interacts with ErbB2. Mol Cell Neurosci 2005, 30(2):238-248.
    24. Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, Liu YC: The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 1999, 286(5438):309-312.
    25. Thien CB, Langdon WY: c-Cbl and Cbl-b ubiquitin ligases: substrate diversity and the negative regulation of signalling responses. Biochem J 2005, 391(Pt 2): 153-166.
    26. Huang H, Gao Y: A method for generation of arbitrary peptide libraries using genomic DNA. Mol Biotechnol 2005,30(2): 135-142.
    27. Ma SC, Huang HM, Gao YH: [Utilizing tabacco genomic DNA to construct nearly random peptide libraries]. Sheng Wu Gong Cheng Xue Bao 2005, 21(2):332-335.
    28. Huang HM, Zhang L, Cui QH, Jiang TZ, Ma SC, Gao YH: Finding potential ligands for PDZ domains by tailfit, a JAVA program. Chin Med Sci J 2004,19(2):97-104.
    29. Hillier BJ, Christopherson KS, Prehoda KE, Bredt DS, Lim WA: Unexpected modes of PDZ domain scaffolding revealed by structure of nNOS-syntrophin complex. Science 1999, 284(5415):812-815.
    30. van Ham M, Hendriks W: PDZ domains-glue and guide. Mol Biol Rep 2003, 30(2):69-82.
    31. London TB, Lee HJ, Shao Y, Zheng J: Interaction between the internal motif KTXXXI of Idax and mDvl PDZ domain. Biochem Biophys Res Commun 2004, 322(1):326-332.
    1.Hatta S,Sakamoto J,Horio Y:Ion channels and diseases.Med Electron Microsc 2002,35(3):117-126.
    2.Liddle GWB,T.;Coppage,W.S.,Jr.:A familial renal disorder simulating primary aldosteronism but with negligible aldosterone secretion.Trans Assoc Am Phys 1963,76:199-213.
    3.NCBI:http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=177200.2007.
    4.Botero-Velez M,Curtis JJ,Warnock DG:Brief report:Liddle's syndrome revisited--a disorder of sodium reabsorption in the distal tubule.N Engl J Med 1994,330(3):178-181.
    5.Warnock DG:Liddle's syndrome:genetics and mechanisms of Na+ channel defects.Contrib Nephro12001(136):1 - 10.
    6.Snyder PM:The epithelial Na+ channel:cell surface insertion and retrieval in Na+homeostasis and hypertension.Endocr Rev 2002,23(2):258-275.
    7.Gormley K,Dong Y,Sagnella GA:Regulation of the epithelial sodium channel by accessory proteins.Biochem J 2003,371(Pt 1 ):1 - 14.
    8.潘慧曾:Liddle综合征发病机制及临床研究进展.国外医学内分泌学分册1999,19(6):273-275.
    9.Tamura H,Schild L,Enomoto N,Matsui N,Marumo F,Rossier BC:Liddle disease caused by a missense mutation of beta subunit of the epithelial sodium channel gene.J Clin Invest 1996,97(7):1780-1784.
    10.Hansson JH,Schild L,Lu Y,Wilson TA,Gautschi l,Shimkets R,Nelson-Williams C,Rossier BC,Lifton RP:A de novo missense mutation of the beta subunit of the epithelial sodium channel causes hypertension and Liddle syndrome,identifying a proline-rich segment critical for regulation of channel activity.Proc Natl Acad Sci U S A 1995,92(25):11495-11499.
    11.Howard PL,Chia MC,Del Rizzo S,Liu FF,Pawson T:Redirecting tyrosine kinase signaling to an apoptotic caspase pathway through chimeric adaptor proteins.Proc Natl Acad Sci U SA 2003,100(20):11267-11272.
    12.Furuhashi M,Kitamura K,Adachi M,Miyoshi T,Wakida N,Ura N,Shikano Y,Shinshi Y,Sakamoto K,Hayashi M et al:Liddle's Syndrome Caused by a Novel Mutation in the Proline-Rich PY Motif of the Epithelial Sodium Channel #{beta}-Subunit.J Clin Endocrinol Metab 2005,90(1 ):340-344.
