用户名: 密码: 验证码:
用于多肽药物定点修饰的分枝型聚乙二醇衍生物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
PEG修饰技术是改良蛋白质及多肽药物最常用、最有效的手段之一,已日益成为生物制药领域的研究热点。有研究表明,具有分枝结构的PEG修饰剂比目前广泛使用的线性结构PEG修饰剂表现出更优越的特性,包括能够更有效地保护被修饰药物不被水解及酶解,从而大大延长其在体内的驻留时间;能够更多的保留被修饰药物的生物活性;能够更有效地降低被修饰药物的免疫源性和抗原性;能赋予被修饰药物更好的药动学特性等。因此,近年来PEG修饰技术开始向开发分枝结构修饰剂的方向发展。
     本论文分别从发散法(divergent)和会聚法(convergent)两条实验路线,对分枝型PEG衍生物的制备进行了系统的研究。
     发散法是以一个多活性中心的引发剂分子同时引发环氧乙烷(EO)发生多个聚合反应,从而形成以引发剂分子为中心的具有分枝结构的PEG衍生物。本论文分别采用了碱—多元醇引发体系以及Lewis酸—多元醇引发体系,通过控制反应条件得到了分子量可控的分枝型PEG衍生物,并从聚合的几步基元反应如链引发、链增长、链转移以及链终止机理来分析分枝型PEG的形成过程及产物结构。
     用碱-多元醇引发体系引发环氧乙烷聚合得到了以多元醇为中心核的分枝型PEG,采用不同的终止方法,可得到具有不同的活性末端的聚合物,但聚合产物分子量分布较宽。
     本论文提出了采用Lewis酸-醇引发体系引发EO聚合合成分枝型PEG的新方法,打破了采用阳离子聚合不能生成较高分子量PEG的传统观念。论文采用了ZnCl_2、TiCl_4和ZrCl_4三种Lewis酸。通过改变Lewis酸与多元醇的摩尔比可以制得不同空间结构的聚合产物,通过改变多元醇与EO的摩尔比则得到了分子量可控的分枝型PEG。更为重要的是,采用不同的终止方法理论上可以得到具有各种不同活性末端的聚合物,这使其具有了更为广泛的潜在用途。此外,论文还对采用Lewis酸—醇引发体系引发聚合反应的机理进行了初步探讨,通过对大量实验现象及结果的分析提出了阳离子型配位聚合机理。
     会聚法是从现有的线性PEG衍生物出发,通过官能团反应,将多条(两条或两条以上)PEG链段连接到一个具有多官能团的中心核分子上,形成分枝结构。本论文分别以谷氨酸(Glu)和三羟甲基氨基甲烷(Tris)为中心核分子,对二分枝结构和三分枝结构的PEG衍生物进行了合成研究,系统探索了会聚法合成分枝结构PEG衍生物的合成方法和反应条件,并对相关反应机理进行了探讨。
     以Glu为中心核分子,在DCC/DMAP催化体系作用下,合成二分枝结构PEG衍生物。以Tris为中心核分子时,首先用Boc保护Tris上的氨基,然后将mPEG端基依次进行羧基化、酰氯化等活化处理,最后通过酰氯与羟基的官能团反应合成出三分枝结构PEG衍生物。其中,论文对mPEG端基的羧基化提出了新的实验路线,通过丙烯腈与mPEG在水相中发生加成反应,然后水解得到mPEG-COOH。
     为了减小会聚法合成的分枝型PEG修饰剂在修饰反应中的位阻效应,本文设计并合成了一种通用型间隔臂分子——6-马来酰亚胺基己酸(6-MICA)。6-MICA采用两步法合成,首先通过马来酸酐和6-氨基己酸反应生成中间产物6-马来酸酰胺基己酸(6-MACA),然后中间产物通过发生闭环反应生成最终产物。第一步开环反应采用双液体系,并利用正交设计方法优化反应条件,产率超过90%;第二步闭环反应通过筛选催化剂及带水剂确定了最优反应条件,以三乙胺为催化剂,甲苯为溶剂兼带水剂,回流温度反应脱水闭环合成最终产物。
     论文以6-MICA对所合成的二分枝结构PEG衍生物进行了改进。在“DCC/HOBt”催化体系作用下将间隔臂分子接到二分枝结构PEG衍生物上,通过所合成的MICA-Glu-mPEG_2对多肽药物Tα1进行修饰,修饰剂与药物偶联迅速,反应进行完全。对修饰后的多肽药物进行了生物体内代谢测试。结果表明,修饰后的药物具有较好的药代动力学曲线,与未修饰药物相比,经本论文合成的分枝型PEG修饰剂修饰后,血药浓度波动变小,体内循环半衰期延长。
PEG modification(PEGylation) now plays an important role in the field of biological medicine,and it is currently considered one of the most successful techniques in enhancing the potentials of peptides and proteins as therapeutic agents.It is proved by the research that the branched PEG has the advantage of a lower inactivation of the proteins during conjugation,and the conjugate's activity is preserved to a larger extent as compared to linear PEG.Furthermore,and more important,it is more effective also in protecting proteins from proteolysis and hydrolysis that giving a more prolonged residence in body,in preventing the activity loss of the conjugate,and in reducing immunogenicity.Therefore,the research of the beanched PEG became the trend of the PEGylation.
