用户名: 密码: 验证码:
雌激素延缓衰老及植物雌激素α-ZAL抗Aβ细胞损伤作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Studies of Estrogen Delays Senescence and Phytoestrogen α-ZAL Protects Cells Against Aβ Toxicity
  • 作者:董毅龙
  • 论文级别:博士
  • 学科专业名称:神经药理学
  • 学位年度:2008
  • 导师:左萍萍
  • 学科代码:100706
  • 学位授予单位:中国协和医科大学
  • 论文提交日期:2008-05-01
摘要
衰老的发生和演变是生物体不可抗拒的自然过程,随着老年医学的飞速发展,有关衰老机制的学说已有上百种,但至今对衰老是如何发生的仍无确切答案。近年研究人员发现:伴随自然衰老过程,活性氧产物生成增多超过机体清除能力,可致细胞及生物大分子受损,其中对核酸的损害主要表现为DNA氧化受损和修复不足,损伤DNA积累激发变异信号诱导性衰老,最终启动衰老过程。减轻DNA损伤,促进损伤修复必然有利于衰老过程的延缓。作为一种内源性激素,雌激素表现出的延缓自然衰老的作用已被流行病学研究证实,但它对衰老过程中细胞DNA的损伤修复是否具有影响,尚未见相关报道。因此,本研究设计了体内、外试验,观察衰老过程中雌激素作用下DNA损伤修复的变化,探讨其可能的延缓衰老作用机制。
     伴随衰老进程,神经退行性疾病—阿尔茨海默病(Alzheimer's disease,AD)的发病率呈增高趋势。在AD的发病中,β-淀粉样蛋白(Aβ)的生成、代谢及毒性作用是AD发生的中心环节。Aβ诱导的细胞凋亡是AD神经元丢失的主要原因,因而拮抗Aβ诱导的细胞凋亡是预防AD的重要靶标。雌激素预防AD的作用已得到实验的证实,但植物雌激素-α-玉米赤霉烯醇(α-Zearalanol,α-ZAL)是否具有类似效应,迄今未见报道。本实验设计以雌激素为阳性对照,观察α-ZAL的抗Aβ损伤作用,在细胞水平评价α-ZAL的神经保护作用,为开发新的安全有效的激素替代药物奠定基础。
     第一部分雌激素减轻DNA氧化损伤,延缓衰老
     一、体外实验
     1.应用有限增殖细胞-人胚肺二倍体成纤维细胞(human diploid fibroblasts.HDF)体外培养,发现以无E2血清培养的细胞经50次群体倍增(PD50)后即完全进入衰老状态,而从PD30开始加入E2(10~(-8)、10~(-7)、10~(-6))持续培养,细胞分别经54、57、59次群体倍增后才进入完全衰老状态,表明雌激素具有延长细胞生命周期的作用,且作用表现出一定的剂量依赖关系。
     2.在PD50时,10~(-6)M E2培养细胞中β-半乳糖苷酶染色阳性细胞数明显少于无E2培养对照细胞(P<0.05)。表明雌激素可延缓衰老表型的出现,有确实的抗衰老作用。
     3.通过DCFH-DA免疫荧光染色观察到,伴随PD次数的增加,细胞内源性ROS水平升高,而10~(-6)M E2可以减缓该升高过程。表明雌激素可以促进活性氧产物的清除。
     4.Western blotting实验结果显示,DNA损伤修复机制调控的重要因子p53和p21WAF1的表达受E2影响。在PD50时,10~(-6)M E2培养细胞中p53和p21WAF1的表达低于对照细胞(P<0.05),表明雌激素可明显减少DNA损伤及其积累。
     5.在PD50时,应用流式细胞术分析细胞周期,发现10~(-6)M E2培养条件下,细胞G1期细胞比例显著低于对照组(P<0.05);BrdU免疫组织化学染色结果显示,10~(-6)M E2培养细胞中BrdU阳性细胞数明显高于对照细胞(P<0.05),表明雌激素可以维持DNA复制,延迟细胞周期阻滞的出现。
     6.单细胞凝胶电泳实验结果显示,与200μM H_2O_2共孵育2h,细胞DNA明显受损,细胞慧尾拉长,而H_2O_2作用后加入10~(-6)M E2,细胞慧尾长度明显短于单独H_2O_2作用组(P<0.05),表明雌激素可以明显促进DNA损伤修复。
     二、在体实验
     1.成年雌性C57小鼠随机分为三组:对照组(Control),假手术加皮下注射生理盐水,腹腔注射芝麻油;模型组(Model),双侧卵巢切除加皮下注射D-半乳糖100mg/kg.d和腹腔注射芝麻油;E2补充组(ERT),双侧卵巢切除加皮下注射D-半乳糖100mg/kg.d和腹腔注射E2 50μg/kg.d,D-半乳糖和E2连续使用8w。
     2.MWM测试发现模型组小鼠寻台潜伏期显著长于对照组(P<0.01),而ERT组小鼠寻台潜伏期短于模型小鼠(P<0.05),该结果显示雌激素补充可明显改善小鼠空间学习记忆能力。
     3.比色法测定脑海马抗氧化酶活力及MDA含量。结果表明,与对照组小鼠相比模型组小鼠MDA含量显著升高(P<0.01),抗氧化酶SOD及GSH-Px活性显著降低(P<0.01),ERT组小鼠上述改变部分逆转。
     4.组织形态学表明,模型组小鼠海马神经元有明显损伤,表现为海马CA1区神经元尼氏小体蓝色颗粒减少和胞浆空泡样变性,平均积分光密度值显著低于对照组小鼠(P<0.01),ERT组小鼠海马CA1区尼氏小体增多,平均积分光密度值升高大于模型组小鼠(P<0.05),表明雌激素可对抗D-半乳糖所致的神经元损伤。
     5.免疫组织化学及western blotting结果显示,模型组小鼠海马神经元DNA明显受损,海马CA1区DNA氧化损伤标志物8-oxox-dG阳性细胞数显著高于对照组小鼠(P<0.01),而DNA损伤碱基切除修复蛋白MTH1及促DNA修复蛋白BDNF的表达均明显降低(P<0.01);ERT组小鼠CA1区8-oxox-dG阳性细胞数明显减少,MTH1及BDNF的表达明显回升(P<0.05)。同时,ERT组小鼠应激诱导的促DNA修复蛋白Hsp70的表达亦显著高于模型组(P<0.01),表明雌激素可通过调节DNA修复机制来减少DNA氧化损伤。
     6.末次注射BrdU后24h,模型小鼠海马DG区BrdU阳性细胞数较对照组显著减少(P<0.01),ERT组小鼠BrdU阳性细胞数明显多于模型组(P<0.05),表明雌激素可保护小鼠海马区神经干细胞的增殖,有利于衰老细胞更新,延缓组织老化。
     7.利用形态学及RT-PCR的方法,观察小鼠子宫的相关变化,发现模型组小鼠子宫显著萎缩,E2补充后子宫重量增加,但子宫内膜癌标志物MN/CA9 mRNA的表达在各组小鼠均未检测到。表明在本实验条件下雌激素使用在保护神经元的同时未使子宫产生异常变化。
     本部分研究结果显示,雌激素可通过减少内源性活性氧产物的生成,调控DNA损伤修复蛋白表达,减轻DNA氧化损伤,促进其损伤修复,从而减少由损伤DNA积累所启动的衰老程序而发挥延缓衰老作用。
     第二部分植物雌激素α-玉米赤霉烯醇对PC12细胞Aβ_(25-35)损伤的保护作用研究
     1.培养PC12细胞,采用MTT方法观察到,5μM Aβ_(25—35)与细胞共孵育24h,活细胞数显著低于对照组(P<0.01);而将细胞与不同浓度E2或α-ZAL预孵育12h后再加入Aβ_(25—35),活细胞数呈剂量依赖性的升高(P<0.05),但在相同浓度下α-ZAL的细胞保护效应略低于E2。
     2.透射电镜结果显示,5μM Aβ_(25—35)与PC12细胞共孵育24h可导致细胞凋亡。Hoechest33258荧光染色实验结果显示,Aβ_(25—35)作用组凋亡细胞数显著多于对照组(P<0.01),E2及α-ZAL预孵育均明显减轻Aβ_(25—35)诱导的细胞凋亡(P<0.05)。
     3.生化学检测结果提示,与对照组相比,单独Aβ_(25—35)与PC12细胞共孵育,细胞MDA含量升高(P<0.01),SOD和GSH-Px活性降低(P<0.01),而E2及α-ZAL预孵育均能有效对抗Aβ_(25—35)所致的细胞抗氧化酶活性降低及MDA生成增多(P<0.01),表明E2及α-ZAL可明显对抗Aβ_(25—35)导致的细胞氧化损伤。
     4.Western blotting及RT-PCR实验结果显示,Aβ_(25—35)导致PC12细胞抗凋亡蛋白bcl-2表达减少,而促凋亡蛋白bax及caspase-3表达升高,E2及α-ZAL可拮抗上述改变。同时E2及α-ZAL还能诱导抗凋亡基因A20 mRNA的表达,表明E2及α-ZAL可通过调控凋亡相关蛋白及基因的表达而发挥抗细胞凋亡作用。
     本部分研究结果显示,E2及α-ZAL均可通过对抗氧化损伤,调控凋亡相关蛋白的表达而发挥抗Aβ_(25-35)诱导的细胞凋亡效应,α-ZAL的细胞保护效应稍弱于E2。
At present,there is no explicit theory to explain the mechanism underlying aging, which is a spontaneous and irreversible process.During the last years,scientists had found that accompanying with the aging process,when the production exceeds the capacity of detoxification,reactive oxygen species(ROS) can cause DNA damage in cells and organism.Extensive observations suggest that the oxidative damage of DNA accumulation can induce stress or aberrant signaling inducing senescence which play a central role in the pathogenesis of aging.As a result,reduce the damage of DNA will be benefit to delay aging.As an endogenous hormone,the effects on extending lifespan of estrogen have been demostrated in epidemiologic survey.However,the effect on DNA damage and repair has not been reported yet.In present study,the effects of estrogen on DNA damage and repair was investigaed to find the possible mechanism in vivo and in vitro experiments.
     Alzheimer's disease(AD) is the most common form of dementia,the incidence of which increases with aging.The formation,metabolism and toxicity of Aβplay an important role in AD pathophysiology.Inhibiting the neuronal apoptosis induced by Aβwhich greatly contributed to neuronal loss is the potential strategy of AD treatment.The neuroprotective of estrogen have been approved,nevertheless,there is rare research in the relationship betweenα-ZAL and Aβ.The present study was designed to evaluate the neuroprotective ofα-ZAL against Aβinduced cells damage in cultured PC12 cells when used E2 as positive control.
     PartⅠ:Effects of estrogen on protect DNA damage and delay aging
     Experiment in vitro
     1.Human diploid fibroblasts(HDF) reaching senescence in PD50 which was cultured in estrogen deficiency medium.Cells respectively proliferated and reached senescence in PD54,PD57 and PD59 incubated with estrogen at 10~(-8),10~(-7) or 10~(-6)M concentration.These results suggested that estrogen could extend lifespan in dose dependent manner.
     2.In senescence phase(PD50),while cells cultured in medium supplemented with estrogen(10~(-6)M),the number ofβ-gal positive cell was less than the control which was cultured in estrogen deficiency medium(P<0.05).The result suggested that senescence phaenotype could be delayed by estrogen treatment.
     3.DCFH-DA result showed that ROS significantly increased accompanying with the PDs prgress.Estrogen(10~(-6)M) may weaken the process.It suggested that estrogen may facilitate the clearance of ROS.
     4.Western blotting results showed that the expression levels of p53 and p21 which played an important role in DNA repair has been regulated by estrogen.Compared with the cells cultured in estrogen deficiency medium,there was a significant decrease of p53 and p21 protein in PD50(P<0.05).It suggested that DNA damage and accumulate was slightly when cells was incubated with estrogen.
     5.In senescence phase(PD50),cell cycle analysis with FACS showed that cell cycle arrest was delayed by estrogen,the number of cell in G1 phase was less than the control which was cultured in estrogen deficiency medium(P<0.05),meanwhile the numer of BrdU positive cell high than the control(P<0.05),shows that estrogen may be attributed to DNA replication.
     6.After treat with 200μM H_2O_2 for 2h,SCGE assay results showed that the length of comet tail in 10~(-6)M estrogen cultured cell less than the cells which incubated with H_2O_2 without estrogen,it means that estrogen treatment facilitate DNA repair which DNA damage induced by ROS increase may benefit to decrease damage DNA accumulation.
     Experiment in vivo
     1.Mice were randomly divided into three goups.Mice with sham operation and s.c. saline and i.p.sesame oil were used as the control group;mice with ovariectomy and s.c.D-galactose(100mg/kg.d) and i.p.sesame oil were used as the model group; mice with ovariectomy and s.c.D-galactose(100mg/kg.d) and i.p.E2(50μg/kg.d) were used as the ERT goup.Mice were injected daily D-galactose and E2 for 8w.
     2.Morris water maze the result showed that the escape latencies of model mice increased compared to Control mice(P<0.01),estrogen treatment decreased the escape latencies compared to model mice(P<0.05).
     3.Compared to control mice,D-gal treatment significantly elevated MDA level (P<0.01) and reduced the activities of SOD and GSH-Px(P<0.05)in hippocampus. Estrogen treatment can partly reversed the changes.
     4.Histomorphological observation showed the neurons in CA1 region of hippocampal in model mice were obviously damaged,which were manifested by severely decrease of Nissl body and cytoplasm vacuolar degeneration,the values of optical density decreased compared to control mice(P<0.01).Estrogen administration could significantly increase the Nissl body in DG,the values of optical density increased compared to model mice(P<0.05).It means that estrogen protect neurons against the neurotoxicity of D-gal.
     5.Immunohistochemistry and western blotting results showed 8-oxo-dG,a biomarker of DNA oxidative damage,increased and the expression of MTH1,an oxidized purine nucleoside tiphosphatase which play an important role in base excision repair mechanism,decreased and BDNF,a protein may facilitate DNA repair,decreased in hippocampus CA1 region in model mice compared with control mice(P<0.05). Estrogen treatment obviously rivalized these changes induced by D-gal. Simultaneously,the levels of Hsp70,a protein promote DNA repair which expression induced by oxidative stress were elevated in estrogen supplementary group compared with model group in hippocampus(P<0.05).
     6.BrdU immunohistochemistry method was used to detect the neural stem cells proliferation.The number of BrdU positive cells in DG region of hippocampus was markedly decreased in model mice compared with control(P<0.01) and it was returned in ERT mice,P<0.05 compared to model mice.Results showed estrogen protect neural stem cells proliferation,which suggested that estrogen treatment may maintain senescence cell renew to delay organism aging.
     7.We assessed the effect of estrogen in uterus by the histomorphological observation and RT-PCR.The results indicated that canceration phaenotype MN/CA9mRNA was not been found in our experiment,although tha weight of uteru in ERT mice than in model mice.It means that estrogen protect neurons and have not seriously side effcct on uteru.
     In summary,the present research demonstrated that estrogen may delay aging, which maybe related to reduce the production of ROS,attenuate DNA oxidative damage,promote DNA repair and decrease the damaged DNA accumulation.
     PartⅡ:Phytoestrogenα-ZAL protects cultured PC12 cells from Aβ_(25-35) insult
     1.Culture PC12 cells,the number of living cells were obviously decreased while cells incubation with 5μM Aβ_(25-35) for 24h compare with no-Aβ_(25-35) treated cells by using MTT assays.Incubating PC12 cells with E2 orα-ZAL at different concentrations 12h before Aβ_(25-35) addition can increase the number of living cells in an dose-dependent way,the number of living cells markly increased compared with Aβ_(25-35)-treated cells(P<0.05),but the protective effect ofα-ZAL was weaker than that of E2 at the same concentration.
     2.Results of electronmicroscopic observation indicated that incubation with Aβ_(25-35) for 24h induced apoptosis.Immunofluorescent staining analysis with Hoechest33258 shown the number of positive cells increased after Aβ_(25-35)-treated compared with Control(P<0.01),E2 andα-ZAL could decreased the percentages of apoptotic cells(P<0.05).
     3.Results of biochemical analysis showed that Aβ_(25-35) treatment significantly elevated MDA level(P<0.01) and reduced the activities of SOD and GSH-Px(P<0.01) compared with Control,E2 andα-ZAL enhanced the activities of SOD,GSH-Px and reduced the production of MDA,P<0.01 compared with Aβ_(25-35)-treated cell.The results showed that E2 andα-ZAL supplements protect cells from oxidative insults.
     4.Western blotting and RT-PCR results showed that Aβ_(25-35) could decrease the expression levels of bcl-2,up-regulate bax and caspase-3 expression level compared with control,E2 andα-ZAL could against these changes.Simultaneously,E2 and α-ZAL induce the expression of A20 mRNA,an anti-apoptosis gene may contribute to inhibit apoptosis.
     In summary,the present results demonstrated thatα-ZAL could effectively protect cell from apoptosis induced by Aβ_(25-35) by maintaining the function of oxidation reduction system and regulating the expression of apoptosis-related gene,just like as E2,but the effect ofα-ZAL was weaker than that of E2.
引文
[1] von Zglinicki T. Oxidative stress shortens telomeres. Trends Biochem Sci, 2002,27:339-344.
    
