用户名: 密码: 验证码:
四跨膜蛋白CD151与肝细胞癌侵袭转移及其对HGF/c-Met信号转导的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝癌是国内常见的恶性肿瘤之一,其侵袭转移与复发是患者死亡的主要原因之一。因此,探索肝癌侵袭转移与复发的发生机制,寻求有效的抗肝癌转移与复发治疗措施,对改善肝癌患者的预后具有重要意义。
     在肝癌侵袭转移与复发中,HGF/c-Met信号系统的“对话”有着重要地位,这一作用在肝癌切除术后,残留肝脏再生,致HGF/c-Met系统处于活跃的状态,从而促进残留肝癌细胞增殖使其与肝癌术后转移、复发的关系也表现尤为突出。HGF/c-Met信号系统在肝癌侵袭转移与复发中的重要地位,也为肝癌侵袭转移与复发的治疗提供了新的靶点。当前,已发现多种HGF/c-Met信号的抑制剂,但所发现的HGF/c-Met抑制剂都有不同程度局限,如HGF竞争性拮抗剂NK4,c-Met受体的选择性抑制剂PHA-665752只能在一定程度上抑制HGF/c-Met信号,究其原因是HGF/c-Met与其它信号间的交互作用,如HGF/c-Met信号与整合素信号间的交互作用。有研究表明四跨膜蛋白CD151可与c-Met形成一功能复合物,并在HGF/c-Met信号转导以及其与其它信号间的交互作用中扮演重要的角色,可能为抑制HGF/c-Met信号的全新靶点。目前,国内外还没有CD151在肝癌中研究的报道,同时,CD151在HGF/c-Met信号中的作用也缺乏系统研究。本实验首先在肝癌、相应癌、正常肝组织以及不同转移潜能肝癌细胞系中检测CD151表达差异;研究其与肝癌发生、发展以及预后的相关性;通过转染与干扰调节CD151表达后,探讨CD151与肝癌细胞侵袭与转移的关系;最后对CD151在HGF/c-Met信号转导中的具体作用进行研究。
     第一部分四跨膜蛋白CD151在肝癌中的过表达
     目的:检测肝癌、癌和正常肝组织中四跨膜蛋白CD151的mRNA与蛋白表达,分析其与肝癌发生的关系。
     方法:应用普通RT-PCR,荧光定量PCR与免疫组织化学技术检测CD151在肝癌、相应癌、正常肝组织中的表达,并比较三组间CD151的表达差异。
     结果:CD151在肝癌、相应癌和正常肝组织中均有表达,相对表达量分别为3.6±0.9(0.5-8.2),2.7±0.1(0.0-6.5)与1.8±0.8(0.0-3.1),肝癌与相应癌组织间差异明显(p<0.05),CD151在癌与正常肝组织的表达也存在差异(p<0.05)。免疫组织化学显示CD151主要分布于细胞膜,其在肝癌组织中的表达明显高于后两者(p<0.05)。
     结论:四跨膜蛋白CD151在肝癌发生中可能有重要作用。
     第二部分CD151/或c-Met与肝癌临床病理特征及预后的关系
     目的:研究CD151和c-Met在原发性肝癌中表达,探讨CD151和c-Met与原发性肝癌的关系及临床生物学意义。
     方法:应用荧光定量PCR检测120例肝癌组织中CD151与c-Met mRNA的表达,组织芯片检测520例肝癌组织中CD151与c-Met蛋白的表达,SSPS11.5统计分析两者与肝癌临床病理特征及预后的关系。
     结果:CD151蛋白的过表达与肝癌患者的无包膜、高分期与分级、肿瘤细胞低分化、有门脉癌栓及多卫星灶等临床病理因素有关(p<0.05);而c-Met与有门脉癌栓、肿瘤直径>0.5cm、多卫星灶、高分期与分级与肿瘤细胞低分化(p<0.05)等相关。CD151与c-Met在肝癌中表达呈中度相关,有显著性意义(r=0.051,p=0.013),CD151~+组的3、5、7年生存率明显低于CD151组(p<0.01),CD151~+/c-Met~+组的3、5、7年生存率明显低于CD121~-/c-Met~+及CD151~-/c-Met~-组(p<0.01)。
     结论:四跨膜蛋白CD151与原发性肝癌的侵袭、转移及不良预后相关;CD151对c-Met生物学功能可能存在影响。
     第三部分CD151表达与肝癌细胞侵袭与转移的关系
     目的:研究四跨膜蛋白CD151与肝细胞癌细胞侵袭与转移的关系。
     方法:荧光定量PCR,western blot及流式细胞仪检测不同转移潜能肝癌细胞中CD151的表达差异;转染pcDNA3-CD151cDNA与pGPU6/GFP/Neo-CD151,筛选出稳定细胞株,经western blot,流式细胞仪验证CD151表达改变后,明胶酶谱研究基质金属蛋白酶分泌变化;MTT检测CD151表达改变后,细胞增殖能力变化;transwell研究细胞侵袭能力改变。细胞接种于裸鼠体内,研究CD151表达改变后,细胞成瘤与肺转移能力的改变。
     结果:转染pcDNA3-CD151cDNA与pGPU6/GFP/Neo-CD151于低转移能力的HepG2与高转移的HCCLM3肝癌细胞,筛选的稳定细胞株CD151表达改变明显;明胶酶谱研究显示CD151的表达与MMP9的分泌呈正相关,而对MMP2的影响较小。肝癌细胞增殖受CD151表达水平影响较小(p>0.05):CD151高表达组细胞的移动与侵袭能力明显增强,肺转移灶明显增加,且以Ⅲ,Ⅳ期为主。
     结论:四跨膜蛋白CD151与肝癌的侵袭与转移正相关。
     第四部分CD151对HGF/c-Met信号转导的影响
     目的:研究CD151与c-Met在肝癌细胞中的关系及其对HGF/c-Met信号的影响。
     方法:免疫荧光与激光共聚焦研究两者在不同转移潜能肝癌细胞中的表达与相对分布;免疫共沉淀研究两者形成复合物情况。以HGF作用于CD151表达改变前后的细胞,western blot研究HGF/c-Met下游与肝癌转移相关的重要信号分子Akt、FAK、ERK1/2磷酸化差异,分析其在肝癌细胞中对HGF/c-Met信号的影响。
     结果:CD151与c-Met主要表达于肝癌细胞的细胞膜,分布一致;免疫共沉淀研究显示两者形成复合物。在HGF作用后,下游信号分子Akt与FAK在CD151表达不同的细胞,磷酸化差异明显(p<0.05),而ERK1/2的磷酸化在两组间无差异(p>0.05)。
     结论:四跨膜蛋白CD151与c-Met在肝癌细胞中形成复合物,其通过Akt与FAK对HGF/c-Met产生影响。
Hepatocellular carcinoma(HCC) is one of the most common cancers in China in terms of number of cases,and the invasion and metastasis are the leading cause for the HCC death,so it is of great clinical importance to investigate the mechanism of invasion and metastasis,and the effectual therapeutic way of anti-metastasis and relapse of HCC.Previous study has showed that the HGF/c-Met signal pathway play a crucial role in the invasion and metastasis of HCC,and the more activeness of HGF/c-Met system after hepatectomy due to the regeneration of remnant thepatic tissue,which promotes proliferation of remnant HCC cells.The critical role of HGF/c-Met signaling in HCC has sparked the active interest in searching for the means of the therapy of HCC through targeting it,as a result,many molecules of inhibitor targeting this signaling were come forth during the latest few years,such as the competed and selected inhibitor NK4 and PHA-665752,however,little progression has been achieved due to the cross-talking between the HGF/c-Met signaling pathway and the other signaling pathway,for example the cross-talking between HGF/c-Met and integrin signaling pathway.The latest study had reported the tetraspanin CD151 is involved in the signaling through form a complex with c-Met, but the role and expression of CD151 in HCC,and the detailed mechanism of CD151 in HGF/c-Met signaling pathway remains unknown.In the present study,we investigated the expression of CD151 and c-Met in HCC cell lines with different metastatic potential,and HCC,their adjacent nontumorous and normal liver tissues, and then explored the changes of invasive and metastatic ability in non-metastatic cell line HepG2 through CD151 cDNA transfection and high metastatic cell line HCCLM3 through silencing CD151 in vivo and vitro.We assayed the clinical significance of CD151 and combined expression of CD151 and c-Met in HCC samples using tissue microarrays(TMAs) and quantitative reverse transcription-polymerase chain reaction(qRT-PCR).Finally,the effect of CD151 on the HGF/c-Met signaling pathway was studied.