     In the thesis,there are two methods,divergent and convergent,are used to research the synthesis of the branched PEG respectively.
     Divergent is a general approach in which branch points are constructed in a stepwise fashion from a central core.That is to say multifunctional compounds were used as initiators or transfer agents to initiate ethylene oxide(EO) polymerization.Two initiate systems were adopted:alkali-polyols and Lewis acid-polyots.Through the control of reaction conditions,branched PEG with the controlled molecule weight was obtained.The reaction mechanisms and product structures were also researched from the process of some elementary reaction steps of polymerization such as chain initiation, chain propagation,chain transfer and chain termination.
     Branched PEG was obtained when the alkali-polyols initiate system used.Further more,polymerization products with different active end groups could be synthesized when the different termination ways were adopted.But the molecule weight distribution of the product was wide
     Lewis acid andβ-cyclodextrin(β-CD) has been adopted as initiate system to synthesize PEG at the first time in this thesis,and branched PEG with high molecule weight was obtained.The results also broke the rule that using cationic polymerization can't get PEG with high molecule weight.Three kinds of Lewis acid,ZnCl_2,TiCl_4 and ZrCl_4,were observed.The polymerization products with different structures were synthesized by the mole ratio change of Lewis acid toβ-CD.In addition,through the mole ratio change ofβ-CD to EO,the branched PEGs with different molecule weight were obtained.The more important fact is many different polymerization products with all kinds of active end groups could be got easily by the use of different termination ways in theory.This can enhance the potential application of the branched PEG that synthesized by divergent.Moreover,the polymerization mechanism was studied and the cationic coordination polymerization mechanism was presented by the analysis of lots of experiment phenomenon and results.
     Convergent is another general approach in which branch segments are constructed separately and then joined to a multifunctional core.The branched structure was obtained by several linear mPEG react with one multifunctional compound.The glutamic acid(Glu) and the tris(hydroxymethyl)aminomethane(Tris) were used as core, and di-branched and tri-branched molecules are synthesized respectively in this thesis. The reaction condition and mechanisms of the branched PEG derivative synthesized by convergent were researched.
     Glu is used as core,Two linear monomethoxypoly(ethy lene glycol)(mPEG) chains linked together through the two carboxylic group of the Glu with the 4-Dimethylaminopyridine(DMAP)/Dicyclohexylcarbodiimide(DCC) as the catalytic system.
     When Tris is used as core,The first step is protecting the amino group of Tris by t-butyloxycarbonyl anhydride.The amino group was reserved that can be used as functional radical to modifying the protein later,mPEG was activated by changing hydroxide terminal to acid chloride and carboxylation of mPEG was fulfilled before.A novel tri-branched macromolecule was synthesized from the reaction between Boc-Tris and mPEG-COCI.Carboxyl-monomethoxypoly(ethylene glycol) was prepared with the initial materials of mPEG and acrylonitrile in water.This is a novel method putting forward at the first time in this thesis.
     A general space arm molecule,6-maleimide caproic acid(6-MICA),is synthesized and introduced in the branched PEG that synthesized by convergent to reduce the steric hindrance.The scheme of the synthesis of 6-MICA is divided into two steps.Firstly,the intermediate,6-maleic amic caproic acid(6-MACA),is synthesized by open ring reaction between maleic anhydride and 6-aminocaproic acid.Secondly,6-MICA is synthesized through the close ring reaction of the intermediates.
