用户名: 密码: 验证码:
结直肠癌肝转移相关分子标志物的筛选与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结直肠癌是消化道常见恶性肿瘤,在我国其发病率和死亡率分别位居恶性肿瘤的第四位和第五位。肝脏转移是结直肠癌治疗失败的主要原因。目前结直肠癌肝转移的治疗仍以综合治疗为主,手术切除是主要的治疗手段。目前临床尚缺少客观的标准指导治疗。肿瘤的发生发展是一个多因素、多阶段、多基因参与的过程,每个阶段基因异常改变的不同为我们通过探测基因的改变来预知疾病进展和风险,从而准确地指导治疗提供了依据。
     本研究通过建立结直肠癌实验性动物肝转移模型,比较分析高低肝转移的结直肠癌细胞差异表达基因谱筛选肝转移相关分子标志物,进一步在临床病例的组织标本中验证,最终得到可以用于临床,指导治疗的分子标志物。
     通过体内筛选本室建立的高粘附结直肠癌细胞系SW1116-P_(21),得到肝脏高转移细胞系SW1116-P_(21)V_2。采用全基因组芯片比较分析获得体内实验性肝转移细胞的差异表达基因谱。其中在肝转移灶上调表达的基因383个,下调表达的基因356个。根据生物信息学分析和文献调研体内实验模型的差异表达基因谱中的上调基因,本研究从这些上调基因中选择了8个与结直肠癌肝转移相关的基因,即LGALS3、SNCG、CCND3、SERPINE1、IQGAP1、CCL2、CYR61和LGALS3BP。在临床结直肠癌组织标本中进一步研究其作为预示结直肠癌肝转移的分子标志物的可能性。
     选择收集217例结直肠癌肝转移和无肝转移的临床原发瘤组织标本切片。采用免疫组化法检测分析了上述8个候选分子标志物在20例结直肠癌组织中的表达及其与临床的关系。结果CCL2和SNCG在肝转移组的阳性率(86%和60%)显著高于无肝转移组(29%和20%)。扩大病例至217例,检测结果显示肝转移组CCL2和SNCG的阳性率分别为67%和68%,无肝转移组的阳性率分别为31%和28%。表明这2个基因的表达具有预示结直肠癌肝转移的临床应用价值。逻辑回归分析显示,CCL2和SNCG表达阳性者的转移风险分别是表达阴性者的4.28倍(95%CI,1.92~9.52,P<0.05)和6.99倍(95%CI,3.14~15.6,P<0.05)。联合分析这2个分子的表达显示其预示肝转移的概率为85%。结合肿瘤直径、T分期、N分期等临床因素联合分析这2个分子预示肝转移的概率达97%。分析CCL2和SNCG的表达与结直肠癌分期的关系还发现,CCL2表达阳性与结直肠癌大体分型和TNM分期呈正相关(P<0.05),特别是与淋巴转移的相关性更加密切(P=0.001)。SNCG表达阳性与T分期和TNM分期也呈正相关(P<0.05)。此外还发现SNCG的表达与否与结直肠癌病人的预后密切相关。SNCG表达阴性者预后优于表达阳性者,其中位生存期分别为12.6个月和8.2个月(Log Rank,P=0.037)。COX多因素分析显示只有SNCG是肝转移预后的危险因素,表达阳性者发生转移的风险是阴性者的1.83倍(95%CI:1.03~3.26,P=0.04)。这些结果表明我们通过建立实验性肝转移模型筛选检测原发瘤中表达的基因预示结直肠癌肝转移的分子标志物是可行的。
     为了解能否应用配对组织标本差异表达基因谱筛选预示结直肠癌肝转移相关基因,我们还选取6例结直肠癌肝转移病例原发瘤与肝转移灶组织配对标本进行差异表达基因谱分析。聚类分析结果表明结直肠癌肝转移的基因表达谱有其共同性,也有其显著的个性。共同上调基因的功能分析发现,绝大部分基因的功能是涉及代谢、转录和增殖等功能。共同下调表达基因的功能绝大部分与癌细胞侵袭、迁移、粘附、增殖和分化等功能相关。比较分析实验性肝转移模型基因表达谱与结直肠癌肝转移临床配对组织标本基因表达谱,结果表明实验性肝转移模型基因表达谱不同于临床病人配对组织标本差异表达基因谱。配对组织标本肝转移和原发瘤的差异表达基因谱可能不适合筛选预示肝转移的相关基因,可能更适合进行筛选肝转移灶表达上调的可用于靶向肝转移治疗的分子靶标。
As the prevalent malignancy of alimental track,the incidence and mortality for colorectal cancer(CRC) ascended to the fourth and fifth place in China,respectively.The therapy for CRC most fails to hepatic metastasis.At present,the combination of multiple therapies plays a great role in CRC,especially surgical therapy.It's necessary to have a precise evaluation on the prognosis.However the clinical examinations can not meet with the request.Detection of the changes in the molecular level will assist in tumor therapy.
     Based on the hepatic colorectal metastasis model of nude mouse,the research screened the molecular biomarkers on colon adenacarcinoma metastasis through differential cDNA profiles between the high and low metastastic potential cells.Through the verification by human tissue specimens,we succeeded in uncovering a molecular marker profiles for prediction of hepatic colorectal metastasis.
     SW1116-P_(21) cell line with high adhesion ability is cultured in our lab.Descendent of SW1116-P_(21) cell line by screening in vivo,SW1116-P_(21) cell line has a higher metastasis potential than its parent.The differential gene profile of hepatic metastasis was analyzed by comparing SW1116-P_(21) with SW1116-P_(21) in cDNA microarray.Through analyses of the up-regulated genes in the gene profile in vivo,a panel of 8 molecular biomarkers including LGALS3,SNCG,CCND3,SERPINE1,IQGAP1,CCL2,CYR61 and LGALS3BP,were selected for the follow-up in the clinicalpathological relevant research.
     One hundred and seventeen cases of advanced CRC with liver metastasis,and one hundred and four cases of advanced CRC without liver metastasis with a follow-up time for at least 5 years after resection of the primary CRC were selected.Obvious positive expressing difference was observed in CCL2 and SNCG in the analysis of 8 molecular biomarkers by immunohistochemistry(IHC).CCL2 and SNCG were all found to be significantly higher in the cases of CRC with liver metastasis than in cases of non-metastatic CRC.Then we analyzed the clinicopathological factors and the expression of the two biological factors,CCL2 and SNCG,respectively.CCL2 was associated with the gross type of CRC and TNM stage(P<0.05),especially with lymph node metastasis (P=0.001).SNCG was associated with the T term and TNM stage(P<0.05).In the group of synchronous liver metastasis,the median survival time of SNCG-negative was superior to SNCG-positive,12.6 months and 8.2 months respectively(Log Rank,P=0.037).By multivariate Cox's analysis,SNCG was the only independent prognostic variable(95%CI: 1.03~3.26,P=0.04).Logistic regression analysis showed that tumor diameter,T term, lymph node metastasis,the expression of CCL2 and the expression of SNCG were independent factors.If all five factors were positive,the probability of liver metastasis became 97%.The index of metastasis risks for SNCG and CCL2 are 6.99(95%CI, 3.14~15.6,P<0.05) and 4.28(95%CI,1.92~9.52,P<0.05),respectively.
     To identify the genes involved in metastasis from the gene profile of the paired tissue specimens,the cDNA microarray was used to detect differences in gene expression between colorectal tumors and paired liver metastases isolated from 6 patients.The cluster analysis revealed that 4 of 6 paired gene profiles have more similarity with each other and the others not.It can be interpreted as that commonness and individual character both exited in the gene profile of liver metastasis from colorectal cancer.Subsequent analysis of up-regulated genes showed their involvement in metabolism,transcription and proliferation.The down-regulated genes were involved in invasion,motility,adhesion, proliferation and cell differentiation.It was informed that the gene profiles from animal model and from the paired tissue specimen were completely different.So the differences in gene expression between colorectal tumors and paired liver metastases may play a role in the research on molecular targeted therapy but not in screening the metastasis biomarkers.
引文
1.Jemal A,Siegel R,Ward E,et al.Cancer statistics,2007.CA Cancer J Clin.2007,57(1):43-66
    2.全国肿瘤防治研究办公室卫生部卫生统计信息中心.中国试点市、县恶性肿瘤的发病与死亡.中国医药科技出版社.2002,第二卷(1993-1997):24-31
    3.Levin B,Brooks D,Smith RA,et al.Emerging technologies in screening for colorectal cancer:CT colonography,immunochemical fecal occult blood tests,and stool screening using molecular markers.CA Cancer J Clin.2003,53(1):44-55
    4.McMillan DC and McArdle CS.Epidemiology of colorectal liver metastases.Surg Oncol.2007,16(1):3-5
    5.沈琳.转移性结直肠癌治疗进展.循证医学.2006,6(5):257-258
    6.Tusher VG,Tibshirani R and Chu G.Significance analysis of microarrays applied to the ionizing radiation response.Proc Natl Acad Sci USA.2001,98(9):5116-21
    7.Chua MS,Sun H,Cheung ST,et al.Overexpression of NDRG1 is an indicator of poor prognosis in hepatocellular carcinoma.Mod Pathol.2007,20(1):76-83
    8.Koshiji M,Kumamoto K,Morimura K,et al.Correlation of N-myc downstream-regulated gene 1 expression with clinical outcomes of colorectal cancer patients of different race/ethnicity.World J Gastroenterol.2007,13(20):2803-10
    9.Wang Z,Wang F,Wang WQ,et al.Correlation of N-myc downstream-regulated gene 1 overexpression with progressive growth of colorectal neoplasm.World J Gastroenterol.2004,10(4):550-4
    10.Sunamura M,Duda DG,Ghattas MH,et al.Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer.Angiogenesis.2003,6(1):15-24
    11.Becker JC,Fukui H,Imai Y,et al.Colonic expression of heme oxygenase-1 is associated with a better long-term survival in patients with colorectal cancer.Scand J Gastroenterol.2007,42(7):852-8
    12.Andreasen PA.PAI-1-a potential therapeutic target in cancer.Curr Drug Targets.2007,8(9):1030-41
    13.Harbeck N,Kates RE,Gauger K,et al.Urokinase-type plasminogen activator(uPA)and its inhibitor PAI-I:novel tumor-derived factors with a high prognostic and predictive impact in breast cancer.Thromb Haemost.2004,91(3):450-6
    14. Durand MK, Bodker JS, Christensen A, et al. Plasminogen activator inhibitor-I and tumour growth, invasion, and metastasis. Thromb Haemost. 2004, 91(3): 438-49
    