     Part one Overexpression of tetraspanin CD151 in hepatocellular carcinoma
     Objective:To investigate the relationship between the expression of CD151 and the carcinogenesis of HCC.
     Methods:The expression of CD151 was evaluated in HCC,their adjacent nontumorous and normal liver tissues by qRT-PCR and immunohistochemistry.
     Result:CD151 mRNA can be detected in all samples of three different type tissues, the CD151 mRNA level was significantly higher in HCC than those in their adjacent nontumorous and normal liver tissues(p<0.05),the mRNA level in adjacent nontumorous also higher than that in normal liver tissues(p<0.05).The CD 151 protein was located in the cytoplasm of HCC cell,the level of CD151 protein was consistent with the CD151 mRNA(p<0.05).
     Conclusion:The overexpression of CD151 may be related to the carcinogenesis of HCC.
     Part two Correlation and clinical significance of overexpression of CD151 and/or c-Met in hepatocellular carcinoma
     Objective:To investigate the correlation and clinical significance of CD151 and/or c-Met with hepatocellular carcinoma.
     Methods:The qRT-PCR was used to detect the expression of CD151 and c-Met in HCC,the TMA was used to detect the expression of CD151 and c-Met in 520 HCC patients,then the clinical significance of overexpression of CD 151 and/or c-Met was analyzed by SPSS11.5.
     Result:Overexpresvion CD151 and c-Met accounted of 59.8%(311/520) and 54.4% (283/520) of total patients,respectively.Overexpression CD151 was found to correlate significantly with portal vein tumor thrombus(PVTT),multiple tumor number,high TNM stage and low differentiation(p<0.05).However,other clinical characteristics,including age,gender,preoperative serum AFP and tumor size were not directly related to the overexpression of CD151.As for the overexpression of c-Met was related significantly to PVTT,large tumor size,multiple tumor number, high TNM stage and low cell differentiation(/7<0.05).The 3,5,7,year survival rate of CD151~+ was much lower than that of CD151~-(p<0.01),furthermore,3,5,7 year survival rate of CD151~+/c-Met~+ was much lower than those of CD151~-/c-Met~+ and CD151~-/c-Met~-.
     Conclusion:The overexpression of CD151 and high expression of CD151/c-Met can be a new marker in predicting the prognosis of HCC,and the tetraspanin CD151 could affect the signaling of HGF/c-Met.
     Part three Relationship of overexpression CD151 with the invasion and metastasis of hepatocellular carcinoma
     Objective:To investgate the relationship of CD151 with the invasion and metastasis of HCC cells.
     Method:the qRT-PCR,western blot and FCM was used to detect the expression of CD151 and c-Met in different HCC cell lines with different different metastatic potential.We then transfected the pcDNA3-CD151 cDNA and pGPU6/GFP/Neo-CD151 plasmid into the non-metastatic cell line HepG2 and the highly metastatic cell line HCCLM3,the expression of CD151 was determined by FCM,western blot in the stable transfection HCC cell lines.The secretion of MMPs was detected by gelatin zymography,and the ability of proliferation and invasion was tested by MTT and transwell in the the stable transfection HCC cell and their parental cell lines,respectively.At the last,metastasis assays in vivo was performed.
     Result:The secretion of MMP9 was upregulated in CD151 high expression group, while the activity of MMP-2 was not affected by the expression of CD151;the ability of proliferation did not alter between the high and low CD 151 expression groups,the transwell showed that the numbers of invaded cells in HCCLM3,HCCLM3-Mock and HepG2-CD151 were 36.8±14.4,32.3±10.2 and 26±8.8,which were significantly higher than those in HCCLM3-CD151-shRNA and HepG2, HepG2-Mock(20.3±10.7 and 17±7.7,14±6.3).The pulmonary metastasis rates and metastatic tumor clusters per mouse were 100%(5/5) and 220±53,100%(5/5) and 238±55,60%(3/5) and 145±43 in HCCLM3,HCCLM3-Mock cells and HepG2-CD151 cells group respectively,while 40%(2/5) and 114±46,0%(0/5) and 0%(0/5) in HCCLM3-CD151-shRNA cells,HepG2 and HepG2-Mock cells groups, respectively,with a statistical significance(p<0.05).