    [2] AngkeowP, DeshpandeSS, Qi B, et al. Redoxfactor-I: an extra-nuclear role in the regulation of endothelial oxidative stress an d apoptosis. Cell Death Difller,2002, 9:717-725
    [3] 3.Balaban RS, Nemoto S, Finkel T.Mitochondria, oxidants, and aging. Cell, 2005,120:483-495
    [4] d'Adda di Fagagna F,Reaper PM,Clay-Farrace L,et al.A DNA damage checkpoint response in telomere-initiated senescence.2003,Nature,426:194-198.
    [5] Bakkenist CJ,Drissi R,Wu J,et al.Disappearance of the telomere dysfunction induced stress response in fully senescent cells.Cancer Res,2004,64:3748-3752.
    [6] von Zglinicki T, Saretzki G, Ladhoff J, et al. Human cell senescence as a DNA damage response. Mechanisms of Ageing and Development, 2005,126:111-117
    [7] Sedelnikoval OA, Horikawa I, Zimonjic DB, Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Nature Cell Biology,2004,6:168-170.
    [8] Duan JM,Duan JP,Zhang ZY,et al.Irreversible cellular senescence induced by prolonged exposure to H2O2 involves DNA-damage-and-repair gene and telomere shorting.Int J Biochem Cell Biol,2005,37:1407-1420
    [9] Ariyoshi K,Suzuki K,Goto M,et al.Increased chromosome instability and accumulation of DNA double-strand breaks in Werner Syndrome cells.J Radiat Res,2007,48:219-231
    [10] Sedelnikova OA, Horikawa I,Redon C,et al. Delayed kinetics of DNA double-strand break processing in normal and pathological aging. Aging Cell,2008, 7 :89—100.
    [11] Chen JH, Hales CN , Ozanne SE. DNA damage, cellular senescence and ageing: causal or correlative? Nucleic Acids Research, 2007, 35: 7417-7428.
    [12] Burkle A.DNA repair and PARP in aging.Free Radic Res,2006,40:1295-1302
    [13] Vina J, Borras C, Gambini J,et al. Why females live longer than males: control of longevity by sex hormones. Sci Aging Knowledge Environ,2005,23: 17
    [14] Vina J, Borras C, Gambini J,et al.Why females live longer than males? Importance of the upregulation of longevity-associated genes by oestrogenic compounds.FEBS Lett,2005,579:2541-2545
    [15] Paganini-Hill A,Corrada MM,Kawas CH,et al. Increased longevity in older users of postmenopausal estrogen therapy: the Leisure World Cohort Study. Menopause,2006,13:12-18
    [16] Grady D,Rubin SM,Petitti DB,et al. Hormone therapy to prevent disease and prolong life in postmenopausal women. Ann Int Med,1992,117:1016-1037.
    [17] Daly E,Roche M,Barlow D,et al. ERT:an analysis of benefits, risk and costs. Br Med Bull, 1992,48:368-400.
    [18] LeBlanc ES, Janowsky J, Chan BK, Nelson HD. Hormone replacement therapy and cognition: systematic review and meta-analysis. JAMA, 2001,285:1489-1499.
    [19] Rosano GM,Webb CM, Chierchia S,et al.Natural progesterone, but not medroxyprogesterone acetate, enhances the beneficial effect of estrogen on exercise-induced myocardial ischemia in postmenopausal women.J Am Coll Cardiol,2000,36:2154-2159.
    [20] Lindsay R, Gallagher JC , Kleerekoper I, et al. Effect of lower doses of lower doses of conjugated equine estrogens with and without medroxyprogesterone acetate on bone in early postmenopausal women. JAMA , 2002 ,287 : 2668 -2676.
    [21] Karas RH, Gauer EA, Bieber HE, Growth factor activation of the estrogen receptor in vascular cells occurs via a mitogen-activated protein kinase-independent pathway. J. Clin. Invest, 1998,101: 2851-2861.
    [22] Harrington DJ,Lessey BA,Rai V,et al. Tenascin is differentially expressed in endometrium and endometriosis. [J].J Pathol,1999,187:242-248.
    [23] Hayflick L,Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961,2525:585-621.
    [24] Zwerschke W, Mazurek S, Stockl P,et al. Metabolic analysis of senescent human fibroblasts reveals a role for AMP in cellular senescence. Biochem J, 2003, 376:403-411.
    [25] Zhao W,Lin ZX,Zhang ZQ,et al. Cisplatin-induced premature senescence with concomitant reduction of gap junctions in human fibroblasts.Cell Res,2004,14:60-66.
    [26] Dimri GP, Lee X, Basile G,et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo, Proc. Natl.Acad. Sci. USA, 1995, 92:9363-9367.
    [27] Hutter E, Unterluggauer H, Uberall F,et al. Replicative senescence of human fibroblasts: the role of Ras-dependent signaling and oxidative stress. Exp Gerontol,2002,37:1165-11674
    [28] Herbig U, Ferreira M, Condel L, et al.Cellular senescence in aging primates. Science,2006, 311,1257.
    [29] Jeyapalan JC, Ferreira M, Sedivy JM,et al. Accumulation of senescent cells in mitotic tissue of aging primates.Mech Ageing Dev,2007, 128:36-44.
    [30] Klein JA, Ackerman SL. Oxidative stress, cell cycle, and neurodegeneration. J Clin Invest,2003,111:785-793.
    [31] Lu SY,Chang KW,Liu CJ,et al. Ripe areca nut extract induces G1 phase arrests and senescence-associated phenotypes in normal human oral keratinocyte. Carcinogenesis,2006,27:1273-1284.
    [32] Liao SY, Brewer C ,Zavada J ,et al. Identification of the MN antigen as a diagnostic biomarker of cervical intraepithelial squamous and glandular neoplasia and cervical carcinomas.Am J Pathol ,1994,145:598-609.
    [33] Nichols WW, Murphy DG, Cristofalo VJ , et al. Characterization of a new human diploid cell strain , IMR-90. Science ,1977 ,196 :60-63.
    