    13.Kamide K,Tanaka C,Takiuchi S,Miwa Y,Yoshii M,Horio T,Kawano Y,Miyata T:Six missense mutations of the epithelial sodium channel beta and gamma subunits in Japanese hypertensives.Hypertens Res 2004,27(5):333-338.
    14.Rayner BL,Owen EP,King JA,Soule SG,Vreede H,Opie LH,Marais D,Davidson JS:A new mutation,R563Q,of the beta subunit of the epithelial sodium channel associated with low-renin,Iow-aldosterone hypertension.J Hypertens 2003,21(5):921-926.
    15. Shimkets RA, Warnock DG, Bositis CM, Nelson-Williams C, Hansson JH, Schambelan M, Gill JR. Jr., Ulick S, Milora RV, Findling JW et al: Liddle's syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell 1994, 79(3):407-414.
    16. Kyuma M, Ura N, Torii T, Takeuchi H, Takizawa H, Kitamura K, Tomita K, Sasaki S, Shimamoto K: A family with liddle's syndrome caused by a mutation in the beta subunit of the epithelial sodium channel. Clin Exp Hypertens 2001, 23(6):471-478.
    17. Jeunemaitre X, Bassilana F, Persu A, Dumont C, Champigny G, Lazdunski M, Corvol P, Barbry P: Genotype-phenotype analysis of a newly discovered family with Liddle's syndrome. J Hypertens 1997, 15(10): 1091-1100.
    18. Inoue T, Okauchi Y, Matsuzaki Y, Kuwajima K, Kondo H, Horiuchi N, Nakao K, Iwata M, Yokogoshi Y, Shintani Y et al: Identification of a single cytosine base insertion mutation at Arg-597 of the beta subunit of the human epithelial sodium channel in a family with Liddle's disease. Eur J Endocrinol 1998,138(6):691-697.
    19. Nakano Y, Ishida T, Ozono R, Matsuura H, Yamamoto Y, Kambe M, Chayama K, Oshima T: A frameshift mutation of beta subunit of epithelial sodium channel in a case of isolated Liddle syndrome. J Hypertens 2002, 20(12):2379-2382.
    20. Hiltunen TP, Hannila-Handelberg T, Petajaniemi N, Kantola I, Tikkanen 1, Virtamo J, Gautschi I, Schild L, Kontula K: Liddle's syndrome associated with a point mutation in the extracellular domain of the epithelial sodium channel gamma subunit. J Hypertens 2002, 20(12):2383-2390.
    21. Inoue J, Iwaoka T, Tokunaga H, Takamune K, Naomi S, Araki M, Takahama K, Yamaguchi K, Tomita K: A family with Liddle's syndrome caused by a new missense mutation in the beta subunit of the epithelial sodium channel. J Clin Endocrinol Metab 1998, 83(6):2210-2213.
    22. Uehara Y, Sasaguri M, Kinoshita A, Tsuji E, Kiyose H, Taniguchi H, Noda K, Ideishi M, Inoue J, Tomita K et al: Genetic analysis of the epithelial sodium channel in Liddle's syndrome. J Hypertens 1998,16(8):1131-1135.
    23. Gao PJ, Zhang KX, Zhu DL, He X, Han ZY, Zhan YM, Yang LW: Diagnosis of Liddle syndrome by genetic analysis of beta and gamma subunits of epithelial sodium channel-a report of five affected family members. J Hypertens 2001, 19(5):885-889.
    24. Yamashita Y, Koga M, Takeda Y, Enomoto N, Uchida S, Hashimoto K, Yamano S, Dohi K, Marumo F, Sasaki S: Two sporadic cases of Liddle's syndrome caused by De novo ENaC mutations. Am J Kidney Dis 2001, 37(3):499-504.
    25. Hansson JH, Nelson-Williams C, Suzuki H, Schild L, Shimkets R, Lu Y, Canessa C, Iwasaki T, Rossier B, Lifton RP: Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome. Nat Genet 1995, 11(1):76-82.
    1. Staudinger J, Zhou J, Burgess R, Elledge SJ, Olson EN: PICK1: a perinuclear binding protein and substrate for protein kinase C isolated by the yeast two-hybrid system. J Cell Biol 1995, 128(3):263-271.