     Conclusion:The CD151 was positive correlation with the ability of invasion and metastasis.
     Part four Role of CD151 on the HGF/c-Met signaling transduction pathway in Hepatocellular carcinoma cells
     Objective:To expatiate the relationship between CD151 and c-Met in HCC cells, and the role of CD151 on HGF/c-Met signal pathway in hepatocellular carcinoma (HCC) cells.
     Methods:we investigated the expression of CD151 and c-Met in different metastatic potential of HCC cell lines by immunofluorescence and confocal laser scan microscopy,and the presence of CD151/c-Met complex was confirmed in HCCLM3 cells by immunoprecipitation,then the phosphorylation and non-phosphorylation of Akt,FAK and ERK,which are key molecules in HGF/c-Met signal pathway,were tested by western blot after HGF acting on the modified and parental cells.
     Result:The expression and location of CD151 and c-Met were unanimous,and formed a complex in HCC cells.The phosphorylation of FAK and Akt was higher in high expression of CD151 cells than in low expression cells(p<0.05),while the phosphorylation of ERK had no difference between the two kinds of HCC cells (p>0.05).
     Conelusion:The CD151 affect the HGF/c-Met signal transduction pathway through the signal molecules of FAK and Akt.
引文
1 Gesierich S,Parer C,Hildebrand D,et al.Colocalization of the tetraspanins,CO-029 and CD151,with integrins in human pancreatic adenocarcinoma:impact on cell motility.Clin Cancer Res,2005,11:2840-52.
    2 Hasegawa H,Kishimoto K,Yanagisawa K,et al.Assignment of SFA-1(PETA-3),a member of the transmembrane 4 superfamily,to human chromosome 11p15.5 by fluorescence in situ hybridization.Genomics,1997,40:193-6.
    3 Fitter S,Tetaz T J,Berndt MC,et al.Molecular cloning of eDNA encoding a novel platelet-endothelial cell tetra-span antigen,PETA-3.Blood,1995,86:1348-55.
    4 Hasegawa H,Utsunomiya Y,Kishimoto K,et al.SFA-1,a novel cellular gene induced by human T-cell leukemia virus type 1,is a member of the transmembrane 4 superfamily.J Virol,1996,70:3258-63.
    5 Ashman LK.CD151.J Biol Regul Homeost Agents,2002,16:223-6.
    6 Boueheix C,Rubinstein E.Tetraspanins.Cell Mol Life Sci,2001,58:1189-205.
    7 Serru V,Le Naour F,Billard M,et al.Selective tetraspan-integrin complexes (CD81/alpha4beta 1,CD 151/alpha3betal,CD 151/alpha6betal) under conditions disrupting tetraspan interactions.Biochem J,1999,340(Pt 1):103-11.
    8 Yunta M,Lazo PA.Tetraspanin proteins as organisers of membrane microdomains and signalling complexes.Cell Signal,2003,15:559-64.
    9 Sincock PM,Fitter S,Parton RG,et al.PETA-3/CD151,a member of the transmembrane 4 superfamily,is localised to the plasma membrane and endocytic system of endothelial cells,associates with multiple integrins and modulates cell function.J Cell Sci,1999,112(Pt 6):833-44.
    10 Ang J,Lijovic M,Ashman LK,et al.CD151 protein expression predicts the clinical outcome of low-grade primary prostate cancer better than histologic grading: a new prognostic indicator?. Cancer Epidemiol Biomarkers Prev, 2004,13:1717-21.
    11 Hashida H, Takabayashi A, Tokuhara T, et al. Clinical significance of transmembrane 4 superfamily in colon cancer. Br J Cancer, 2003,89:158-67.
    12 Funakoshi T, Tachibana I, Hoshida Y, et al. Expression of tetraspanins in human lung cancer cells: frequent downregulation of CD9 and its contribution to cell motility in small cell lung cancer. Oncogene, 2003,22:674-87.
    13 Garcia-Lopez MA, Barreiro O, Garcia-Diez A, et al. Role of tetraspanins CD9 and CD151 in primary melanocyte motility. J Invest Dermatol, 2005,125:1001-9.
    14 Sauer G, Kurzeder C, Grundmann R, et al. Expression of tetraspanin adaptor proteins below defined threshold values is associated with in vitro invasiveness of mammary carcinoma cells. Oncol Rep, 2003,10:405-10.
    15 Hemler ME. Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol, 2005,6:801-11.
    16 Hemler ME. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol, 2003,19:397-422.
    17 Anzai N, Lee Y, Youn BS, et al. C-kit associated with the transmembrane 4 superfamily proteins constitutes a functionally distinct subunit in human hematopoietic progenitors. Blood, 2002,99:4413-21.
    18 Lau LM, Wee JL, Wright MD, et al. The tetraspanin superfamily member CD151 regulates outside-in integrin alphaIIbbeta3 signaling and platelet function. Blood, 2004,104:2368-75.
    19 Yauch RL, Berditchevski F, Harler MB, et al. Highly stoichiometric, stable, and specific association of integrin alpha3betal with CD151 provides a major link to phosphatidylinositol 4-kinase, and may regulate cell migration. Mol Biol Cell, 1998,9:2751-65.
    20 Goschnick MW, Lau LM, Wee JL, et al. Impaired "outside-in" integrin alphaIIbbeta3 signaling and thrombus stability in TSSC6-deficient mice. Blood, 2006,108:1911-8.
    21 Goschnick MW, Jackson DE. Tetraspanins-structural and signalling scaffolds that regulate platelet function. Mini Rev Med Chem, 2007,7:1248-54.
    22 Takeda Y, Kazarov AR, Butterfield CE, et al. Deletion of tetraspanin Cd151 results in decreased pathologic angiogenesis in vivo and in vitro.Blood,2007,109:1524-32.
    1 Hashida H,Takabayashi A,Tokuhara T,et al.Clinical significance of transmembrane 4 superfamily in colon cancer.Br J Cancer,2003,89:158-67.
    2 Klosek SK,Nakashiro K,Hara S,et al.CD151 forms a functional complex with c-Met in human salivary gland cancer cells.Biochem Biophys Res Commun,2005,336:408-16.
    3 Caplan M J,Kamsteeg EJ,Duffield A.Tetraspan proteins:regulators of renal structure and function.Curr Opin Nephrol Hypertens,2007,16:353-8.