    [34] Kraus WL, Lis JT. PARP goes transcription.Cell, 2003,113:677-683.
    [35] Tulin A,Spradling A. Chromatin loosening by poly(ADP)-ribose polymerase (PARP) at Drosophila puff loci.Science,2003 ,299:560-562.
    [36] Klungland A, Lindahl T. Second pathway for completion of human DNA base excision-repair:reconstitution with purified proteins and requirement for DNase IV (FEN1).EMBO J.1997,16:3341-3348.
    [37] Ames BA,Shingenage MK,Park EM.Chemical, bilolgyical and medical aspects.In:Davies KJA.Ed.Oxidation damage and repair. NY:Pergamon, Elmsford, 1991,181-187
    [38] Bertram C,Hass R.Cellular responses to reactive oxygen species-induced DNA damage and aging.Biol Chem,2008,389:211-220.
    [39] Melo JA,Cohen J,Toczyski DP. Two checkpoint complexes are independently recruited to sites of DNA damage in vivo. Genes Dev, 2001, 15:2809-2821.
    [40] Kondo T,Wakayama T,Naiki T,et al. Recruitment of Mecl and Ddc1 checkpoint proteins to double-strand breaks through distinct mechanisms. Science, 2001,294:867-870.
    [41] Buscemi G,Savio C,Zannini L,et al. Chk2 activation dependence on Nbs1 after DNA damage.Mol Cell Biol, 2001, 21:5214-5222.
    [42] Celeste A, Fernandez-Capetillo O, Kruhlak MJ,et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol, 2003, 5:675-679.
    [43] Ward IM,Minn K,van Deursen J, et al. p53 Binding protein 53BP1 is required for DNA damage responses and tumor suppression in mice. Mol Cell Biol,. 2003, 23:2556-2563.
    [44] Chin L, Artandi SE, Shen Q, et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell,1999,97:527-538.
    [45] Maiti B,Li J,de Bruin A, et al. Cloning and characterization of mouse E2F8, a novel mammalian E2F family member capable of blocking cellular proliferation. J Biol Chem,2005,280:18211 -18220.
    [46] Vina J, Sastre J, Pallardo FV, et al. Modulation of longevity-associated genes by estrogens or phytoestrogens.Biol Chem,2008,389:273-277.
    [47]Kang HT,Lee HI,Hwang ES.Nicotinamide extends replicative lifespan of human cells Aging Cell,2006,5:423-436.
    [48]Schultz-Norton JR,Walt KA,Ziegler YS,et al.The deoxyribonucleic acid repair protein flap endonuclease-1 modulates estrogen-responsive gene expression.Mol Endocrinol,2007,21:1569-1580.
    [49]徐小利,马润泉主编.糖类代谢.医学生物化学,1998,174-176
    [50]Whittaker MM,Whittaker JW.The active site of galactose oxidase.J Biol Chem,1988,263:6074-6080.
    [51]Wachter RM,Branchaud BP.Thiols as mechanistic probes for catalysis by the free radical enzyme galactose oxidase.Biochemistry,1996,35:14425-35.
    [52]Cui X,Wang L,Zuo P,et al.D-galactose-caused life shortening in Drosophila melanogaster and Musca domestica is associated with oxidative stress.Biogerontology,2004,5:317-325.
    [53]Ho SC,Liu JH,Wu RY.Establishment of the mimetic aging effect in mice caused by D-galactose.Biogerontology,2003,4:15-18.
    [54]Shen YX,Xu SY,Wei W,et al.Melatonin reduces memory changes and neural oxidative damage in mice treated with D-galactose.J Pineal Res,2002,32:173-178.
    [55]Xu XH,Zhao TQ.Effects of puerarin on D-galactose-induced memory deficits in mice.Acta Pharmacol Sin,2002,23:587-590.
    [56]Lei H,Wang B,Li WP,et al.Anti-aging effect of astragalosides and its mechanism of action.Acta Pharmacol Sin,2003,24:230-234.
    [57]李文斌.D-半乳糖衰老模型的现状与展望.中华医学会首届全国老年基础医学学术会议论文汇编.3-12.北京1994年10月
    [58]Yelinova V,Glazachev Y,Khramtsov V,et al.Studies of human and rat blood under oxidative stress:changes in plasma thiol level,antioxidant enzyme activity,protein carbonyl content,and fluidity of erythrocyte membrane.Biochem Biophys Res Commun,1996,16:221:300-3.
    [59]Morris R.Developments of a water-maze procedure for studying spatial learning in the rat.J Neurosci Methods,1984,11:47-60
    [60]Demple B,Harrison L.Repair of oxidative damage to DNA:enzymology and biology.Annu Rev Biochem,1994,63:915-948.
    [61]Maki H,Sekiguchi M.MutT protein specifically hydrolyses a potent mutagenic substrate for DNA synthesis.Nature,1992,355:273-5.
    [62]Cheng KC,Cahill DS,Kasai H,et al.8-Hydroxyguanine,an abundant form of oxidative DNA damage,causes G----T and A----C substitutions.J Biol Chem.1992,267:166-72.
    [63]Shibutani S,Takeshita M,Grollman AP.Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG.Nature.1991,349:431-434.
    [64]Mendez F,Sandigursky M,Kureekattil RP,et al.Specific stimulation of human apurinic/apyrimidinic endonuclease by heat shock protein 70.DNA Repair,2003,2:259-271.
    [65]Kenny MK,Mendez F,Sandigursky M,et al.Heat shock protein 70 binds to human apurinic/apyrimidinic endonuclease and stimulates endonuclease activity at abasic sites.J Biol Chem,2001,276:9532-9536.
    [66]Mendez F,Sandigursky M,Franklin WA,et al.Heat-shock proteins associated with base excision repair enzymes in HeLa cells.Radiat Res,2000,153:186-95.
    [67]Mendiz F,Kozin E,Bases R.Heat shock protein 70 stimulation of the deoxyribonucleic acid base excision repair enzyme polymerase beta.Cell Stress Chaperones,2003,8:153-161.
    [68]Calini V,Urani C,Camatini M.Overexpression of HSP70 is induced by ionizing radiation in C3H10T1/2 cells and protects from DNA damage.Toxicology in Vitro,2003,17:561-566
    [69]Middlemas DS,Kihl BK,Moody NM.Brain derived neurotrophic factor protects human neuroblastoma cells from DNA damaging agents.Journal of Neuro-Oncology,1999,45:27-36
    [70]Chen G,Fan Z,Wang X,et al.Brain-derived neurotrophic factor suppresses tunicamycin-induced upregulation of CHOP in neurons. J Neurosci Res, 2007,85:1674-1684.
    [71] Zhang Q, Li X, Cui X, et al. D-galactose injured neurogenesis in the hippocampus of adult mice.Neurol Res, 2005,27:552-556.
    [72] Nijnik A,Woodbine L,Marchetti C,et al. DNA repair is limiting for haematopoietic stem cells during ageing. Nature, 2007,447:686-690.
    [73] Rossi DJ,Bryder D,Seita J,et al. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature,2007,447:725-729.
    