    2. Takeya R, Takeshige K, Sumimoto H: Interaction of the PDZ domain of human PICK1 with class I ADP-ribosylation factors. Biochem Biophys Res Commun 2000, 267(1): 149-155.
    3. Staudinger J, Lu J, Olson EN: Specific interaction of the PDZ domain protein PICK1 with the COOH terminus of protein kinase C-alpha. J Biol Chem 1997, 272(51):32019-32024.
    4. Xia J, Zhang X, Staudinger J, Huganir RL: Clustering of AMPA receptors by the synaptic PDZ domain-containing protein PICK1. Neuron 1999, 22(1): 179-187.
    5. Boudin H, Doan A, Xia J, Shigemoto R, Huganir RL, Worley P, Craig AM: Presynaptic clustering of mGluR7a requires the PICK1 PDZ domain binding site. Neuron 2000, 28(2):485-497.
    6. Boudin H, Craig AM: Molecular determinants for PICK1 synaptic aggregation and mGluR7a receptor coclustering: role of the PDZ, coiled-coil, and acidic domains. J Biol Chem 2001, 276(32):30270-30276.
    7. Hanley JG, Khatri L, Hanson PI, Ziff EB: NSF ATPase and alpha-/beta-SNAPs disassemble the AMPA receptor-PICK1 complex. Neuron 2002,34(1):53-67.
    8. Dong H, O'Brien RJ, Fung ET, Lanahan AA. Worley PF, Huganir RL: GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature 1997, 386(6622):279-284.
    9. Dev KK: Making protein interactions druggable: targeting PDZ domains. Nat Rev Drug Discov 2004, 3(12): 1047-1056.
    10. Perez JL, Khatri L, Chang C, Srivastava S, Osten P, Ziff EB: PICK1 targets activated protein kinase Calpha to AMPA receptor clusters in spines of hippocampal neurons and reduces surface levels of the AMPA-type glutamate receptor subunit 2. J Neurosci 2001, 21(15):5417-5428.
    11. Hirbec H, Francis JC, Lauri SE, Braithwaite SP, Coussen F, Mulle C, Dev KK, Coutinho V, Meyer G, Isaac JT et al: Rapid and differential regulation of AMPA and kainate receptors at hippocampal mossy fibre synapses by PICK1 and GRIP. Neuron 2003,37(4):625-638.
    12. Lin WJ, Chang YF, Wang WL, Huang CY: Mitogen-stimulated TIS21 protein interacts with a protein-kinase-Calpha-binding protein rPICKl. Biochem J 2001, 354(Pt 3):635-643.
    13. Dev KK, Nakajima Y, Kitano J, Braithwaite SP, Henley JM, Nakanishi S: PICK1 interacts with and regulates PKC phosphorylation of mGLUR7. J Neurosci 2000, 20(19):7252-7257.
    14. Terashima A, Cotton L, Dev KK, Meyer G, Zaman S, Duprat F, Henley JM, Collingridge GL, Isaac JT: Regulation of synaptic strength and AMPA receptor subunit composition by PICK1. J Neurosci 2004, 24(23):5381-5390.
    15. Torres GE, Yao WD, Mohn AR, Quan H, Kim KM, Levey AI, Staudinger J, Caron MG: Functional interaction between monoamine plasma membrane transporters and the synaptic PDZ domain-containing protein PICK1. Neuron 2001, 30(1):121-134.
    16. Jaulin-Bastard F, Saito H, Le Bivic A, Ollendorff V, Marchetto S, Birnbaum D, Borg JP: The ERBB2/HER2 receptor differentially interacts with ERBIN and PICK1 PSD-95/DLG/ZO-1 domain proteins. J Biol Chem 2001, 276(18): 15256-15263.
    17. Lin SH, Arai AC, Wang Z, Nothacker HP, Civelli O: The carboxyl terminus of the prolactin-releasing peptide receptor interacts with PDZ domain proteins involved in alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor clustering. Mol Pharmacol 2001, 60(5):916-923.
    18. Baron A, Deval E, Salinas M, Lingueglia E, Voilley N, Lazdunski M: Protein kinase C stimulates the acid-sensing ion channel ASIC2a via the PDZ domain-containing protein PICK1. J Biol Chem 2002, 277(52):50463-50468.