    15. Sakakibara T, Hibi K, Koike M, et al. Plasminogen activator inhibitor-1 as a potential marker for the malignancy of colorectal cancer. Br J Cancer. 2005, 93(7): 799-803
    
    16. Seetoo DQ, Crowe PJ, Russell PJ, et al. Quantitative expression of protein markers of plasminogen activation system in prognosis of colorectal cancer. J Surg Oncol. 2003, 82(3): 184-93
    
    17. Papadopoulou S, Scorilas A, Yotis J, et al. Significance of urokinase-type plasminogen activator and plasminogen activator inhibitor-1 (PAI-1) exp(?)ession in human colorectal carcinomas. Tumour Biol. 2002,23(3): 170-8
    
    18. Konno H, Abe J, Kaneko T, et al. Urokinase receptor and vascular endothelial growth factor are synergistically associated with the liver metastasis of colorectal cancer. Jpn J Cancer Res. 2001, 92(5): 516-23
    
    19. Griffith OL, Melck A, Jones SJ, et al. Meta-analysis and meta-review of thyroid cancer gene expression profiling studies identifies important diagnostic biomarkers. J Clin Oncol. 2006, 24(31): 5043-51
    
    20. Bresalier RS, Byrd JC, Tessler D, et al. A circulating ligand for galectin-3 is a haptoglobin-related glycoprotein elevated in individuals with colon cancer. Gastroenterology. 2004, 127(3): 741-8
    