     The reaction of first step is carry out in the two-phase solution.The reaction conditions are optimized by orthogonal design.The yield can over 90%.The conditions and the catalyst of the reaction of the second step is selected,and the optimized scheme is screened out.The catalyst is TEA.The solvent is toluene.The reaction is carried out under reflux condition.
     6-MICA was used to improve the di-branched PEG.The conjugated reaction between 6-MICA and the di-branched PEG is catalyzed by DCC/HOBt.The peptide drug,Tαl,was modified by the improved di-branched PEG,and the reaction goes fast. The metabolic activity of the conjugated peptides was tested.The result showed that the conjugated drugs have nice pharmacokinetic properties.The conjugated peptides reduced the shake of the concentration in serum and prolonged the half life term compared with the native peptides.
引文
[1]林楚华.生物制药是21世纪最有前途的产业之一[J].医学信息,2005,18(12):1767-1769.
    [2]周斌.21世纪生物医药的发展[J].The Taiwan Medical News,2004,2940(8):9-10.
    [3]文淑美.全球生物制药产业发展态势[J].中国生物工程杂志,2006,26(1):92-96.
    [4]Walsh G.Second-generation biopharmaceuticals[J].European Journal of Pharmaceutics and Biopharmaceutics,2004,58:185-196.
    [5]金飞燕.2004年全球生物技术产业又获丰收[J].中国医药工业杂志,2005,36(8):XLV.
    [6]Bibby K,Davis J,Jones C.Biopharmaceuticals-Moving to center stage [J].BioPeople North American Biotechnology Industry and Suppliers'Guide,2003,(6):3-11.
    [7]CDER biologic app rovals beginning in 2004 - 9[J].CDER Drug and Biologic App royal Reports,2005,http:/ /www.fda.gov/cder/rdmt/default,htm:
    [8]吴卫星,张毓,王小宁,詹启敏.国际重组蛋白药物的市场和研发趋势分析[J].生物技术通讯,2006,17(6):929-934.
    [9]Walsh G.Biopharmaceutical benchmarks[J].Nat.Biotechnol.,2000,18:831-833.
    [10]Pavluo A K,Reichert J M.Recombinant protein therapeutics success rates,market trends and values to 2010[J].Nature Biotechnology,2004,22(22):1513-1519.
    [11]王彩娟.抗乙肝病毒药物市场前景分析[J].世界临床药物,2007,28(7):444-448.
    [12]Long H B.Human insulin analogues with rapid onset and short duration of action.In Proceedings of the Twelfth American Peptide Symposium,Smith J A,Rivier J E,"Eds.';ESCOM:Leiden,1992;p 88-90.
    [13]Walsh G.Biopharmaceuticals:Biochemistry and Biotechnology[M].Chichester UK:Wiley,2003.
    [14]Veronese F M,Monfardini C,Caliceti P,et al.Improvement of pharmacokinetic,immunological and stability properties of asparaginase by conjugation to linear and branched monomethoxy poly(ethylene glycol)[J].Journal of Controlled Release,1996,40:199-209.
    [15]Carey P.Protein Engineering and Design[M].London:Academic Press,1996.
    [16]Brannigan J A,Wilkinson A J.Protein engineering 20 years on[J]. Nat.Rev.Mol.Cell Biol.3(12)(2002),2002,3(12):964-970.
    [17]Witt K A,Gillespie T J,Huber J D,et al.Peptide drug modifications to enhance bioavailability and blood-brain barrier permeability[J].Peptides,2001,22:2329-2343.
    [18]Veronese F M,Harris J M.Introduction and overview of peptide and protein pegylation[J].Advanced Drug Delivery Reviews,2002,54:453- 456.
    [19]Torchilin V P,Lukyanov A N.Peptide and protein drug delivery to and into tumors:challenges and solutions[J],drugdiscoverytoday,2003,8(6):259-266.
    [20]张晟,杜建,孙蕊,et al.蛋白质、多肽类药物控制释放体系的研究[J].高分子通报,2005,(1):14-19.
    [21]Mumtaz S,Bachhawat BK.Conjugation of proteins,and enzymes with hydrophilic polymers,and their applications[J].Indian J Biochem Biophys,1991,28:346-351.
    [22]Reddy KR.Controlled-release,pegylation,liposomal formulations:new mechanisms in the delivery of injectable drugs[J].Ann Pharmacother,2000,34:915-923.
    [23]Duncan R.Drug-polymer conjugates:potential for improved chemotherapy [J].Anticancer Drugs,1992,3:175-210.