    4 Hemler ME.Specific tetraspanin functions.J Cell Biol,2001,155:1103-7.
    5 Maecker HT,Todd SC,Levy S.The tetraspanin superfamily:molecular facilitators.FASEB J,1997,11:428-42.
    6 Liu L, He B, Liu WM, et al. Tetraspanin CD151 promotes cell migration by regulating integrin trafficking. J Biol Chem, 2007,282:31631-42.
    7 Yang X, Claas C, Kraeft SK, et al. Palmitoylation of tetraspanin proteins: modulation of CD151 lateral interactions, subcellular distribution, and integrin-dependent cell morphology. Mol Biol Cell, 2002,13:767-81.
    8 Sho M, Adachi M, Taki T, et al. Transmembrane 4 superfamily as a prognostic factor in pancreatic cancer. Int J Cancer, 1998,79:509-16.
    9 Wright MD, Moseley GW,van Spriel AB. Tetraspanin microdomains in immune cell signalling and malignant disease. Tissue Antigens, 2004,64:533-42.
    10 Ang J, Lijovic M, Ashman LK, et al. CD151 protein expression predicts the clinical outcome of low-grade primary prostate cancer better than histologic grading: a new prognostic indicator?. Cancer Epidemiol Biomarkers Prev, 2004,13:1717-21.
    11 Hong IK, Jin YJ, Byun HJ, et al. Homophilic interactions of Tetraspanin CD151 up-regulate motility and matrix metalloproteinase-9 expression of human melanoma cells through adhesion-dependent c-Jun activation signaling pathways. J Biol Chem, 2006,281:24279-92.
    12 Goschnick MW, Jackson DE. Tetraspanins-structural and signalling scaffolds that regulate platelet function. Mini Rev Med Chem, 2007,7:1248-54.
    13 Fitter S, Tetaz TJ, Berndt MC, et al. Molecular cloning of cDNA encoding a novel platelet-endothelial cell tetra-span antigen, PETA-3. Blood, 1995,86:1348-55.
    14 Lau LM, Wee JL, Wright MD, et al. The tetraspanin superfamily member CD151 regulates outside-in integrin alphaIIbbeta3 signaling and platelet function. Blood, 2004,104:2368-75.
    15 Claas C, Wahl J, Orlicky DJ, et al. The tetraspanin D6.1A and its molecular partners on rat carcinoma cells. Biochem J, 2005,389:99-110.
    16 Zijlstra A, Lewis J, Degryse B, et al. The inhibition of tumor cell intravasation and subsequent metastasis via regulation of in vivo tumor cell motility by the tetraspanin CD151. Cancer Cell, 2008,13:221-34.
    17 Barreiro O, Yanez-Mo M, Sala-Valdes M, et al. Endothelial tetraspanin microdomains regulate leukocyte firm adhesion during extravasation. Blood, 2005,105:2852-61.
    18 Levy S, Shoham T. Protein-protein interactions in the tetraspanin web. Physiology (Bethesda), 2005,20:218-24.
    19 Stipp CS, Kolesnikova TV,Hemler ME. Functional domains in tetraspanin proteins. Trends Biochem Sci, 2003,28:106-12.
    20 Berditchevski F, Odintsova E. Tetraspanins as regulators of protein trafficking. Traffic, 2007,8:89-96.
    21 Moseley GW. Tetraspanin-Fc receptor interactions. Platelets, 2005,16:3-12.
    22 Charrin S, Le Naour F, Labas V, et al. EWI-2 is a new component of the tetraspanin web in hepatocytes and lymphoid cells. Biochem J, 2003,373:409-21.
    23 Stipp CS, Kolesnikova TV,Hemler ME. EWI-2 regulates alpha3betal integrin-dependent cell functions on laminin-5. J Cell Biol, 2003,163:1167-77.
    24 Chen Q, Seol DW, Carr B, et al. Co-expression and regulation of Met and Ron proto-oncogenes in human hepatocellular carcinoma tissues and cell lines. Hepatology, 1997,26:59-66.
    25 Huang GT, Lee HS, Chen CH, et al. Tissue hepatocyte growth factor and proliferating cell nuclear antigen in hepatocellular carcinoma. J Formos Med Assoc, 1999,98:92-6.
    26 Qin LX, Tang ZY. The prognostic molecular markers in hepatocellular carcinoma. World J Gastroenterol, 2002,8:385-92.
    1 Li Y,Tian B,Yang J,et al.Stepwise metastatic human hepatocellular carcinoma cell model system with multiple metastatic potentials established through consecutive in vivo selection and studies on metastatic characteristics.J Cancer Res Clin Oncol,2004,130:460-8.
    2 Guan X,Peng JR,Yuan L,et al.A novel,rapid strategy to form dendritomas from human dendritic cells and hepatocellular carcinoma cell line HCCLM3cells using mature dendritic cells derived from human peripheral blood CD14+monocytes within 48 hours of in vitro culture.World J Gastroenterol,2004,10:3564-8.
    3 Li Y,Tang Z,Ye S,et al.[Gene expression profile of human hepatocellular carcinoma cell lines with different metastatic potentials].Zhonghua Zhong Liu Za Zhi,2002,24:533-6.
    4 Hong IK, Jin YJ, Byun HJ, et al. Homophilic interactions of Tetraspanin CD151 up-regulate motility and matrix metalloproteinase-9 expression of human melanoma cells through adhesion-dependent c-Jun activation signaling pathways. J Biol Chem, 2006,281:24279-92.
    5 Lazo PA. Functional implications of tetraspanin proteins in cancer biology. Cancer Sci, 2007,98:1666-77.
    6 Kohno M, Hasegawa H, Miyake M, et al. CD151 enhances cell motility and metastasis of cancer cells in the presence of focal adhesion kinase. Int J Cancer, 2002,97:336-43.
    7 Yauch RL, Berditchevski F, Harler MB, et al. Highly stoichiometric, stable, and specific association of integrin alpha3betal with CD151 provides a major link to phosphatidylinositol 4-kinase, and may regulate cell migration. Mol Biol Cell, 1998,9:2751-65.
    8 Chattopadhyay N, Wang Z, Ashman LK, et al. alpha3betal integrin-CD151, a component of the cadherin-catenin complex, regulates PTPmu expression and cell-cell adhesion. J Cell Biol, 2003,163:1351-62.
    9 Liu L, He B, Liu WM, et al. Tetraspanin CD151 promotes cell migration by regulating integrin trafficking. J Biol Chem, 2007,282:31631-42.