    21. Tsuboi K, Shimura T, Masuda N, et al. Galectin-3 expression in colorectal cancer: relation to invasion and metastasis. Anticancer Res. 2007, 27(4B): 2289-96
    
    22. Legendre H, Decaestecker C, Nagy N, et al. Prognostic values of galectin-3 and the macrophage migration inhibitory factor (MIF) in human colorectal cancers. Mod Pathol. 2003, 16(5): 491-504
    
    23. Inufusa H, Nakamura M, Adachi T, et al. Role of galectin-3 in adenocarcinoma liver metastasis. Int J Oncol 2001, 19(5): 913-9
    
    24. Nakamura M, Inufusa H, Adachi T, et al. Involvement of galectin-3 expression in colorectal cancer progression and metastasis. Int J Oncol. 1999, 15(1): 143-8
    
    25. Endo K, Kohnoe S, Tsujita E, et al. Galectin-3 expression is a potent prognostic marker in colorectal cancer. Anticancer Res. 2005, 25(4): 3117-21
    
    26. Guo J, Shou C, Meng L, et al. Neuronal protein synuclein gamma predicts poor clinical outcome in breast cancer. Int J Cancer. 2007, 121(6): 1296-305
    27. Wu K, Weng Z, Tao Q, et al. Stage-specific expression of breast cancer-specific gene gamma-synuclein. Cancer Epidemiol Biomarkers Prev. 2003, 12(9): 920-5
    
    28. Liu H, Liu W, Wu Y, et al. Loss of epigenetic control of synuclein-gamma gene as a molecular indicator of metastasis in a wide range of human cancers. Cancer Res. 2005, 65(17): 7635-43
    
    29. Shimao Y, Nabeshima K, Inoue T, et al. Complex formation of IQGAP1 with E-cadherin/catenin during cohort migration of carcinoma cells. Its possible association with localized release from cell-cell adhesion. Virchows Arch. 2002, 441(2): 124-32
    
    30. Nabeshima K, Shimao Y, Inoue T, et al. Immunohistochemical analysis of IQGAP1 expression in human colorectal carcinomas: its overexpression in carcinomas and association with invasion fronts. Cancer Lett. 2002, 176(1): 101-9
    
    31. Briggs MW and Sacks DB. IQGAP proteins are integral components of cytoskeletal regulation. EMBO Rep. 2003, 4(6): 571-4
    
    32. Noritake J, Watanabe T, Sato K, et al. IQGAP1: a key regulator of adhesion and migration. J Cell Sci. 2005, 118(Pt 10): 2085-92
    
    33. Kruger S, Ola V, Fischer D, et al. Prognostic significance of clusterin immunoreactivity in breast cancer. Neoplasma. 2007, 54(1): 46-50
    
    34. Ranney MK, Ahmed IS, Potts KR, et al. Multiple pathways regulating the anti-apoptotic protein clusterin in breast cancer. Biochim Biophys Acta. 2007, 1772(9): 1103-11
    
    35. Lau SH, Sham JS, Xie D, et al. Clusterin plays an important role in hepatocellular carcinoma metastasis. Oncogene. 2006, 25(8): 1242-50
    
    36. Xie D, Sham JS, Zeng WF, et al. Oncogenic role of clusterin overexpression in multistage colorectal tumorigenesis and progression. World J Gastroenterol. 2005, 11(21): 3285-9
    
    37. Tanami H, Tsuda H, Okabe S, et al. Involvement of cyclin D3 in liver metastasis of colorectal cancer, revealed by genome-wide copy-number analysis. Lab Invest. 2005,85(9): 1118-29
    
    38. Vasiljeva O, Papazoglou A, Kruger A, et al. Tumor cell-derived and macrophage-derived cathepsin B promotes progression and lung metastasis of mammary cancer. Cancer Res. 2006, 66(10): 5242-50
    
    39. Niedergethmann M, Wostbrock B, Sturm JW, et al. Prognostic impact of cysteine proteases cathepsin B and cathepsin L in pancreatic adenocarcinoma. Pancreas. 2004, 29(3): 204-11
    
    40. D'Andrea MR, Limiti MR, Bari M, et al. Correlation between genetic and biological aspects in primary non-metastatic breast cancers and corresponding synchronous axillary lymph node metastasis. Breast Cancer Res Treat. 2007, 101(3): 279-84
    
    41. Goerge T, Barg A, Schnaeker EM, et al. Tumor-derived matrix metalloproteinase-1 targets endothelial proteinase-activated receptor 1 promoting endothelial cell activation. Cancer Res. 2006, 66(15): 7766-74
    
    42. Goerge T, Kleineruschkamp F, Barg A, et al. Microfluidic reveals generation of platelet-strings on tumor-activated endothelium. Thromb Haemost. 2007, 98(2): 283-6
    
    43. McKerrow JH, Bhargava V, Hansell E, et al. A functional proteomics screen of proteases in colorectal carcinoma. Mol Med. 2000, 6(5): 450-60
    
    44. Merle P, de la Monte S, Kim M, et al. Functional consequences of frizzled-7 receptor overexpression in human hepatocellular carcinoma. Gastroenterology. 2004, 127(4): 1110-22
    
    45. Vincan E, Brabletz T, Faux MC, et al. A human three-dimensional cell line model allows the study of dynamic and reversible epithelial-mesenchymal and mesenchymal-epithelial transition that underpins colorectal carcinogenesis. Cells Tissues Organs. 2007, 185(1-3): 20-8
    
    46. Vincan E, Darcy PK, Farrelly CA, et al. Frizzled-7 dictates three-dimensional organization of colorectal cancer cell carcinoids. Oncogene. 2007, 26(16): 2340-52
    
    47. Tang M, Torres-Lanzas J, Lopez-Rios F, et al. Wnt signaling promoter hypermethylation distinguishes lung primary adeno carcinomas from colorectal metastasis to the lung. Int J Cancer. 2006, 119(11): 2603-6
    
    48. Takata O, Kawamura YJ, Konishi F, et al. cDNA array analysis for prediction of hepatic metastasis of colorectal carcinoma. Surg Today. 2006, 36(7): 608-14
    