    [24]Duncan R,Kopecek J.Soluble synthetic polymers as potential drug carriers[J].Adv.Polym.Sci.,1984,57:53-101.
    [25]Abuchowski A,van Es T,Palczuk N C,et al.Alteration of immunological properties of bovine serum albumin by covalent attachment of polyethylene glycol[J].J.Biol.Chem.,1977,252:3578-3581.
    [26]Copeland R A.Enzymes:A Practical Introduction to Structure,Mechanism,and Data Analysis,2nd Edition[M].New York:JOHN WILEY & SONS,INC.,2000.
    [27]Lee V H L.Peptide and Protein Drug Delivery[M].New York:Mercel Dekker,1991.
    [28]Das R C.Progress and prospects of protein therapeutics[J].American Biotechnology Laboratory,2003,(10):8-12.
    [29]Audus K L,Raub T J.Biological Barriers in Protein Delivery[M].New York:Plenum Press,1993.
    [30]严锐,黄金营.蛋白质化学修饰的研究进展[J].化学工业与工程,2005,22(1):53-56.
    [31]王镜岩,朱圣庚,徐长法.生物化学[M].北京:高等教育出版社,2002.
    [32]Bradbury AF,Smyth DG.Modification of the N- and C- termini of bioactive peptides:amidation and acetylaion[M].CRC Press,1991.
    [33]Veber K,Friedlinger RM.The design of metabolically-stable peptide analogs[J].Trends Neuroscience,1988,:392-396.
    [34]Uchiyama T,Kotani A,Kishida T,Tatsumi H,Okamoto A,Fujita T,Murakami M,Muranishi S,Yamamoto A.Effects of various protease inhibitors on the stability,and permeability of[D-Ala2,DLeu5]enkephalin in the rat intestine:comparison with leucine enkephalin[J].J.Pharm.Sci.,1998,87:448-452.
    [35]Caliceti P,Schiavon O,Veronese F M.Immunological properties of usricase conjugated to neutral soluble polymers[J].Bioconjug.Chem.,2001,12:515-522.
    [36]Chabrier PE,Roubert P,Braquet P.Specific binding of atrial natriuretic factor in brain microvessels.1987;84:2078-81.[J].Proc.Natl.Acad.Sci.USA,1987,84:2078-2081.
    [37]Bewley TA,Li CH.Evidence for tertiary structure in aqueous solutions of human beta-endorphin as shown by difference absorption spectroscopy[J].Biochemistry,1983,22:2671-2675.
    [38]姜忠义,高蓉,许松伟,et al.蛋白质的化学修饰研究进展[J].现代化工,2001,21(8):25-28.
    [39]吴洁,刘景晶,胡卓逸.蛋白质药物的聚乙二醇修饰[J].药学进展,2002,26(3):146-151.
    [40]蒋为民,王妍.蛋白质药物的聚乙二醇修饰,[J].微生物学免疫学进展,2005.33(4):72-75.
    [41]Mu Y,Kamada H,Kaneda Y,Yamamoto Y,Kodaira H,Tsunoda S,Tsutsumi Y,Maeda M,Kawasaki K,Nomizu M,Yamada Y,Mayumi T.Bioconjugation of laminin peptide YIGSR with poly-(styrene co-maleic acid) increases its antimetastatic effect on lung metastasis of B16-BL6 melanoma cells[J].Biochem Biophys Res.Commun.,1999,255:75-79.
    [42]Tomatis R,Marastoni M,Balboni G,Guerrini R,Capasso A,Sorrentino L,Santagada V,Caliendo G,Lazarus LH,Salvadori S.Synthesis,and pharmacological activity of deltorphin,and dermorphin- related glycopeptides[J].J.Med.Chem.,1997,40:2948-2952.
    [43]Negri L,Lattanzi R,Tabacco F,Orru L,Severini C,Scolaro B,Rocchi R.Dermorphin,and deltorphin glycosylated analogues:synthesis,and antinociceptive activity after systemic administration[J].J.Med.Chem.,1999,42:400-404.
    [44]Kartre K.The conjugation of proteins with poly(ethylene glycol) and other polymers[J].Adv.Drug Deliv.Rev.,1993,10:91-114.
    [45]Melton R G,Wiblin C N,Sherwood R F.Covalent linkage of carboxypeptidase to soluble dextran.Properties of conjugates and effects on plasma persistence in mice,[J].Biochem.Pharmacol.,1987,36:105-112.