    10 Levy S, Shoham T. Protein-protein interactions in the tetraspanin web. Physiology (Bethesda), 2005,20:218-24.
    11 Charrin S, Manie S, Billard M, et al. Multiple levels of interactions within the tetraspanin web. Biochem Biophys Res Commun, 2003,304:107-12.
    12 Giannelli G, Bergamini C, Fransvea E, et al. Human hepatocellular carcinoma (HCC) cells require both alpha3betal integrin and matrix metalloproteinases activity for migration and invasion. Lab Invest, 2001,81:613-27.
    13 Tian J, Tang ZY, Ye SL, et al. New human hepatocellular carcinoma (HCC) cell line with highly metastatic potential (MHCC97) and its expressions of the factors associated with metastasis. Br J Cancer, 1999,81:814-21.
    14 Xie Q, Liu KD, Hu MY, et al. SF/HGF-c-Met autocrine and paracrine promote metastasis of hepatocellular carcinoma. World J Gastroenterol, 2001,7:816-20.
    15 Zhang YW, Vande Woude GF. HGF/SF-met signaling in the control of branching morphogenesis and invasion. J Cell Biochem, 2003,88:408-17.
    16 Lammerding J, Kazarov AR, Huang H, et al. Tetraspanin CD151 regulates alpha6beta1 integrin adhesion strengthening. Proc Natl Acad Sci U S A, 2003,100:7616-21.
    17 Nishiuchi R, Sanzen N, Nada S, et al. Potentiation of the ligand-binding activity of integrin alpha3betal via association with tetraspanin CD151. Proc Natl Acad Sci U S A, 2005,102:1939-44.
    18 Trusolino L, Bertotti A,Comoglio PM. A signaling adapter function for alpha6beta4 integrin in the control of HGF-dependent invasive growth. Cell, 2001,107:643-54.
    19 Comoglio PM, Boccaccio C,Trusolino L. Interactions between growth factor receptors and adhesion molecules: breaking the rules. Curr Opin Cell Biol, 2003,15:565-71.
    20 Klosek SK, Nakashiro K, Hara S, et al. CD151 forms a functional complex with c-Met in human salivary gland cancer cells. Biochem Biophys Res Commun, 2005,336:408-16.
    21 Hasegawa M, Furuya M, Kasuya Y, et al. CD151 dynamics in carcinoma-stroma interaction: integrin expression, adhesion strength and proteolytic activity. Lab Invest, 2007,87:882-92.
    22 Shiomi T, Inoki I, Kataoka F, et al. Pericellular activation of proMMP-7 (promatrilysin-1) through interaction with CD151. Lab Invest, 2005,85:1489-506.
    1 Shigeta M,Sanzen N,Ozawa M,et al.CD151 regulates epithelial cell-cell adhesion through PKC- and Cdc42-dependent actin cytoskeletal reorganization.J Cell Biol,2003,163:165-76.
    2 Yauch RL,Hemler ME.Specific interactions among transmembrane 4superfamily(TM4SF) proteins and phosphoinositide 4-kinase.Biochem J,2000,351 Pt 3:629-37.
    3 Goschnick MW,Jackson DE.Tetraspanins-structural and signalling scaffolds that regulate platelet function.Mini Rev Med Chem,2007,7:1248-54.
    4 Zhang XA,Bontrager AL,Hemler ME.Transmembrane-4 superfamily proteins associate with activated protein kinase C(PKC) and link PKC to specific beta(1)integrins.J Biol Chem,2001,276:25005-13.
    5 Sawada S,Yoshimoto M,Odintsova E,et al.The tetraspanin CD151 functions as a negative regulator in the adhesion-dependent activation of Ras.J Biol Chem, 2003,278:26323-6.
    6 Sauer G, Kurzeder C, Grundmann R, et al. Expression of tetraspanin adaptor proteins below defined threshold values is associated with in vitro invasiveness of mammary carcinoma cells. Oncol Rep, 2003,10:405-10.
    7 Testa JE, Brooks PC, Lin JM, et al. Eukaryotic expression cloning with an antimetastatic monoclonal antibody identifies a tetraspanin (PETA-3/CD151) as an effector of human tumor cell migration and metastasis. Cancer Res, 1999,59:3812-20.
    8 Kohno M, Hasegawa H, Miyake M, et al. CD151 enhances cell motility and metastasis of cancer cells in the presence of focal adhesion kinase. Int J Cancer, 2002,97:336-43.
    9 Schmelz M, Cress AE, Scott KM, et al. Different phenotypes in human prostate cancer: alpha6 or alpha3 integrin in cell-extracellular adhesion sites. Neoplasia, 2002,4:243-54.
    10 Yang X, Kovalenko OV, Tang W, et al. Palmitoylation supports assembly and function of integrin-tetraspanin complexes. J Cell Biol, 2004,167:1231-40.
    11 Klosek SK, Nakashiro K, Hara S, et al. CD151 forms a functional complex with c-Met in human salivary gland cancer cells. Biochem Biophys Res Commun, 2005,336:408-16.
    12 Nakanishi K, Fujimoto J, Ueki T, et al. Hepatocyte growth factor promotes migration of human hepatocellular carcinoma via phosphatidylinositol 3-kinase. Clin Exp Metastasis, 1999,17:507-14.
    13 Suzuki A, Hayashida M, Kawano H, et al. Hepatocyte growth factor promotes cell survival from fas-mediated cell death in hepatocellular carcinoma cells via Akt activation and Fas-death-inducing signaling complex suppression. Hepatology, 2000,32:796-802.
    14 Zheng ZZ, Liu ZX. Activation of the phosphatidylinositol 3-kinase/protein kinase Akt pathway mediates CD151-induced endothelial cell proliferation and cell migration. Int J Biochem Cell Biol, 2007,39:340-8.
    15 Winterwood NE, Varzavand A, Meland MN, et al. A critical role for tetraspanin CD151 in alpha3betal and alpha6beta4 integrin-dependent tumor cell functions on laminin-5. Mol Biol Cell, 2006,17:2707-21.
    16 Masuda T, Wada K, Nakajima A, et al. Critical role of peroxisome proliferator-activated receptor gamma on anoikis and invasion of squamous cell carcinoma. Clin Cancer Res, 2005,11:4012-21.
    17 Nishiuchi R, Sanzen N, Nada S, et al. Potentiation of the ligand-binding activity of integrin alpha3betal via association with tetraspanin CD151. Proc Natl Acad Sci U S A, 2005,102:1939-44.