    [74] Henderson BE and Feigelson HS. Hormonal carcinogenesis. Carcinogenesis, 2000,21:427-433.
    [75] Yue Y, Hu L, Tian QJ, et al. Effects of long-term, low-dose sex hormone replacement therapy on hippocampus and cognition of postmenopausal women of different apoE genotypes. Acta Pharmacol Sin, 2007, 28:1129-1135.
    1.Laferla FM,Green KN,Oddo S.Intracellular amyloid-beta in Alzheimer's disease.Nat Rev Neurosci,2007,8:499-509.
    2.Zekanowski C,Religa D,GraffC,et al.Genetic aspects of Alzheimer's disease.Acta Neurobiol Exp (Wars),2004,64:19-31.
    3.LeBlanc ES,Janowsky J,Chan BK,Nelson HD.Hormone replacement therapy and cognition:systematic review and meta-analysis.JAMA,2001,285:1489-1499.
    4.Hashimoto K,Nozaki M,Nakano H.Positive effects of conjugated equine estrogen on triglyceride metabolism in oophorectomized women based on a stratification analysis of pretreatment values.Fertil Steril,2004,81:1041-6.
    5.Yoon BK,Kim DK,Kang Y,Kim JW,Shin MH,Na DL.Hormone replacement therapy in postmenopausai women with Alzheimer's disease:a randomized,prospective study.Fertil Steril,2003,79:274-280.
    6.Shaywitz SE,Naftolin F,Zelterman D,et al.Better oral reading and short term memory in midlife,postmenopausal women taking estrogen.Menopause-the Journal of the North American Menopause Society,2003,10:420-426.
    7.Fillit HM.The role of hormone replacement therapy in the prevention of Alzheimer's disease.Arch Intern Med,2002,162:1934-1942
    8.Henderson BE and Feigelson HS.Hormonal carcinogenesis.Carcinogenesis,2000,21:427-33.
    9.Zollner P,Berner D,Jodlbayer J,et al.Determination of zearalenone and its metabolites alpha- and beta-zearalenol in beer samples by high-performance liquid chromatography-tandem mass spectrometry.J Chromatogr B Biomed Sci Appl,2000,738:233-41.
    10.Le Guevel R and Pakdel F.Assessment of oestrogenic potency of chemicals used as growth promoter by in-vitro methods.Hum Reprod,2001,16:1030-1036.
    11.Dai SL,Duan,JH,Lu Y,et al.Phytoestrogen α-Zearalanol inhibits atherogenesis and improves lipid profile in ovariectomized cholesterol-fed rabbits.Endocrine,2004,25(2):121-129.
    12.Xu HS,Duan JH,Dai SL,et al.Phytoestrogen alpha-zearalanol antagonizes oxidized LDL-induced inhibition of nitric oxide production and stimulation of endothelin-1 release in human umbilical vein endothelial cells.Endocrine,2004,25:235-245.
    13.Squadrito F,Altavilla D,Morabito N,et al.The effect of the phytoestrogen genistein on plasma nitric oxide concentrations,endothelin-1 levels and endothelium dependent vasodilation in postmenopausal women.Atherosclerosis,2002,163:339-47.
    14.Duan JH,Esberg LB,Dai SL,et al.Comparison of cardiac contractile and intracellular Ca2+response between estrogen and phytoestrogen alpha-zearalanoi in ventricular myocytes.Endocrine,2004,24:33-8.
    15.戴顺龄,段金虹,陆媛等。植物雌激素α-玉米赤霉醇与17β雌二醇、戊酸雌二醇对兔食饵性动脉粥样硬化的作用。微循环杂志,2006,16:15-18,23。
    16.Dong YL,Yue Y,Liu FH,et al.Treatment with phytoestrogen alpha-zearalanol might protect neurons of hippocampus in ovariectomized rats.Endocrine,2006,30:249-54.
    17.Selkoe DJ.Alzheimer's disease:genes,proteins,and therapy.Physiol Rev,2001,81:741-766.
    18.Perluigi M,Joshi G,Sultana R,et al.In vivo protection by the xanthate tricyclodecan-9-ylxanthogenate against amyioid-peptide(1-42)-induced oxidative stress.Neuroscience,2006,138:1161-1170.
    19.Benvenuti S,Luciani P,Vannelli GB,et al.Estrogen and selective estrogen receptor modulators exert neuroprotective effects and stimulate the expression of Selective Alzheimer's Disease Indicator-1,a recently discovered antiapoptotic gene,in human neuroblast long-term cell cultures.The Journal of Clinical Endocrinology & Metabolism,2005,90:1775-1782.
    20. Miranda S, Opazo C, Larrondo LF, et al. The role of oxidative stress in the toxicity induced by amyloid beta-peptide in Alzheimer's disease. Prog Neurobiol, 2000,62:633-648.
    