    49. Li LN, Zhang HD, Yuan SJ, et al. Establishment and characterization of a novel human colorectal cancer cell line (CLY) metastasizing spontaneously to the liver in nude mice. Oncol Rep. 2007, 17(4): 835-40
    
    50. Pena C, Garcia JM, Silva J, et al. E-cadherin and vitamin D receptor regulation by SNAIL and ZEB1 in colon cancer: clinicopathological correlations. Hum Mol Genet. 2005,14(22): 3361-70
    
    51. Ozawa S, Kato Y, Komori R, et al. BRAK/CXCL14 expression suppresses tumor growth in vivo in human oral carcinoma cells. Biochem Biophys Res Commun. 2006, 348(2): 406-12
    
    52. Starnes T, Rasila KK, Robertson MJ, et al. The chemokine CXCL14 (BRAK) stimulates activated NK cell migration: implications for the downregulation of CXCL14 in malignancy. Exp Hematol. 2006, 34(8): 1101-5
    
    53. Wente MN, Mayer C, Gaida MM, et al. CXCL14 expression and potential function in pancreatic cancer. Cancer Lett. 2007,
    
    54. Allinen M, Beroukhim R, Cai L, et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell. 2004, 6(1): 17-32
    
    55. Hildesheim J and Fornace AJ, Jr. Gadd45a: an elusive yet attractive candidate gene in pancreatic cancer. Clin Cancer Res. 2002, 8(8): 2475-9
    
    56. Niedergethmann M, Alves F, Neff JK, et al. Gene expression profiling of liver metastases and tumour invasion in pancreatic cancer using an orthotopic SCID mouse model. Br J Cancer. 2007,
    
    57. Jiang X, Guo YL and Bromberg ME. Formation of tissue factor-factor Vila-factor Xa complex prevents apoptosis in human breast cancer cells. Thromb Haemost. 2006, 96(2): 196-201
    
    58. Zipin A, Israeli-Amit M, Meshel T, et al. Tumor-micro environment interactions: the fucose-generating FX enzyme controls adhesive properties of colorectal cancer cells. Cancer Res. 2004, 64(18): 6571-8
    
    59. Madoz-Gurpide J, Lopez-Serra P, Martinez-Torrecuadrada JL, et al. Proteomics-based validation of genomic data: applications in colorectal cancer diagnosis. Mol Cell Proteomics. 2006, 5(8): 1471-83
    
    60. Deng H, Makizumi R, Ravikumar TS, et al. Bone morphogenetic protein-4 is overexpressed in colonic adeno carcinomas and promotes migration and invasion of HCT116 cells. Exp Cell Res. 2007, 313(5): 1033-44
    
    61. Solmi R, De Sanctis P, Zucchini C, et al. Search for epithelial-specific mRNAs in peripheral blood of patients with colon cancer by RT-PCR. Int J Oncol. 2004, 25(4): 1049-56
    
    62. Aikawa T, Whipple CA, Lopez ME, et al. Glypican-1 modulates the angiogenic and metastatic potential of human and mouse cancer cells. J Clin Invest. 2007,
    63.Dhar DK,Wang TC,Tabara H,et al.Expression of trefoil factor family members correlates with patient prognosis and neoangiogenesis.Clin Cancer Res.2005,11(18):6472-8
    64.Dhar DK,Wang TC,Maruyama R,et al.Expression of cytoplasmic TFF2 is a marker of tumor metastasis and negative prognostic factor in gastric cancer.Lab Invest.2003,83(9):1343-52
    65.Siu LS,Romanska H,Abel PD,et al.TFF2(trefoil family factor2) inhibits apoptosis in breast and colorectal cancer cell lines.Peptides.2004,25(5):855-63
    66.Xi L,Gooding W,McCarty K,et al.Identification of mRNA markers for molecular staging of lymph nodes in colorectal cancer.Clin Chem.2006,52(3):520-3
    67.Walsh MD,Young JP,Leggett BA,et al.The MUC13 cell surface mucin is highly expressed by human colorectal carcinomas.Hum Pathol.2007,38(6):883-92
    68.Packer LM,Williams SJ,Callaghan S,et al.Expression of the cell surface mucin gene family in adenocarcinomas.Int J Oncol.2004,25(4):1119-26
    69.Shimamura T,Ito H,Shibahara J,et al.Overexpression of MUC13 is associated with intestinal-type gastric cancer.Cancer Sci.2005,96(5):265-73
    70.Nadal C,Maurel J and Gascon P.Is there a genetic signature for liver metastasis in colorectal cancer? World J Gastroenterol.2007,13(44):5832-44
    71.Duffy MJ,van Dalen A,Haglund C,et al.Tumour markers in colorectal cancer:European Group on Tumour Markers(EGTM) guidelines for clinical use.Eur J Cancer.2007,43(9):1348-60
    72.Locker GY,Hamilton S,Harris J,et al.ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer.J Clin Oncol.2006,24(33):5313-27
    73.D'Arrigo A,Belluco C,Ambrosi A,et al.Metastatic transcriptional pattern revealed by gene expression profiling in primary colorectal carcinoma,Int J Cancer.2005,115(2):256-62
    74.Barozzi C,Ravaioli M,D'Errico A,et al.Relevance of biologic markers in colorectal carcinoma:a comparative study of a broad panel.Cancer.2002,94(3):647-57
    75.童华生,,张亚历,,姜泊,,et al.高低转移表型大肠癌细胞株蛋白质表达谱差异初步分析.世界华人消化杂志.2005,13(1):109-112
    76.Danguy A,Camby I and Kiss R.Galectins and cancer.Biochim Biophys Acta.2002, 1572(2-3):285-93
    77.Dumic J,Dabelic S and Flogel M.Galectin-3:an open-ended story.Biochim Biophys Acta.2006,1760(4):616-35
    78.Zou J,Glinsky VV,Landon LA,et al.Peptides specific to the galectin-3carbohydrate recognition domain inhibit metastasis-associated cancer cell adhesion.Carcinogenesis.2005,26(2):309-18
    79.Paret C,Hildebrand D,Weitz J,et al.C4.4A as a candidate marker in the diagnosis of colorectal cancer.Br J Cancer.2007,97(8):1146-56
    80.Resnick D,Pearson A and Krieger M.The SRCR superfamily:a family reminiscent of the Ig superfamily.Trends Biochem Sci.1994,19(1):5-8
    81.Grassadonia A,Tinari N,Iurisci I,et al.90K(Mac-2 BP) and galectins in tumor progression and metastasis.Glycoconj J.2004,19(7-9):551-6
    82.Ulmer TA,Keeler V,Loh L,et al.Tumor-associated antigen 90K/Mac-2-binding protein:possible role in colon cancer.J Cell Biochem.2006,98(5):1351-66
    83.Iacobelli S,Sismondi P,Giai M,et al.Prognostic value of a novel circulating serum 90K antigen in breast cancer.Br J Cancer.1994,69(1):172-6
    84.Marchetti A,Tinari N,Buttitta F,et al.Expression of 90K(Mac-2 BP) correlates with distant metastasis and predicts survival in stage I non-small cell lung cancer patients.Cancer Res.2002,62(9):2535-9
    85.Johnson FE,Zhou M,Collins BT,et al.Mechanical deformation induces proliferation of human colorectal carcinoma cells,Int J Oncol.2000,16(3):617-22
    86.Holloway SE,Beck AW,Girard L,et al.Increased expression of Cyr61(CCN1)identified in peritoneal metastases from human pancreatic cancer.J Am Coll Surg.2005,200(3):371-7
    87.Jiang WG,Watkins G,Fodstad O,et al.Differential expression of the CCN family members Cyr61,CTGF and Nov in human breast cancer.Endocr Relat Cancer.2004,11(4):781-91
    88.Lin BR,Chang CC,Chen LR,et al.Cysteine-rich 61(CCN1) enhances chemotactic migration,transendothelial cell migration,and intravasation by concomitantly up-regulating chemokine receptor 1 and 2.Mol Cancer Res.2007,5(11):1111-23
    89.Hong Y,Ho KS,Eu KW,et al.A susceptibility gene set for early onset colorectal cancer that integrates diverse signaling pathways:implication for tumorigenesis. Clin Cancer Res. 2007, 13(4): 1107-14
    