    [46]Wong K,Cleland L G,Poznanski M J.Enhanced anti-inflammatory effects and reduced immunogenicity of bovine liver superoxide dismutase by conjugation with homologous albumin[J].Agent Action,1980,10:231-239.
    [47]Francis GE,Fisher D,Delgado C,Malik F,Gardiner A,Neale D.PEGylation of cytokines,and other therapeutic proteins,and peptides:the importance of biological optimisation of coupling techniques[J].Int J Hematol,1998,68:1-8.
    [48]So T,Ito HO,Hirata M,Ueda T,Imoto T.Extended blood half-life of monomethoxypolyethylene glycol-conjugated hen lysozyme is a key parameter controlling immunological tolerogenicity[J].Cell Mol.Life Sci.,1999,55:1187-1194.
    [49]Veronese FM.Peptide and protein PEGylation:a review of problems and solutions[J].Biomaterials,2001,22:405-417.
    [50]Working P K,Newman M S,Johnson J,Safety of poly(ethy]ene glycol)and poly(ethylene glycol) derivatives.In Poly(ethylene glycol)Chemistry and Biological Applications.Harris J M,Zalipsky S,'Eds.',ACS Books:Washington,DC,1997;p 45-57
    [51]Roberts M J,Bentley M D,Harris J M.Chemistry for peptide and protein PEGylation[J].Advanced Drug Delivery Reviews,2002,54:459-476.
    [52]王树歧,金晶.蛋白质的化学修饰与生化药物[J].中国生化药物杂志,1998,19(5):224-227.
    [53]Powell GM.Polyethylene glycol.In Handbook of Water Soluble Gums and Resins.;McGraw-Hill:New York,1980:p ch18
    [54]Pang SNJ.Final report on the safety assessment of polyethylene glycols(PEGS)-6,-8,-32,-75,-150,-14M.-20M.[J].J.Am.Coil.Toxicol.,1993,12:429-456.
    [55]Dreborg S,Akerblom E B.Immunotherapy with monomethoxy polyethylene glycol modified allergens[J].Crit.Rev.Ther.Drug Carrier Syst.,1990,6:315-365.
    [56]Richter A W,Akerblom E.Antibodies against polyethylene glycol produced in animals by immunization with mono- methoxy polyethylene glycol modified proteins[J].Int.Arch.Allergy Appl.Immunol.,1983,70:124-131.
    [57]Richter A W,E.Akerblom.Antibodies against polyethylene glycol produced in animals by immunization with mono methoxy polyethylene glycol modified proteins[J].Int.Arch.AllergyAppl.Immunol.,1983,70:124-131.
    [58]Richter A W,Akerblom E.Polyethylene glycol reactive antibodies in man:titer distribution in allergic patients treated with monomethoxy polyethylene glycol modified allergens or placebo,and in healthy blood donors[J].Int.Arch.Allergy hppl.Immunol.,1984,74:36-39.
    [59]Cheng T L,Wu P Y,Wu M F,et al.Accelerated clearance of polyethylene glycol-modified proteins by anti-polyethylene glycol IgM[J].Bioconjug.Chem.,1999,10:520-528.
    [60]Kainthana R K,Gnanamani M,Ganguli M,Ghosh T,Brooks D E,Maiti S,Kizhakkedathu J N.Blood compatibility of novel water soluble hyperbranched polyglycerol-based multivalent cationic polymers and their interaction with DNA[J]. Biomaterials, 2006, 27: 5377-5390.
    [61] Yamaoka T, Tabata Y, Ikada Y. Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice[J]. J. Pharm. Sci., 1994, 83:601-606.
    [62] Needham D, McIntosh T J, Lasic D D. Repulsive interactions and mechanical stability of polymer-grafted lipid membranes[J]. Biochim.Biophys. Acta, 1992, 1108: 40—48.
    [63] Torchilin V P, Omelyanenko V G, Parisov M I, Bogdanov A A, Trubetskoy V S, Herron J N, Gentry C A. Poly(ethylene glycol) on the liposome surface: On the mechanism of polymer-coated liposome longevity[J]. Biochim. Biophys. Acta, 1994, 1195: 11—20.
    
    [64] Andrade J D, Nagaoka S, Cooper S, Okano T, Kim S W. Surfaces and blood compatibility: Current hypothesis[J]. ASAIO J., 1987, 10: 75—84.
    [65] Blume G, Cevc G. Molecular mechanism of the lipid vesicle longevity in vivo[J]. Biochim. Biophys. Acta, 1993, 1146: 157—168.