    21. Alvarez A, Alarcon R, Opazo C, et al. Stable complexes involving acetylcholinesterase and amyloid-beta peptide change the biochemical properties of the enzyme and increase the neurotoxicity of Alzheimer's fibrils. J Neurosci, 1998,18:3213-23.
    
    22. Glenner GGAlzheimer,s disease: its proteins and genes.Cell,1988,52:307-308.
    
    23. Yuan J, Yanker BA. Apoptosis in the nervous system. Nature, 2000, 407:802-809.
    
    24. Butterfield, DA,Drake J,Pocermich C,et al. Evidence of oxidative damage in Alzheimer's disease brain: central role for amyloid β-peptide. Trends Mol Med, 2001,7:548- 554.
    
    25. Pike CJ , Burdick D , Walencewicz AJ , et al. Neurodegeneration induced by beta amyloid peptides in vit ro : the role of peptide assembly state . J Neurosci, 1993 , 13:1676 -1687.
    
    26. Norbury R, Cutter WJ, Compton J, et al. The neuroprotective effects of estrogen on the aging brain.Exp Gerontol, 2003,38:109-117.
    
    27. Wise PM, Dubai DB, Wilson ME, et al. Estrogens: trophic and protective factors in the adult brain.Front Neuroendocrinol, 2001,22: 33-66.
    
    28. Shaywitz SE, Naftolin F, Zelterman D,et al. Better oral reading and shortterm memory in midlife,postmenopausal women taking estrogen.Menopause—the Journal of the North American Menopause Society, 2003,10:420-426.
    
    29. Kim H,Bang OY,Jung MW,et al. Neuroprotective effects of estrogen against beta-amyloid toxicity are mediated by estrogen receptors in cultured neuronal cells. Neurosci Lett, 2001,302:58-62.
    
    30. Bianca VD, Dusi S, Bianchini E, et al. Beta-amyloid activates the O-2 forming NADPH oxidase in microglia, monocytes, and neutrophils. A possible inflammatory mechanism of neuronal damage in Alzheimer's disease, J Biol Chem, 1999, 274: 15493-15499.
    
    31. Huang X, Atwood CS, Hartshorn MA, et al. The A beta peptide of Alzheimer's disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry, 1999,38:7609-7616.
    
    32. Ingram VM. The role of Alzheimer A beta-peptides in ion transport across cell membranes. Subcell Biochem, 2005,38:339-349.
    
    33. Canevari L, Clark JB, Land JM,et al. Beta-amyloid inhibits integrated mitochondrial respiration and key enzyme activities.J Neurochem,2002, 80:91-100.
    
    34. Casley CS, Land JM, Sharpe MA et al. Beta-amyloid fragment 25-35 causes mitochondrial dysfunction in primary cortical neurons .Neurobiol Dis,2002,10: 258-267.
    