    90. Watson DS, Brotherick I, Shenton BK, et al. Cyclin D3 expression, cell proliferation and pathological stage of human primary colorectal cancer. Oncology. 1999, 56(1): 66-72
    
    91. Florenes VA, Faye RS, Maelandsmo GM, et al. Levels of cyclin D1 and D3 in malignant melanoma: deregulated cyclin D3 expression is associated with poor clinical outcome in superficial melanoma. Clin Cancer Res. 2000, 6(9): 3614-20
    
    92. Filipits M, Jaeger U, Pohl G, et al. Cyclin D3 is a predictive and prognostic factor in diffuse large B-cell lymphoma. Clin Cancer Res. 2002, 8(3): 729-33
    
    93. Pruneri G, Pignataro L, Valentini S, et al. Cyclin D3 immunoreactivity is an independent predictor of survival in laryngeal squamous cell carcinoma. Clin Cancer Res. 2005, 11(1): 242-8
    
    94. Capurso G, Lattimore S, Crnogorac-Jurcevic T, et al. Gene expression profiles of progressive pancreatic endocrine tumours and their liver metastases reveal potential novel markers and therapeutic targets. Endocr Relat Cancer. 2006, 13(2): 541-58
    
    95. Yoon SS and Tanabe KK. Surgical treatment and other regional treatments for colorectal cancer liver metastases. Oncologist. 1999, 4(3): 197-208
    
    96. McArdle C. ABC of colorectal cancer: effectiveness of follow up. Bmj. 2000, 321(7272): 1332-5
    
    97. Pawlik TM and Choti MA. Shifting from clinical to biologic indicators of prognosis after resection of hepatic colorectal metastases. Curr Oncol Rep. 2007, 9(3): 193-201
    
    98. Ohji Y, Yao T, Eguchi T, et al. Evaluation of risk of liver metastasis in colorectal adenocarcinoma based on the combination of risk factors including CD10 expression: multivariate analysis of clinicopathological and immunohistochemical factors. Oncol Rep. 2007, 17(3): 525-30
    
    99. Bingle L, Lewis CE, Corke KP, et al. Macrophages promote angiogenesis in human breast tumour spheroids in vivo. Br J Cancer. 2006, 94(1): 101-7
    
    100. Lewis CE and Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 2006, 66(2): 605-12
    
    101. Baier PK, Eggstein S, Wolff-Vorbeck G, et al. Chemokines in human colorectal carcinoma. Anticancer Res. 2005, 25(5): 3581-4
    102. Cheadle EJ, Riyad K, Subar D, et al. Eotaxin-2 and colorectal cancer: a potential target for immune therapy. Clin Cancer Res. 2007, 13(19): 5719-28
    
    103. Bailey C, Negus R, Morris A, et al. Chemokine expression is associated with the accumulation of tumour associated macrophages (TAMs) and progression in human colorectal cancer. Clin Exp Metastasis. 2007, 24(2): 121-30
    
    104. Yang X, Lu P, Ishida Y, et al. Attenuated liver tumor formation in the absence of CCR2 with a concomitant reduction in the accumulation of hepatic stellate cells, macrophages and neovascularization. Int J Cancer. 2006,118(2): 335-45
    
    105. Craig MJ and Loberg RD. CCL2 (Monocyte Chemoattractant Protein-1) in cancer bone metastases. Cancer Metastasis Rev. 2006, 25(4): 611-9
    
    106. Loberg RD, Day LL, Harwood J, et al. CCL2 is a potent regulator of prostate cancer cell migration and proliferation. Neoplasia. 2006, 8(7): 578-86
    
    107. Wu K, Quan Z, Weng Z, et al. Expression of neuronal protein synuclein gamma gene as a novel marker for breast cancer prognosis. Breast Cancer Res Treat. 2007, 101(3): 259-67
    