    18 Bredel M, Bredel C, Juric D, et al. Functional network analysis reveals extended gliomagenesis pathway maps and three novel MYC-interacting genes in human gliomas. Cancer Res, 2005,65:8679-89.
    19 Lau LM, Wee JL, Wright MD, et al. The tetraspanin superfamily member CD151 regulates outside-in integrin alphaIIbbeta3 signaling and platelet function. Blood, 2004,104:2368-75.
    20 Stipp CS, Hemler ME. Transmembrane-4-superfamily proteins CD151 and CD81 associate with alpha 3 beta 1 integrin, and selectively contribute to alpha 3 beta 1-dependent neurite outgrowth. J Cell Sci, 2000,113 ( Pt 11): 1871-82.
    21 Ashman LK. CD151. J Biol Regul Homeost Agents, 2002,16:223-6.
    22 Claas C, Wahl J, Orlicky DJ, et al. The tetraspanin D6.1A and its molecular partners on rat carcinoma cells. Biochem J, 2005,389:99-110.
    23 Hong IK, Jin YJ, Byun HJ, et al. Homophilic interactions of Tetraspanin CD151 up-regulate motility and matrix metalloproteinase-9 expression of human melanoma cells through adhesion-dependent c-Jun activation signaling pathways. J Biol Chem, 2006,281:24279-92.
    1 Fitter S,Tetaz TJ,Berndt MC,et al.Molecular cloning of cDNA encoding a novel platelet-endothelial cell tetra-span antigen,PETA-3.Blood,1995,86:1348-55.
    2 Hasegawa H,Utsunomiya Y,Kishimoto K,et al.SFA-1,a novel cellular gene induced by human T-cell leukemia virus type 1,is a member of the transmembrane 4 superfamily.J Virol,1996,70:3258-63.
    3 Hasegawa H,Kishimoto K,Yanagisawa K,et al.Assignment of SFA-1(PETA-3),a member of the transmembrane 4 superfamily,to human chromosome 11p15.5 by fluorescence in situ hybridization.Genomics, 1997,40:193-6.
    4 Hasegawa H, Watanabe H, Nomura T, et al. Molecular cloning and expression of mouse homologue of SFA-1/PETA-3 (CD151), a member of the transmembrane 4 superfamily. Biochim Biophys Acta, 1997,1353:125-30.
    5 Ashman LK. CD151. J Biol Regul Homeost Agents, 2002,16:223-6.
    6 Sincock PM, Fitter S, Parton RG, et al. PETA-3/CD151, a member of the transmembrane 4 superfamily, is localised to the plasma membrane and endocytic system of endothelial cells, associates with multiple integrins and modulates cell function. J Cell Sci, 1999,112 ( Pt 6):833-44.
    7 Sincock PM, Mayrhofer G,Ashman LK. Localization of the transmembrane 4 superfamily (TM4SF) member PETA-3 (CD151) in normal human tissues: comparison with CD9, CD63, and alpha5betal integrin. J Histochem Cytochem, 1997,45:515-25.
    8 Ang J, Lijovic M, Ashman LK, et al. CD151 protein expression predicts the clinical outcome of low-grade primary prostate cancer better than histologic grading: a new prognostic indicator?. Cancer Epidemiol Biomarkers Prev, 2004,13:1717-21.
    9 Hashida H, Takabayashi A, Tokuhara T, et al. Clinical significance of transmembrane 4 superfamily in colon cancer. Br J Cancer, 2003,89:158-67.
    10 Tokuhara T, Hasegawa H, Hattori N, et al. Clinical significance of CD151 gene expression in non-small cell lung cancer. Clin Cancer Res, 2001,7:4109-14.
    11 Penas PF, Garcia-Lopez MA,Barreiro del Rio O. [Inhibition of the motility of melanoma cells using interference RNA against CD9]. Actas Dermosifiliogr, 2005,96:30-6.
    12 Sauer G, Kurzeder C, Grundmann R, et al. Expression of tetraspanin adaptor proteins below defined threshold values is associated with in vitro invasiveness of mammary carcinoma cells. Oncol Rep, 2003,10:405-10.
    13 Zoller M. Gastrointestinal tumors: metastasis and tetraspanins. Z Gastroenterol, 2006,44:573-86.
    14 Testa JE, Brooks PC, Lin JM, et al. Eukaryotic expression cloning with an antimetastatic monoclonal antibody identifies a tetraspanin (PETA-3/CD151) as an effector of human tumor cell migration and metastasis. Cancer Res, 1999,59:3812-20.
    15 Gesierich S, Paret C, Hildebrand D, et al. Colocalization of the tetraspanins, CO-029 and CD151, with integrins in human pancreatic adenocarcinoma: impact on cell motility. Clin Cancer Res, 2005,11:2840-52.
    16 Shiomi T, Inoki I, Kataoka F, et al. Pericellular activation of proMMP-7 (promatrilysin-1) through interaction with CD151. Lab Invest, 2005,85:1489-506.
    17 Fujita Y, Shiomi T, Yanagimoto S, et al. Tetraspanin CD151 is expressed in osteoarthritic cartilage and is involved in pericellular activation of pro-matrix metalloproteinase 7 in osteoarthritic chondrocytes. Arthritis Rheum, 2006,54:3233-43.
    18 Liu L, He B, Liu WM, et al. Tetraspanin CD151 promotes cell migration by regulating integrin trafficking. J Biol Chem, 2007,282:31631-42.
    19 Sterk LM, Geuijen CA, van den Berg JG, et al. Association of the tetraspanin CD151 with the laminin-binding integrins alpha3betal, alpha6betal, alpha6beta4 and alpha7betal in cells in culture and in vivo. J Cell Sci, 2002,115:1161-73.
    20 Yauch RL, Kazarov AR, Desai B, et al. Direct extracellular contact between integrin alpha(3)beta(1) and TM4SF protein CD151. J Biol Chem, 2000,275:9230-8.
    21 Charrin S, Manie S, Oualid M, et al. Differential stability of tetraspanin/tetraspanin interactions: role of palmitoylation. FEBS Lett, 2002,516:139-44.
    22 Berditchevski F, Odintsova E, Sawada S, et al. Expression of the palmitoylation-deficient CD151 weakens the association of alpha 3 beta 1 integrin with the tetraspanin-enriched microdomains and affects integrin-dependent signaling. J Biol Chem, 2002,277:36991-7000.