    35. Swerdlow RH, Kish SJ. Mitochondria in Alzheimer's disease Int Rev Neurobiol. 2002,53:341-385.
    
    36. Forloni G, Chiesa R, Smiroldo S, et al. Apoptosis mediated neurotoxicity induced by chronic application of beta amyloid fragment 25-35. Neuroreport, 1993,4:523-526.
    
    37. LaFerla FM, Tinkle BT, Bieberich CJ, et al. The Alzheimer's A beta peptide induces neurodegeneration and apoptotic cell death in transgenic mice. Nat Genet, 1995,9:21-30.
    
    38. Loo DT, Copani A, Pike CJ, et al. Apoptosis is induced by beta-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci USA, 1993,90:7951-5.
    
    39. Vaca CE, Wilhelm J, Hartwig A, et al.Interaction of lipid peroxidation products with DNA. A review.Mutation Research, 1988,195, 137-149.
    
    40. Maurer I,Sierz S,Moller HJ.A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients.Neurobiol Aging.2000,21:455-462.
    
    41. Gorman AM,Orrenius S,Ceccateli S.Apoptosis in neuronal cells:role of caspases.NeuroReport, 1998,9:49-55.
    
    42. Dariosl F,Cortil O,Lucking CB, et al.Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death.Hum Mol Genet, 2003,12:517-526.
    
    43. Eckert A,Steiner B,Marques C,et al.Elevated vulnerability to oxidative stress-induced cell death and activation of caspase-3 by the Swedish amyloid precursor protein mutation.J Neurosci Res,2001,64:183-92.
    
    44. Adams JM and Cory S. Bcl-2-regulated apoptosis: mechanism and therapeutic potential.Curr Opin Immunol, 2007,19:488-96.
    
    45. Su JH,Deng QCotman CW.Neuronal DNA damage precedes tangle formation and is associated with up-regulation of nitrotyrosine in Alzheimer's disease brain.Brain Res, 1997 ,774:193-9.
    
    46. Yang E, Zha J, Jockel J, et al. Bad, a heterodimeric partner for bcl-xl and bcl-2,displaces bax and promotes cell death.Cell,1995,80:285-291.
    
    47. Zhu YL,Wang CH,Huang J,et al. The Helicobacter pylori virulence factor CagA promotes Erkl/2-mediated Bad phosphorylation in lymphocytes: a mechanism of CagA-inhibited lymphocyte apoptosis. Cellular Microbiology, 2007,9: 952-961.
    
    48. Dixit VM, Green S, Sarma V, et al. Tumor necrosis factor-alpha induction of novelgene products in human endothelial cells including a macrophage-specific chemotaxin. J Biol Chem, 1990,265:2973-2978.
    
    49. Daniel S, Arvelo, MB, Patel VI, et al. A20 protects endothelial cells from TNF-, Fas-, and NK-mediated cell death by inhibiting caspase 8 activation. Blood, 2004,104:2376-2384.
    1. Erden-Inal M, Sunal E, Kanbak G. Age-related changes in the glutathione redox system. Cell Biochem Funct, 2002,20:61-66.
    
    2. .Mather P. The effects of stress and aging on glutathione metabolism. Ageing Res Rev,2005,4:288-314.
    
    3. Jones DP. Extracellular redox state :refining the definition of oxidative stress in aging.Rejuvvenation Res,2006,9:169-181.
    
    4. Packer L,Fuehr K.Low oxygen concentration extends the lifespan of cultured human diploid cells.Narure, 1977,267:423-425.
    
    5. Oxidative DNA damage and senescence of human diploid fibroblast cells. Proc Natl Acad Sci U S A., 1995, 92:4337-41.
    
    6. Blander G, de Oliveira RM, Conboy CM,et al. Superoxide dismutase 1 knock-down induces senescence in human fibroblasts.J Biol Chem, 2003 ,278:38966-9.
    
    7. Iwasa H,Han J, Ishikawa F. Mitogen-activated protein kinase p38 defines the common senescence-signalling pathway.Genes Cells, 2003,8:131-44.
    
    8. Martin-Ruiz C, Saretzki G, Petrie J, Stochastic variation in telomere shortening rate causes heterogeneity of human fibroblast replicative life span.J Biol Chem, 2004,279:17826-17833.
    
    9. Masutomi K, Yu EY, Khurts S,et al. Telomerase maintains telomere structure in normal human cells.Cell,2003 ,114:241-53.
    
    10. Son NH,Murray S, LesleyMA, et al.Lineage-specific telomere shortening and unaltered capacity for telomerase exp ression in human T and Blymphocyteswith age.J Immunol, 2000, 165 : 1191-1196.
    
    11. Allsopp RC, Chang E, Pan A, et al.Telomere shortening is associated with cell division in vitro.Exp Cell Res, 1995,220:194-200.
    
    12. Ramirez RD,WrightWE, Rocen A, et al.Telomerase activity concentrates in the mitotically active segments of human hair follicles.J Invest Dermatol, 1997,108 : 113-117.
    
    13. Yang L, Suwa T, Zhou Y, et al.Telomere shortening and decline in replicative potential as a function of donor age in human adrenocortical cells.Mech Ageing Dev, 2001, 122: 1685-1694.
    
    14. Kip ling D.Telomeres, rep licative senescence and human ageing Maruritas, 2001; 38: 25-38
    
    15. Blackburn EH. Switching and signaling at the telomere.Cell, 2001, 106:661 -73.
    
    16. Herbig U,Jobling WA,Chen BP,et al. Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIPl), but not p16(INK4a).Mol Cell,2004,14:501-13.
    
    17. Pommier JP, Gauthier L, Debonnel G, et al.Immunosenescence in HIV pathogenesis. Virollogy, 1997,211 : 148-155.
    
    18. Piko L, Hougham AJ, Bulpitt KJ. Studies of sequence heterogeneity of mitochondrial DNA from rat and mouse tissues: evidence for an increased frequency of deletions / additions with aging. Mech Ageing, 1988, 43: 279-93.
    
    19. Michikawa Y, Mazzucchelli F, Bresolin N, et al. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science, 1999,286: 774-9.
    
    20. Wang Y, Michikawa Y, Mallidis C, et al. Muscle-specific mutations accumulate with aging in critical human mtDNA control sites for replication. Proc Natl Acad Sci U S A, 2001,98: 4022-7.
    
    21. Cottrell DA, Turnbull DM Mitochondria and ageing. Curr Opin Clin Nutr Metab Care, 2000,3:473-8.
    
    22. Trifunovic A, Wredenberg A, Falkenberg M et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature, 2004; 429: 417-23.
    
    23. Ikebe S,Tanaka M,Ohno K,et al. Increase of deleted mitochondrial DNA in the striatum in Parkinson's disease and senescence. Biochem Biophys Res Commun,. 1990,170:1044-8.
    
    24. Dumont P, Burton M, Chen QM,et al. Induction of replicative senescence biomarkers by sublethal oxidative stresses in normal human fibroblast. Free Rad Biol Med, 2000,28:361-373.
    
    25. Bender A, Krishnan KJ, Morris CM,et al. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet,2006,38:515-517.
    
    26. KraytsbergY, Kudryavtseva E, McKee AC,et al. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet, 2006,38:518-520.
    
    27. Bobba A, Giannattasio S, PucciA, et al.Characterization of mitochondrial DNA in primary cardiomyopathies. Clin Chim Acta, 1995, 243 :181-191.
    
    28. Melov S, Schneider JA, Coskun PE, et all Mitochondrial DNA rearrangements in aging human brain and in situ PCR of mtDNA. Neurobiol Aging, 1999, 20: 565-71.
    
    29. Coskun PE, Ruiz-Pesini E, Wallace DC. Control region mtDNA variants longevity, climatic adap tation, and a forensic conundrum.Proc Natl Acad Sci, 2003, 100: 2174-2176.
    