    108. Jiang Y, Liu YE, Lu A, et al. Stimulation of estrogen receptor signaling by gamma synuclein. Cancer Res. 2003, 63(14): 3899-903
    
    109. Jiang Y, Liu YE, Goldberg ID, et al. Gamma synuclein, a novel heat-shock protein-associated chaperone, stimulates Iigand-dependent estrogen receptor alpha signaling and mammary tumorigenesis. Cancer Res. 2004, 64(13): 4539-46
    
    110. Ninkina NN, Alimova-Kost MV, Paterson JW, et al. Organization, expression and polymorphism of the human persyn gene. Hum Mol Genet. 1998, 7(9): 1417-24
    
    111. Gupta A, Inaba S, Wong OK, et al. Breast cancer-specific gene 1 interacts with the mitotic checkpoint kinase BubRl. Oncogene. 2003, 22(48): 7593-9
    
    112. Inaba S, Li C, Shi YE, et al. Synuclein gamma inhibits the mitotic checkpoint function and promotes chromosomal instability of breast cancer cells. Breast Cancer Res Treat. 2005, 94(1): 25-35
    
    113. Weigelt B, Glas AM, Wessels LF, et al. Gene expression profiles of primary breast tumors maintained in distant metastases. Proc Natl Acad Sci U S A. 2003, 100(26): 15901-5
    1.Jemal A,Siegel R,Ward E,et al.Cancer statistics,2007.CA Cancer J Clin.2007,57(1):43-66
    2.全国肿瘤防治研究办公室卫生部卫生统计信息中心.中国试点市、县恶性肿瘤 的发病与死亡. 2002, 第二卷(1993-1997): 24-31
    
    3. Levin B, Brooks D, Smith RA, et al. Emerging technologies in screening for colorectal cancer: CT colonography, immunochemical fecal occult blood tests, and stool screening using molecular markers. CA Cancer J Clin. 2003, 53(1): 44-55
    
    4. McMillan DC and McArdle CS. Epidemiology of colorectal liver metastases. Surg Oncol. 2007, 16(1): 3-5
    
    5. Yoon SS and Tanabe KK. Surgical treatment and other regional treatments for colorectal cancer liver metastases. Oncologist. 1999, 4(3): 197-208
    
    6. Simmonds PC, Primrose JN, Colquitt JL, et al. Surgical resection of hepatic metastases from colorectal cancer: a systematic review of published studies. Br J Cancer. 2006, 94(7): 982-99
    
    7. Scheele J, Stang R, Altendorf-Hofmann A, et al. Resection of colorectal liver metastases. World J Surg. 1995, 19(1): 59-71
    
    8. Nordlinger B, Guiguet M, Vaillant JC, et al. Surgical resection of colorectal carcinoma metastases to the liver. A prognostic scoring system to improve case selection, based on 1568 patients. Association Francaise de Chirurgie. Cancer. 1996,77(7): 1254-62
    
    9. Fong Y, Fortner J, Sun RL, et al. Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann Surg. 1999, 230(3): 309-18; discussion 318-21
    
    10. Choti MA, Sitzmann JV, Tiburi MF, et al. Trends in long-term survival following liver resection for hepatic colorectal metastases. Ann Surg. 2002, 235(6): 759-66
    
    11. Abdalla EK, Vauthey JN, Ellis LM, et al. Recurrence and outcomes following hepatic resection, radio frequency ablation, and combined resection/ablation for colorectal liver metastases. Ann Surg. 2004, 239(6): 818-25; discussion 825-7
    
    12. Wei AC, Greig PD, Grant D, et al. Survival after hepatic resection for colorectal metastases: a 10-year experience. Ann Surg Oncol. 2006,13(5): 668-76
    
    13. Bolton JS and Fuhrman GM. Survival after resection of multiple bilobar hepatic metastases from colorectal carcinoma. Ann Surg. 2000, 231(5): 743-51
    
    14. Martin R, Paty P, Fong Y, et al. Simultaneous liver and colorectal resections are safe for synchronous colorectal liver metastasis. J Am Coll Surg. 2003, 197(2): 233-41; discussion 241-2
    
    15. Chua HK, Sondenaa K, Tsiotos GG, et al. Concurrent vs. staged colectomy and hepatectomy for primary colorectal cancer with synchronous hepatic metastases.Dis Colon Rectum.2004,47(8):1310-6
    16.Minagawa M,Yamamoto J,Miwa S,et al.Selection criteria for simultaneous resection in patients with synchronous liver metastasis.Arch Surg.2006,141(10):1006-12;discussion 1013
    17.周伟平and吴孟超.结直肠癌肝转移的治疗进展.中华胃肠外科杂志.2005,8(1):9-10
    18.季加孚.结直肠癌肝转移的治疗策略.中国实用外科杂志.2004,24(7):398-400
    19.Imamura H,Seyama Y,Kokudo N,et al.Single and(?)ultiple resections of multiple hepatic metastases of colorectal origin.Surgery.2004,135(5):508-17
    20.Kokudo N,Miki Y,Sugai S,et al.Genetic and histological assessment of surgical margins in resected liver metastases from colorectal carcinoma:minimum surgical margins for successful resection.Arch Surg.2002,137(7):833-40
    21.Pawlik TM,Scoggins CR,Zorzi D,et al.Effect of surgical margin status on survival and site of recurrence after hepatic resection for colorectal metastases.Ann Surg.2005,241(5):715-22,discussion 722-4
    22.Altendorf-Hofmann A and Scheele J.A critical review of the major indicators of prognosis after resection of hepatic metastases from colorectal carcinoma.Surg Oncol Clin N Am.2003,12(1):165-92,ⅹⅰ
    23.Takahashi S,Nagai K,Saito N,et al.Multiple resections for hepatic and pulmonary metastases of colorectal carcinoma.Jpn J Clin Oncol.2007,37(3):186-92
    24.Miller G,Biernacki P,Kemeny NE,et al.Outcomes after resection of synchronous or metachronous hepatic and pulmonary colorectal metastases.J Am Coll Surg.2007,205(2):231-8
    25.Azoulay D,Castaing D,Smail A,et al.Resection of nonresectable liver metastases from colorectal cancer after percutaneous portal vein embolization.Ann Surg.2000,231(4):480-6
    26.Jaeck D,Oussoultzoglou E,Rosso E,et al.A two-stage hepatectomy procedure combined with portal vein embolization to achieve curative resection for initially unresectable multiple and bilobar colorectal liver metastases.Ann Surg.2004,240(6):1037-49;discussion 1049-51
    27. Adam R, Delvart V, Pascal G, et al. Rescue surgery for unresectable colorectal liver metastases downstaged by chemotherapy: a model to predict long-term survival. Ann Surg. 2004, 240(4): 644-57; discussion 657-8
    