    23 Charrin S, Manie S, Billard M, et al. Multiple levels of interactions within the tetraspanin web. Biochem Biophys Res Commun, 2003,304:107-12.
    24 Matsuo Y, Drexler HG, Kaneda K, et al. Megakaryoblastic leukemia cell line MOLM-16 derived from minimally differentiated acute leukemia with myeloid/NK precursor phenotype. Leuk Res, 2003,27:165-71.
    25 Zijlstra A, Lewis J, Degryse B, et al. The inhibition of tumor cell intravasation and subsequent metastasis via regulation of in vivo tumor cell motility by the tetraspanin CD151. Cancer Cell, 2008,13:221-34.
    26 Winterwood NE, Varzavand A, Meland MN, et al. A critical role for tetraspanin CD151 in alpha3betal and alpha6beta4 integrin-dependent tumor cell functions on laminin-5. Mol Biol Cell, 2006,17:2707-21.
    27 Takeda Y, Kazarov AR, Butterfield CE, et al. Deletion of tetraspanin Cd151 results in decreased pathologic angiogenesis in vivo and in vitro. Blood, 2007,109:1524-32.
    28 Barreiro O, Yanez-Mo M, Sala-Valdes M, et al. Endothelial tetraspanin microdomains regulate leukocyte firm adhesion during extravasation. Blood, 2005,105:2852-61.
    29 Chometon G, Zhang ZG, Rubinstein E, et al. Dissociation of the complex between CD151 and laminin-binding integrins permits migration of epithelial cells. Exp Cell Res, 2006,312:983-95.
    30 Berditchevski F, Odintsova E. Characterization of integrin-tetraspanin adhesion complexes: role of tetraspanins in integrin signaling. J Cell Biol, 1999,146:477-92.
    31 Caplan MJ, Kamsteeg EJ,Duffield A. Tetraspan proteins: regulators of renal structure and function. Curr Opin Nephrol Hypertens, 2007,16:353-8.
    32 Lau LM, Wee JL, Wright MD, et al. The tetraspanin superfamily member CD151 regulates outside-in integrin alphaIIbbeta3 signaling and platelet function. Blood, 2004,104:2368-75.
    33 Zhang XA, Kazarov AR, Yang X, et al. Function of the tetraspanin CD151-alpha6betal integrin complex during cellular morphogenesis. Mol Biol Cell, 2002,13:1-11.
    34 Chattopadhyay N, Wang Z, Ashman LK, et al. alpha3betal integrin-CD151, a component of the cadherin-catenin complex, regulates PTPmu expression and cell-cell adhesion. J Cell Biol, 2003,163:1351-62.
    35 Zheng ZZ, Liu ZX. Activation of the phosphatidylinositol 3-kinase/protein kinase Akt pathway mediates CD 151-induced endothelial cell proliferation and cell migration. Int J Biochem Cell Biol, 2007,39:340-8.
    36 Zhang XA, Bontrager AL,Hemler ME. Transmembrane-4 superfamily proteins associate with activated protein kinase C (PKC) and link PKC to specific beta(1) integrins. J Biol Chem, 2001,276:25005-13.
    37 Yauch RL, Hemler ME. Specific interactions among transmembrane 4 superfamily (TM4SF) proteins and phosphoinositide 4-kinase. Biochem J, 2000,351 Pt 3:629-37.
    38 Kohno M, Hasegawa H, Miyake M, et al. CD151 enhances cell motility and metastasis of cancer cells in the presence of focal adhesion kinase. Int J Cancer, 2002,97:336-43.
    39 Nishiuchi R, Sanzen N, Nada S, et al. Potentiation of the ligand-binding activity of integrin alpha3betal via association with tetraspanin CD151. Proc Natl Acad Sci U S A, 2005,102:1939-44.
    40 Cowin AJ, Adams D, Geary SM, et al. Wound healing is defective in mice lacking tetraspanin CD151. J Invest Dermatol, 2006,126:680-9.
    41 Klosek SK, Nakashiro K, Hara S, et al. CD151 forms a functional complex with c-Met in human salivary gland cancer cells. Biochem Biophys Res Commun, 2005,336:408-16.
    42 Serru V, Le Naour F, Billard M, et al. Selective tetraspan-integrin complexes (CD81/alpha4betal, CD151/alpha3beta1, CD151/alpha6betal) under conditions disrupting tetraspan interactions. Biochem J, 1999,340 ( Pt 1): 103-11.
    1 Chan AM,Rubin JS,Bottaro DP,et al.Identification of a competitive HGF antagonist encoded by an alternative transcript.Science,1991,254:1382-5.
    2 Recio JA,Merlino G.Hepatocyte growth factor/scatter factor activates proliferation in melanoma cells through p38 MAPK,ATF-2 and cyclin D1.Oncogene,2002,21:1000-8.
    3 Paumelle R,Tulasne D,Kherrouche Z,et al.Hepatocyte growth factor/scatter factor activates the ETS1 transcription factor by a RAS-RAF-MEK-ERK signaling pathway. Oncogene, 2002,21:2309-19.
    4 Cary LA, Han DC, Polte TR, et al. Identification of p130Cas as a mediator of focal adhesion kinase-promoted cell migration. J Cell Biol, 1998,140:211-21.
    5 Brockbank EC, Bridges J, Marshall CJ, et al. Integrin beta1 is required for the invasive behaviour but not proliferation of squamous cell carcinoma cells in vivo. Br J Cancer, 2005,92:102-12.
    6 Lynch L, Vodyanik PI, Boettiger D, et al. Insulin-like growth factor I controls adhesion strength mediated by alpha5betal integrins in motile carcinoma cells. Mol Biol Cell, 2005,16:51-63.
    7 Gilcrease MZ, Zhou X,Welch K. Adhesion-independent alpha6beta4 integrin clustering is mediated by phosphatidylinositol 3-kinase. Cancer Res, 2004,64:7395-8.
    8 Zhou H, Kramer RH. Integrin engagement differentially modulates epithelial cell motility by RhoA/ROCK and PAK1. J Biol Chem, 2005,280:10624-35.
    9 Qiao H, Saulnier R, Patryzkat A, et al. Cooperative effect of hepatocyte growth factor and fibronectin in anchorage-independent survival of mammary carcinoma cells: requirement for phosphatidylinositol 3-kinase activity. Cell Growth Differ, 2000,11:123-33.