    30. Chinnery PF, Taylor GA, HowellN, et al. Pointmutations of the mtDNA control region in normal and neurodegenerative human brains.Hum Genet, 2001, 68: 529-532.
    
    31. Michikawa Y, Mazzucchelli F, Bresolin N, et al. Aging-dependent large accumulation of pointmutations in the human mtDNA control region for replication. Science, 1999,286 : 774-779
    
    32. Wang Y,Michikawa Y,Mallidis C, et al. Muscle-specific mutations accumulate with aging in critical human mtDNA control sites for rep lication.Proc Natl Acad Sci, 2001,98 : 402-427.
    
    33. Zhang J, Asin-Cayuela J, Fish J, et al.Strikingly higher frequency incentenarians and twins of mtDNA mutation causing remodeling of rep lication origin in leukocytes.Proc Natl Acad Sci, 2003,100:1116-1121.
    
    34. Chinnery PF, Taylor GA, HowellN, et al. Pointmutations of the mtDNA control region in normal and neurodegenerative human brains.Hum Genet, 2001,68: 529-532.
    
    35. Sedelnikova OA, Horikawa I,Redon C,et al. Delayed kinetics of DNA double-strand break processing in normal and pathological aging. Aging Cell,2008, 7 :89—100.
    
    36. Chen JH, Hales CN , Ozanne SE. DNA damage, cellular senescence and ageing: causal or correlative? Nucleic Acids Research, 2007, 35: 7417-7428.
    
    37. Tulin A,Spradling A. Chromatin loosening by poly(ADP)-ribose polymerase (PARP) at Drosophila puff loci.Science,2003 ,299:560-562.
    
    38. Klungland A, Lindahl T. Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1).EMBO J.1997,16:3341-8.
    
    39. Ames BA,Shingenage MK,Park EM.Chemical, bilolgyical and medical aspects.In:Davies KJA.Ed.Oxidation damage and repair. NY:Pergamon, Elmsford, 1991,181-187.
    
    40. Melo JA,Cohen J,Toczyski DP. Two checkpoint complexes are independently recruited to sites of DNA damage in vivo. Genes Dev, 2001, 15:2809-2821.
    
    41.Kondo T,Wakayama T,Naiki T,et al. Recruitment of Mecl and Ddc1 checkpoint proteins to double-strand breaks through distinct mechanisms. Science, 2001,294:867-70.
    
    42. Celeste A, Fernandez-Capetillo O, Kruhlak MJ,et al. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol, 2003, 5:675-679.
    
    43. Ward IM,Minn K,van Deursen J, et al. p53 Binding protein 53BP1 is required for DNA damage responses and tumor suppression in mice. Mol Cell Biol,. 2003, 23:2556-63.
    
    44. Chin L, Artandi SE, Shen Q, et al. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell, 1999,97:527-38.
    
    45. Maiti B,Li J,de Bruin A, et al. Cloning and characterization of mouse E2F8, a novel mammalian E2F family member capable of blocking cellular proliferation. J Biol Chem,2005,280:18211-20.
    
    46. Klass M R. A method for the isolation of longevity mutants in thenematode Caenorhabditis elegans and initial results. Mech Ageing Dev ,1983 ,22 :279-286
    
    47. You Y O, Lee G, Min BM. Biochem. Biophys. Res. Commun,2000,268: 268 -274.
    
    48. Sandhu C, Peehl DM, Slingerland J. Cancer Res,2000,60:2616-2622.
    
    49. Duan JM, Zhang ZY, Tong TJ. Senescence Delay of Human Diploid Fibroblast Induced by Anti-sense p16INK4a Expression. THE Joural of Biological Chemistry, 2001,276:48325-48331.
    
    50. Krishnamurthy J, Torrice C, Matthew R, et al. Ink4a/Arf expression is a biomarker of aging. The Journal of Clinical Investigation, 2004 , 114:1299-1370.
    
    51. Ezhevsky SA, Ho A, Becker-Hapak M, et al. Differential regulation of retinoblastoma tumor suppressor protein by G (1) cyclin-dependent kinase complexes in vivo.Mol Cell Biol,2001,21:4773-4784.
    
    52. Ho A, Dowdy SF.Regulation of G (1) cell-cycle progression by oncogenes and tumor suppressor genes. Curr Opin Genet Dev,2002, 12:47-52.
    
    53. Bunz F, Dutriaux A, Lengauer C, et al.The induction of p21 by p53 is required for sustained G2 arrest following DNA damage.Science,1998, 282:1497-1501.
    
    54. Tyner SD, Venkatachalam S, Choi J,et al. p53 mutant mice that display early ageing-associated phenotypes. Nature,2002 ,415:45-53.
    
    55. Maier B,Gluba W,Bernier B,et al. Modulation of mammalian life span by the short isoform of p53.Genes Dev, 2004,18:306-19.
    
    56. Jones SN, Roe AE, Donehower LA, et al. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53.Nature, 1995 ,378:206-8.
    
    57. Migliaccio E ,Giorgio M,Mele S ,et al . The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature ,1999 ,402 :309-313.
    
    58. Zhang JG, HE L. Research progress of longevity and aging gene.L ife Sci, 1999, 2 :84287.
    
    59. Paradis S ,Ruvkun G Caenorhabditis elegans Akt/PKB transduces insulin-like receptor signals from AGE21 PI3 kinase to the DAF-16transcription factor. Genes Dev ,1998 ,12 :2488-2498.
    
    60. Ogg S ,Ruvkun G The C. elegans PTEN homolog ,DAF-18 ,acts in the insulin receptor-like metabolic signaling pathway. Mol Cell ,1998 ,2 :887-893.
    
    61. O'Brien R M,Noisin E L ,Suwanichkul A ,et al . Hepatic nuclear factor-3 and hormone-regulated expression of the phosphoenolpyruvate carboxykinase and insulin-like growth factor-binding protein 1 genes.Mol Cell Biol ,1995 ,15 :1747-1758.
    
    62. Larsen P L ,Albert P S , Riddle D L. Genes that regulate both development and longevity in Caenorhabditis elegans . Genetics ,1995 ,139 :1567-1583.
    
    63. Hsin H , Kenyon C. Signals from the reproductive system regulate the lifespan of C. elegans .Nature ,1999 ,399 :362-366.
    
    64. Taub J ,Lau J K,Ma C , et al . A cytosolic catalase is needed to extend adult lifespan in C. elegans daf-C and clk-1 mutants/Nature ,1999,399 :162-166.
    
    65. Murakami S , Johnson T E. A genetic pathway conferring life extension and resistance to U V stress in Caenorhabditis elegans . Genetics ,1996 ,143 :1207-1218.
    
    66. Smeal T ,Claus J ,Kennedy B ,et al .Loss of transcriptional silencing causes sterility in old mother cells of S . cerevisiae. Cell ,1996 ,84 :633-642.
    
    67. Jagwinski SM,Conzelmann A. LAG1 puts the focus on ceramide signaling. Int J Biochem Cell Biol,2002,34:1491-5.
    1. LeBlanc ES, Janowsky J, Chan BKS, et al. Hormone replacement therapy and cognition: systematic review and meta-analysis. JAMA, 2001,285:1489-1499.
    
    2. Hashimoto K, Nozaki M, Nakano H. Positive effects of conjugated equine estrogen on triglyceride metabolism in oophorectomized women based on a stratification analysis of pretreatment values.Fertil Steril, 2004,81: 1041-1046.
    
    3. Yoon BK, Kim DK, Rang Y, Kim JW, Shin MH, Na DL. Hormone replacement therapy in postmenopausal women with Alzheimer's disease: a randomized, prospective study. Fertil Steril,2003,79:274-280.
    