    19. Hruska-Hageman AM, Wemmie JA, Price MP. Welsh MJ: Interaction of the synaptic protein PICK1 (protein interacting with C kinase 1) with the non-voltage gated sodium channels BNC1 (brain Na+ channel 1) and ASIC (acid-sensing ion channel). Biochem J 2002, 361(Pt 3):443-450.
    20. Duggan A, Garcia-Anoveros J, Corey DP: The PDZ domain protein PICK1 and the sodium channel BNaC1 interact and localize at mechanosensory terminals of dorsal root ganglion neurons and dendrites of central neurons. J Biol Chem 2002, 277(7):5203-5208.
    21. Jones SR, Gainetdinov RR, Jaber M, Giros B, Wightman RM, Caron MG: Profound neuronal plasticity in response to inactivation of the dopamine transporter. Proc Natl Acad Sci U S A 1998,95(7):4029-4034.
    22. Penzes P, Beeser A, Chernoff J, Schiller MR, Eipper BA, Mains RE, Huganir RL: Rapid induction of dendritic spine morphogenesis by trans-synaptic ephrinB-EphB receptor activation of the Rho-GEF kalirin. Neuron 2003,37(2):263-274.
    23. Meyer G, Varoqueaux F, Neeb A, Oschlies M, Brose N: The complexity of PDZ domain-mediated interactions at glutamatergic synapses: a case study on neuroligin. Neuropharmacology 2004, 47(5):724-733.
    24. Enz R, Croci C: Different binding motifs in metabotropic glutamate receptor type 7b for filamin A, protein phosphatase 1C, protein interacting with protein kinase C (PICK) 1 and syntenin allow the formation of multimeric protein complexes. Biochem J 2003, 372(Pt 1):183-191.
    25. Jourdi H, Iwakura Y, Narisawa-Saito M, Ibaraki K, Xiong H, Watanabe M, Hayashi Y, Takei N, Nawa H: Brain-derived neurotrophic factor signal enhances and maintains the expression of AMPA receptor-associated PDZ proteins in developing cortical neurons. Dev Biol 2003, 263(2):216-230.
    26. Kim AR, Choi WH, Lee SR, Kim JS, Jeon CY, Kim JI, Kim J, Lee JY, Kim EG, Park JB: Phosphorylation of 46-kDa protein of synaptic vesicle membranes is stimulated by GTP and Ca2+/calmodulin. Exp Mol Med 2002, 34(6):434-443.
    27. Excoffon KJ, Hruska-Hageman A, Klotz M, Traver GL, Zabner J: A role for the PDZ-binding domain of the coxsackie B virus and adenovirus receptor (CAR) in cell adhesion and growth. J Cell Sci 2004,117(Pt 19):4401-4409.
    28. Gainetdinov RR, Caron MG: Monoamine transporters: from genes to behavior. Annu Rev Pharmacol Toxicol 2003, 43:261-284.
    29. Hong CJ, Liao DL, Shih HL, Tsai SJ: Association study of PICK1 rs3952 polymorphism and schizophrenia. Neuroreport 2004,15(12): 1965-1967.
    30. Craven SE, Bredt DS: PDZ proteins organize synaptic signaling pathways. Cell 1998, 93(4):495-498.
    31. Songyang Z, Fanning AS, Fu C, Xu J, Marfatia SM, Chishti AH, Crompton A, Chan AC, Anderson JM, Cantley LC: Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 1997, 275(5296):73-77.
    32. Hung AY, Sheng M: PDZ domains: structural modules for protein complex assembly. J Biol Chem 2002, 277(8):5699-5702.
    33. Ponting CP: Evidence for PDZ domains in bacteria, yeast, and plants. Protein Sci 1997, 6(2):464-468.
    34. Hillier BJ, Christopherson KS, Prehoda KE, Bredt DS, Lim WA: Unexpected modes of PDZ domain scaffolding revealed by structure of nNOS-syntrophin complex. Science 1999, 284(5415):812-815.
    35. London TB, Lee HJ, Shao Y, Zheng J: Interaction between the internal motif KTXXXI of Idax and mDvl PDZ domain. Biochem Biophys Res Commun 2004, 322(1 ):326-332.
    36. Ferro ES, Hyslop S, Camargo AC: Intracellullar peptides as putative natural regulators of protein interactions. J Neurochem 2004, 91(4):769-777.