    10 Eliceiri BP, Puente XS, Hood JD, et al. Src-mediated coupling of focal adhesion kinase to integrin alpha(v)beta5 in vascular endothelial growth factor signaling. J Cell Biol, 2002,157:149-60.
    11 Beviglia L, Kramer RH. HGF induces FAK activation and integrin-mediated adhesion in MTLn3 breast carcinoma cells. Int J Cancer, 1999,83:640-9.
    12 Nebe B, Sanftleben H, Pommerenke H, et al. Hepatocyte growth factor enables enhanced integrin-cytoskeleton linkage by affecting integrin expression in subconfluent epithelial cells. Exp Cell Res, 1998,243:263-73.
    13 Trusolino L, Cavassa S, Angelini P, et al. HGF/scatter factor selectively promotes cell invasion by increasing integrin avidity. FASEB J, 2000,14:1629-40.
    14 Trusolino L, Bertotti A,Comoglio PM. A signaling adapter function for alpha6beta4 integrin in the control of HGF-dependent invasive growth. Cell, 2001,107:643-54.
    15 Leitinger B, Hogg N. The involvement of lipid rafts in the regulation of integrin function. J Cell Sci, 2002,115:963-72.
    16 Rahman S, Patel Y, Murray J, et al. Novel hepatocyte growth factor (HGF) binding domains on fibronectin and vitronectin coordinate a distinct and amplified Met-integrin induced signalling pathway in endothelial cells. BMC Cell Biol, 2005,6:8.
    17 Hunter KW. Ezrin, a key component in tumor metastasis. Trends Mol Med, 2004,10:201-4.
    18 Poullet P, Gautreau A, Kadare G, et al. Ezrin interacts with focal adhesion kinase and induces its activation independently of cell-matrix adhesion. J Biol Chem, 2001,276:37686-91.
    19 Chen SY, Chen HC. Direct interaction of focal adhesion kinase (FAK) with Met is required for FAK to promote hepatocyte growth factor-induced cell invasion. Mol Cell Biol, 2006,26:5155-67.
    20 Parr C, Davies G, Nakamura T, et al. The HGF/SF-induced phosphorylation of paxillin, matrix adhesion, and invasion of prostate cancer cells were suppressed by NK4, an HGF/SF variant. Biochem Biophys Res Commun, 2001,285:1330-7.
    21 Liu ZX, Yu CF, Nickel C, et al. Hepatocyte growth factor induces ERK-dependent paxillin phosphorylation and regulates paxillin-focal adhesion kinase association. J Biol Chem, 2002,277:10452-8.
    22 Ishibe S, Joly D, Liu ZX, et al. Paxillin serves as an ERK-regulated scaffold for coordinating FAK and Rac activation in epithelial morphogenesis. Mol Cell, 2004,16:257-67.
    23 Ishibe S, Joly D, Zhu X, et al. Phosphorylation-dependent paxillin-ERK association mediates hepatocyte growth factor-stimulated epithelial morphogenesis. Mol Cell, 2003,12:1275-85.
    24 Wang R, Ferrell LD, Faouzi S, et al. Activation of the Met receptor by cell attachment induces and sustains hepatocellular carcinomas in transgenic mice. J Cell Biol, 2001,153:1023-34.
    25 Liang CC, Chen HC. Sustained activation of extracellular signal-regulated kinase stimulated by hepatocyte growth factor leads to integrin alpha 2 expression that is involved in cell scattering. J Biol Chem, 2001,276:21146-52.
    26 Tanimura S, Nomura K, Ozaki K, et al. Prolonged nuclear retention of activated extracellular signal-regulated kinase 1/2 is required for hepatocyte growth factor-induced cell motility. J Biol Chem, 2002,277:28256-64.
    27 Gujdar A, Sipeki S, Bander E, et al. Protein kinase C modulates negatively the hepatocyte growth factor-induced migration, integrin expression and phosphatidylinositol 3-kinase activation. Cell Signal, 2004,16:505-13.
    28 Poomsawat S, Whawell SA, Morgan MJ, et al. Scatter factor regulation of integrin expression and function on oral epithelial cells. Arch Dermatol Res, 2003,295:63-70.
    29 Sridhar SC, Miranti CK. Tetraspanin KAI1/CD82 suppresses invasion by inhibiting integrin-dependent crosstalk with c-Met receptor and Src kinases. Oncogene, 2006,25:2367-78.
    30 Wang R, Kobayashi R,Bishop JM. Cellular adherence elicits ligand-independent activation of the Met cell-surface receptor. Proc Natl Acad Sci U S A, 1996,93:8425-30.
    31 Orian-Rousseau V, Chen L, Sleeman JP, et al. CD44 is required for two consecutive steps in HGF/c-Met signaling. Genes Dev, 2002,16:3074-86.
    32 Fujisaki T, Tanaka Y, Fujii K, et al. CD44 stimulation induces integrin-mediated adhesion of colon cancer cell lines to endothelial cells by up-regulation of integrins and c-Met and activation of integrins. Cancer Res, 1999,59:4427-34.
    33 Zhang XA, Kazarov AR, Yang X, et al. Function of the tetraspanin CD151-alpha6betal integrin complex during cellular morphogenesis. Mol Biol Cell, 2002,13:1-11.
    34 Sterk LM, Geuijen CA, van den Berg JG, et al. Association of the tetraspanin CD151 with the laminin-binding integrins alpha3betal, alpha6betal, alpha6beta4 and alpha7betal in cells in culture and in vivo. J Cell Sci, 2002,115:1161-73.
    35 Kazarov AR, Yang X, Stipp CS, et al. An extracellular site on tetraspanin CD151 determines alpha 3 and alpha 6 integrin-dependent cellular morphology. J Cell Biol, 2002,158:1299-309.
    36 Takeda Y, Kazarov AR, Butterfield CE, et al. Deletion of tetraspanin Cd151 results in decreased pathologic angiogenesis in vivo and in vitro. Blood, 2007,109:1524-32.
    37 Nishiuchi R, Sanzen N, Nada S, et al. Potentiation of the ligand-binding activity of integrin alpha3betal via association with tetraspanin CD151. Proc Natl Acad Sci U S A, 2005,102:1939-44.
    38 Klosek SK, Nakashiro K, Hara S, et al. CD151 forms a functional complex with c-Met in human salivary gland cancer cells. Biochem Biophys Res Commun, 2005,336:408-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700