    4. Shaywitz SE, Naftolin F, Zelterman D, et al. Better oral reading and short term memory in midlife, postmenopausal women taking estrogen. Menopause—the Journal of the North American Menopause Society,2003,10: 420-426.
    
    5. Sherwin BB.Estrogen and cognitive aging in women.Trends Pharmacol Sci. 2002 Nov;23(11):527-534.
    
    6. Nilsen J,Brinton RD.Impact of progestins on estrogen-induced neuroprotection: synergy by progesterone and 19-norprogesterone and antagonism by medroxyprogesterone acetate.Endocrinology,2002,143:205-212.
    
    7. 曾梅,鲁亚平,许浩等.雌激素受体α和Bcl-2 在阿尔茨海默病患者海马中的共存.中国医学科学院学报, 2004, 26: 108-111
    
    8. Kim H,Bang OY,Jung MW,et al. Neuroprotective effects of estrogen against beta-amyloid toxicity are mediated by estrogen receptors in cultured neuronal cells. Neurosci Lett. 2001, 302:58-62.
    
    9. Nilsen J, Chen S, Irwin RW, et al. Estrogen protects neuronal cells from amyloid beta- induced apoptosis via regulation of mitochondrial proteins and function. BMC Neurosci,2006, 7:74- 85.
    
    10. Chen S, Nilsen J, Brinton RD. Dose and temporal pattern ofestrogen exposure determines neuroprotective outcome in hippocampal neurons : therapeutic implications. Endocrinology, 2006,147:5303-5313.
    
    11. Tang YP,Haslam SZ,Conrad SE,et al. Estrogen increases brain expression of the mRNA encoding transthyretin, an amyloid beta scavenger protein. J Alzheimers Dis, 2004,6:413-420.
    
    12. Gibbs RB. Fluctuations in relative levels of choline acetyltransferase mRNA in different regions of the rat basal forebrain across the estrous cycle: effects of estrogen and progesterone.J Neurosci,1996, 16:1049- 1055.
    
    13. Solum DT, Handa RJ. Estrogen regulates the development of brain- derived neurotrophic factor mRNA and protein in the rat hippocampus. J Neurosci, 2002, 22:2650-2659.
    
    14. Marin R, Guerra B, Hernandez- Jimenez JG, et al. Estradiol prevents amyloid- beta peptide- induced cell death in a cholinergic cell line via modulation of a classical estrogen receptor. Neuroscience,2003,121:917-926.
    
    15. Lam TT, Leranth C. Role of the medial septum diagonal band of Broca cholinergic neurons inoestrogen- induced spine synapse formation on hippocampal CA1 pyramidal cells of female rats.Eur J Neurosci, 2003, 17:1997- 2005.
    
    16. Lam TT, Leranth C. Gonadal hormones act extrinsic to the hippocampus to influence the density of hippocampal astroglial processes. Neuroscience, 2003, 116:491- 498.
    
    17. BarronAM, Fuller SJ,VerdileG, et al.Reproductive hormones modulate oxidative stress inAlzheimer's disease. Antioxid Redox Signal, 2006, 8:2047- 2059.
    
    18. Bae YH, Hwang JY, Kim YH , et al . Anti - oxidative neuroprotection by estrogens in mouse cortical cultures. J Korean Med Sci, 2000, 15:327- 336.
    
    19. Fujita T.Alzheimer disease and calcium. Clin Calcium,2004, 14:103- 105.
    
    20. Perrella J, Bhavnani BR. Protection of cortical cells by equine estrogens against glutamate- induced excitotoxicity is mediated through a calcium independent mechanism. BMC Neurosci, 2005, 6:34-50.
    21. Simpkins JW,Wang J, Wang X, et al. Mitochondria play a central role in estrogen- induced neuroprotection. Curr Drug Targets CNS Neurol Disord, 2005,4:69- 83.
    
    22. Stone DJ, Rozovsky I,Morgan TE, et al. Increased synaptics prouting inresponse to estrogen via apolipoprotein E dependent mechanism: Implications for Alzheimer's disease. J Neurosci, 1998,18:3180-3185.
    
    23. Rippon GA, Tang MX, Lee JH, et al. Familial Alzheimer disease in Latinos: interaction between APOE, stroke, and estrogen replacement. Neurology, 2006, 66:35- 40.
    
    24. Vegeto E, Belcredito S, Ghisletti S, et al. The endogenous estrogen status regulates microglia reactivity in animal models of neuroinflammation. Endocrinology, 2006, 147:2263- 2272.
    
    25. Morale MC, Serra PA, L'episcopo F, et al. Estrogen, neuroinflammation and neuroprotection in Parkinsons disease: glia dictates resistance versus vulnerability to neurodegeneration. Neuroscience,2006, 138:869-78.
    
    26. Morale MC, Serra PA, Lepiscopo F, et al. Estrogen ,neuroinflammation and neuroprotection in Parkinson's disease : glia dictates resistance versus vulnerability to neurodegeneration. Neuroscience,2006, 138:869-878.
    
    27. Schonknecht P, Henze M, Hunt A, et al. Hippocampal glucose metabolism is associated with cerebrospinal fluid estrogen levels in postmenopausal women with Alzheimer's disease. Psychiatry Res, 2003, 124:125-127.
    
    28. Rasgon NL, Silverman D, Siddarth P, et al. Estrogen use and brain metabolic change in postmenopausal women.Neurobiol Aging, 2005, 26 :229- 235.
    
    29. Zava DT, Duwe G1 Est rogenic and antiproliferation properties of genistein and ot her flavonoid in human breast cancer in vitro.Nut r Cancer, 1997, 27:31 -40.
    
    30. Lund TD , West TW, Tian L Y, et al. Visual spatial memory is enhanced in females ( but not in males) by dietary soy phytoestrogens. BMC Neuroscience , 2001 , 2 :20.
    
    31. Pan Y, Anthony M. Effect of estradiol and soy phyertrogens on cloline acetyl transfer and nerve growth factor mRNAs in the frontal cortex and hippocampus of female rats.Proc Soc Exp Biol Med,1999,221 :118-125
    
    32. Dong YL,Yue Y, Liu FH,et al.Treatment with phytoestrogen alpha-zearalanol might protect neurons of hippocampus in ovariectomized rats. Endocrine,2006,30:249-54.
    
    33. Nikov GN , Hopins NE , Boue S , et al. Interactions of dietary estrogens wit h human est rigen receptors and t he effect on estrogen receptorest rogen response element complex formation. Environ Health Perspect, 2000 ,108:867-872.
    
    34. Wang L , Andersson S , Warnet M , et al. Morphological abnormalities in the brain of estrogen receptorβ knockout mice.PNAS ,2001 ,98 :2792-2796.
    
    35. Lephart ED , West TW, Weber KS , et al. Neurobehavioral effect s of dietary soy phytoestrogens.Neurotoxicol Teratol ,2002 ,24 :52-56.
    
    36. Shumaker SA, Legault C, Rapp SR, Thal L, Wallace RB, Ockene JK, et al. Estrogen plus progestin and the incidence of dementia and mild cognitive impairment in postmenopausal women: the Women's Health Initiative Memory Study: a randomized controlled trial. JAMA 2003; 289:2651-2662.
    
    37. Lacey JV Jr, Mink PJ, Lubin JH,et al. Menopausal hormone replacement therapy and risk of ovarian cancer. JAMA. 2002,288:334-41.
    
    38. Kesslak JP.Can estrogen play a significant role in the prevention of Alzheimer's disease? J Neural Transm Suppl,2002,62:227-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700