    28. Charnsangavej C, Clary B, Fong Y, et al. Selection of patients for resection of hepatic colorectal metastases: expert consensus statement. Ann Surg Oncol. 2006, 13(10): 1261-8
    
    29. Mann CD, Metcalfe MS, Leopardi LN, et al. The clinical risk score: emerging as a reliable preoperative prognostic index in hepatectomy for colorectal metastases. Arch Surg. 2004,139(11): 1168-72
    
    30. Twelves C, Wong A, Nowacki MP, et al. Capecitabine as adjuvant treatment for stage III colon cancer. N Engl J Med. 2005, 352(26): 2696-704
    
    31. Bertheault-Cvitkovic F, Jami A, Ithzaki M, et al. Biweekly intensified ambulatory chronomodulated chemotherapy with oxaliplatin, fluorouracil, and leucovorin in patients with metastatic colorectal cancer. J Clin Oncol. 1996,14(11): 2950-8
    
    32. Patiyil S and Alberts SR. Metastatic colorectal cancer: Therapeutic options. Curr Treat Options Oncol. 2006, 7(5): 389-98
    
    33. 沈琳.转移性结直肠癌治疗进展.循证医学.2006,6(5):257—258
    
    34. Hurwitz H, Fehrenbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N EnglJ Med. 2004, 350(23): 2335-42
    
    35. Kemeny NE, Niedzwiecki D, Hollis DR, et al. Hepatic arterial infusion versus systemic therapy for hepatic metastases from colorectal cancer: a randomized trial of efficacy, quality of life, and molecular markers (CALGB 9481). J Clin Oncol 2006, 24(9): 1395-403
    
    36. Vogl TJ, Mack MG, Balzer JO, et al. Liver metastases: neoadjuvant downsizing with transarterial chemoembolization before laser-induced thermotherapy. Radiology. 2003, 229(2): 457-64
    
    37. Siperstein AE, Berber E, Ballem N, et al. Survival after radio frequency ablation of colorectal liver metastases: 10-year experience. Ann Surg. 2007, 246(4): 559-65; discussion 565-7
    
    38. Al-Asfoor A and Fedorowicz Z. WITHDRAWN: Resection versus no intervention or other surgical interventions for colorectal cancer liver metastases. Cochrane Database Syst Rev. 2007, (4): CD006039
    39. Meyerhardt JA and Mayer RJ. Systemic therapy for colorectal cancer. N Engl J Med. 2005, 352(5): 476-87
    
    40. Graziano F and Cascinu S. Prognostic molecular markers for planning adjuvant chemotherapy trials in Dukes' B colorectal cancer patients: how much evidence is enough? Ann Oncol. 2003, 14(7): 1026-38
    
    41. Cohen SJ, Cohen RB and Meropol NJ. Targeting signal transduction pathways in colorectal cancer-more than skin deep. J Clin Oncol. 2005, 23(23): 5374-85
    
    42. Bipat S, van Leeuwen MS, Comans EF, et al. Colorectal liver metastases: CT, MR imaging, and PET for diagnosis—meta-analysis. Radiology. 2005, 237(1): 123-31
    
    43. Ward J, Guthrie JA, Wilson D, et al. Colorectal hepatic metastases: detection with SPIO-enhanced breath-hold MR imaging--comparison of optimized sequences. Radiology. 2003, 228(3): 709-18
    
    44. Huebner RH, Park KC, Shepherd JE, et al. A meta-analysis of the literature for whole-body FDG PET detection of recurrent colorectal cancer. J Nucl Med. 2000, 41(7): 1177-89
    
    45. Selzner M, Hany TF, Wildbrett P, et al. Does the novel PET/CT imaging modality impact on the treatment of patients with metastatic colorectal cancer of the liver? Ann Surg. 2004, 240(6): 1027-34; discussion 1035-6
    
    46. Jarnagin WR, Fong Y, Ky A, et al. Liver resection for metastatic colorectal cancer: assessing the risk of occult irresectable disease. J Am Coll Surg. 1999, 188(1): 33-42
    
    47. Chau I, Allen MJ, Cunningham D, et al. The value of routine serum carcino-embryonic antigen measurement and computed tomography in the surveillance of patients after adjuvant chemotherapy for colorectal cancer. J Clin Oncol. 2004, 22(8): 1420-9
    
    48. Rosen M, Chan L, Beart RW, Jr., et al. Follow-up of colorectal cancer: a meta-analysis. Dis Colon Rectum. 1998,41(9): 1116-26
    
    49. Renehan AG, Egger M, Saunders MP, et al. Impact on survival of intensive follow up after curative resection for colorectal cancer: systematic review and meta-analysis of randomised trials. Bmj. 2002, 324(7341): 813
    
    50. Duffy MJ, van Dalen A, Haglund C, et al. Tumour markers in colorectal cancer: European Group on Tumour Markers (EGTM) guidelines for clinical use. Eur J Cancer. 2007, 43(9): 1348-60
    51. McShane LM, Altman DG, Sauerbrei W, et al. Reporting recommendations for tumor marker prognostic studies (REMARK). J Natl Cancer Inst. 2005, 97(16): 1180-4
    
    52. Locker GY, Hamilton S, Harris J, et al. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol. 2006, 24(33): 5313-27
    
    53. Gangopadhyay A, Lazure DA and Thomas P. Carcinoembryonic antigen induces signal transduction in Kupffer cells. Cancer Lett. 1997, 118(1): 1-6
    