    37. Daw MI, Chittajallu R, Bortolotto ZA, Dev KK, Duprat F, Henley JM, Collingridge GL, Isaac JT: PDZ proteins interacting with C-terminal GluR2/3 are involved in a PKC-dependent regulation of AMPA receptors at hippocampal synapses. Neuron 2000, 28(3):873-886.
    38. Nishimune A, Isaac JT. Molnar E, Noel J, Nash SR, Tagaya M, Collingridge GL, Nakanishi S, Henley JM: NSF binding to GluR2 regulates synaptic transmission. Neuron 1998, 21(1):87-97.
    39. Rodriguez M, Li SS, Harper JW, Songyang Z: An oriented peptide array library (OPAL) strategy to study protein-protein interactions. J Biol Chem 2004, 279(10):8802-8807.
    40. Fuh G, Pisabarro MT, Li Y, Quan C, Lasky LA, Sidhu SS: Analysis of PDZ domain-ligand interactions using carboxyl-terminal phage display. J Biol Chem 2000, 275(28):21486-21491.
    41. Ferrer M, Hamilton AC, Inglese J: A PDZ domain-based detection system for enzymatic assays. Anal Biochem 2002,301(2):207-216.
    42. Nourry C, Grant SG Borg JP: PDZ domain proteins: plug and play! 5c; STKE 2003, 2003(179):RE7.
    43. Joliot A, Prochiantz A: Transduction peptides: from technology to physiology. Nat Cell Biol 2004, 6(3): 189-196.
    44. Xia J, Chung HJ, Wihler C, Huganir RL, Linden DJ: Cerebellar long-term depression requires PKC-regulated interactions between GluR2/3 and PDZ domain-containing proteins. Neuron 2000, 28(2):499-510.
    45. Chung HJ, Xia J, Scannevin RH, Zhang X, Huganir RL: Phosphorylation of the AMPA receptor subunit GluR2 differentially regulates its interaction with PDZ domain-containing proteins. J Neurosci 2000, 20(19):7258-7267.
    46. Chung HJ, Steinberg JP, Huganir RL, Linden DJ: Requirement of AMPA receptor GluR2 phosphorylation for cerebellar long-term depression. Science 2003,300(5626): 1751-1755.
    47. Kim CH, Chung HJ, Lee HK, Huganir RL: Interaction of the AMPA receptor subunit GluR2/3 with PDZ domains regulates hippocampal long-term depression. Proc Natl Acad Sci U S A 2001, 98(20): 11725-11730.
    48. Matsuda S, Mikawa S, Hirai H: Phosphorylation of serine-880 in GluR2 by protein kinase C prevents its C terminus from binding with glutamate receptor-interacting protein. J Neurochem 1999, 73(4): 1765-1768.
    49. Piserchio A, Salinas GD, Li T, Marshall J, Spaller MR, Mierke DF: Targeting specific PDZ domains of PSD-95; structural basis for enhanced affinity and enzymatic stability of a cyclic peptide. Chem Biol 2004, 11(4):469-473.
    50. Iwakura Y, Nagano T, Kawamura M, Horikawa H, Ibaraki K, Takei N, Nawa H: N-methyl-D-aspartate-induced alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) receptor down-regulation involves interaction of the carboxyl terminus of GluR2/3 with Pick1. Ligand-binding studies using Sindbis vectors carrying AMPA receptor decoys. J Biol Chem 2001, 276(43):40025-40032.
    51. Ehrengruber MU, Hennou S, Bueler H, Nairn H Y, Deglon N, Lundstrom K: Gene transfer into neurons from hippocampal slices: comparison of recombinant Semliki Forest Virus, adenovirus, adeno-associated virus, lentivirus, and measles virus. Mol Cell Neurosci 2001, 17(5):855-871.
    52. Aarts M, Liu Y, Liu L, Besshoh S, Arundine M, Gurd JW, Wang YT, Salter MW, Tymianski M: Treatment of ischemic brain damage by perturbing NMDA receptor- PSD-95 protein interactions. Science 2002, 298(5594):846-850.
    53. Giros B, Jaber M, Jones SR, Wightman RM, Caron MG: Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 1996, 379(6566):606-612.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700