    54. Gangopadhyay A, Lazure DA and Thomas P. Adhesion of colorectal carcinoma cells to the endothelium is mediated by cytokines from CEA stimulated Kupffer cells. Clin Exp Metastasis. 1998, 16(8): 703-12
    
    55. Bird NC, Mangnall D and Majeed AW. Biology of colorectal liver metastases: A review. JSurg Oncol. 2006, 94(1): 68-80
    
    56. Delektorskaya W, Perevoshchikov AG, Golovkov DA, et al. Expression of E-cadherin, beta-catenin, and CD-44v6 cell adhesion molecules in primary tumors and metastases of colorectal adenocarcinoma. Bull Exp Biol Med. 2005, 139(6): 706-10
    
    57. Enns A, Korb T, Schluter K, et al. Alphavbeta5-integrins mediate early steps of metastasis formation. Eur J Cancer. 2005, 41(7): 1065-72
    
    58. Morozevich GE, Kozlova NI, Chubukina AN, et al. Role of integrin alphavbeta3 in substrate-dependent apoptosis of human intestinal carcinoma cells. Biochemistry (Mosc). 2003, 68(4): 416-23
    
    59. Yeatman TJ and Chambers AF. Osteopontin and colon cancer progression. Clin Exp Metastasis. 2003, 20(1): 85-90
    
    60. Tuck AB, Elliott BE, Hota C, et al. Osteopontin-induced, integrin-dependent migration of human mammary epithelial cells involves activation of the hepatocyte growth factor receptor (Met). J Cell Biochem. 2000, 78(3): 465-75
    
    61. Lynch CC, Crawford HC, Matrisian LM, et al. Epidermal growth factor upregulates matrix metalloproteinase-7 expression through activation of PEA3 transcription factors. Int J Oncol. 2004, 24(6): 1565-72
    
    62. Zeng ZS, Shu WP, Cohen AM, et al. Matrix metalloproteinase-7 expression in colorectal cancer liver metastases: evidence for involvement of MMP-7 activation in human cancer metastases. Clin Cancer Res. 2002, 8(1): 144-8
    63. Kioi M, Yamamoto K, Higashi S, et al. Matrilysin (MMP-7) induces homotypic adhesion of human colon cancer cells and enhances their metastatic potential in nude mouse model. Oncogene. 2003, 22(54): 8662-70
    
    64. Hasegawa S, Koshikawa N, Momiyama N, et al. Matrilysin-specific antisense oligonucleotide inhibits liver metastasis of human colon cancer cells in a nude mouse model. Int J Cancer. 1998, 76(6): 812-6
    
    65. Van Noorden CJ, Jonges TG, Van Marie J, et al. Heterogeneous suppression of experimentally induced colon cancer metastasis in rat liver lobes by inhibition of extracellular cathepsin B. Clin Exp Metastasis. 1998, 16(2): 159-67
    
    66. Ossowski L and Aguirre-Ghiso JA. Urokinase receptor and integrin partnership: coordination of signaling for cell adhesion, migration and growth. Curr Opin Cell Biol. 2000, 12(5): 613-20
    
    67. Ahmed N, Oliva K, Wang Y, et al. Downregulation of urokinase plasminogen activator receptor expression inhibits Erk signalling with concomitant suppression of invasiveness due to loss of uPAR-betal integrin complex in colon cancer cells. Br J Cancer. 2003, 89(2): 374-84
    
    68. Tokunaga T, Oshika Y, Abe Y, et al. Vascular endothelial growth factor (VEGF) mRNA isoform expression pattern is correlated with liver metastasis and poor prognosis in colon cancer. BrJ Cancer. 1998, 77(6): 998-1002
    
    69. Kuramochi H, Hayashi K, Uchida K, et al. Vascular endothelial growth factor messenger RNA expression level is preserved in liver metastases compared with corresponding primary colorectal cancer. Clin Cancer Res. 2006, 12(1): 29-33
    
    70. Saltz LB, Meropol NJ, Loehrer PJ, Sr., et al. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol. 2004, 22(7): 1201-8
    
    71. Chong G and Cunningham D. Improving long-term outcomes for patients with liver metastases from colorectal cancer. J Clin Oncol. 2005, 23(36): 9063-6
    
    72. Italiano A, Saint-Paul MC, Caroli-Bosc FX, et al. Epidermal growth factor receptor (EGFR) status in primary colorectal tumors correlates with EGFR expression in related metastatic sites: biological and clinical implications. Ann Oncol. 2005, 16(9): 1503-7
    
    73. Kountourakis P, Pavlakis K, Psyrri A, et al. Clinicopathologic significance of EGFR and Her-2/neu in colorectal adenocarcinomas. Cancer J. 2006, 12(3): 229-36
    
    74. Peng L, Ning J, Meng L, et al. The association of the expression level of protein tyrosine phosphatase PRL-3 protein with liver metastasis and prognosis of patients with colorectal cancer. J Cancer Res Clin Oncol. 2004, 130(9): 521-6
    
    75. Bardelli A, Saha S, Sager JA, et al. PRL-3 expression in metastatic cancers. Clin Cancer Res. 2003, 9(15): 5607-15
    
    76. Kato H, Semba S, Miskad UA, et al. High expression of PRL-3 promotes cancer cell motility and liver metastasis in human colorectal cancer: a predictive molecular marker of metachronous liver and lung metastases. Clin Cancer Res. 2004, 10(21): 7318-28
    
    77. Peng L, Jin G, Wang L, et al. Identification of integrin alphal as an interacting protein of protein tyrosine phosphatase PRL-3. Biochem Biophys Res Commun. 2006, 342(1): 179-83
    
    78. Fiordalisi JJ, Keller PJ and Cox AD. PRL tyrosine phosphatases regulate rho family GTPases to promote invasion and motility. Cancer Res. 2006, 66(6): 3153-61
    
    79. Berney CR, Yang J, Fisher RJ, et al. Correlates of urokinase-type plasminogen activator in colorectal cancer: positive relationship with nm23 and c-erbB-2 protein expression. Oncol Res. 1998, 10(1): 47-54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700