    [66] Samuel Z. Chemistry of polyethylene glycol conjugates with biologically active molecules[J]. Adv. Drug Delivery Rev., 1995, 16:157-182.
    [67] Managit C, Kawakami S, Nishikawa M, et al. Targeted and sustained drug delivery using PEGylated galactosylated liposomes[J].International Journal of Pharmaceutics, 2003, 266: 77—84.
    [68] Harris J M, Martin N E, Modi M. Pegylation-A Novel Process for Modifying Pharmacokinetics[J]. Clin Pharmacokinet, 2001, 40(7):539-551.
    [69] Zalipsky S, Harris J M. Introduction to chemistry and biological applications of poly(ethylene glycol). In Poly(ethylene glycol):chemistry and biological applications, Harris J M, Zalipsky S, ' Eds.', American Chemical Society: San Francisco, 1997, p 1 — 15
    [70] Allen T. The use of glycolipids and hydrophilic polymers in avoiding rapid uptake of liposomes by the mononuclear phagosyte system[J].Adv. Drug Delivery Rev., 1994, 13: 285—309.
    [71] Woodle, M. C. and Lasic D D. Sterically stabilized liposomes[J].Biochim. Biophys. Acta, 1992, 1113: 171 — 199.
    [72] Caliceti P, Veronese F M. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates[J]. Adv. Drug Delivery Rev., 2003, 55: 1261 — 1277.
    [73] Nakaoka R, Tabata Y, Yamaoka T, et al. Prolongation of the serum half-life period of superoxide dismutase by poly(ethylene glycol) modification[J]. J. Control. Release, 1997, 46: 253—262.
    [74] Tsutsumi Y, Tsunoda SI, Kamada H. PEGylation of interleukin-6 effectively increases its thrombopoietic po-tency[J]. Thromb Haemost,1997,77:168-173.
    [75]Greenwald R B,Choe Y H,McGuire J,et al.Effective drug delivery by PEGylated drug conjugates[J].Adv.Drug Delivery Rev.,2003,55:217 - 250.
    [76]Delgado C,Francis G E,Fisher D.The uses and properties of PEG linked proteins[J].Crit.Rev.Ther.Drug Carrier Syst.,1992,9:249-304.
    [77]Katre N V.The conjugation of proteins with polyethylene glycol and other polymers:Altering properties of proteins to enhance their therapeutic potential[J].Adv.Drug Delivery Rev.,1993,10:91-114.
    [78]Zalipsky S,Lee C.Use of functionalized polyethylene glycols for modification of polypeptides.In Poly(Ethylene Glycol) Chemistry:Biotechnical and Biomedical Application&;Plenum Press:New York,1992;p 347-370
    [79]Ashihaya Y,Kono T,Yamazaki S.Modification of E.coli L-Asparaginase with polyethylene glycol:disappearance of binding ability to anti-asparaginase serum[J].Biochem.Biophys.Res.Commun.,1978,83(2):385.
    [80]印春华,张敏.蛋白质和多肽类药物的聚乙二醇结合物--一种新型给药系统[J].中国药学杂志,2001,36(5):292-296.
    [81]Greenwald R B.PEG drugs:an overview[J].Journal of Controlled Release,2001,74:159 - 171.
    [82]王良友,刘克良.多肽和蛋白质的聚乙二醇化修饰方法[J].有机化学,2003,23(11):1320-1323.
    [83]Veronese F M,Pasut G.PEGylation,successful approach to drug delivery[J],drugdiscoverytoday,2005,10(21):1451-1458.
    [84]Kozlowski A,Harris J M.Improvements in protein PEGylation:pegylated interferons for treatment of hepatitis C[J].Journal of Controlled Release,2001,72:217-224.
    [85]Zalipsky S,Seltzer R,Menon-Rudolph S.Evaluation of a new reagent for covalent attachment of polyethylene glycol to proteins[J].Biotechnol.Appl.Biochem.,1992,15:100-114.
    [86]Miron T,Wilchek M.A simplified method for the preparation of succinimidyl carbonate polyethylene glycol for to proteins[J].Bioconjug.Chem.,1993,4:568-569.
    [87]Kozlowski A,Charles S A,Harris J M.Development of Pegylated Interferons for the Treatment of Chronic Hepatitis C[J].BioDrugs,2001,15(7):419-429.
    [88]Dolence E K,Hu C,Tsang R,et al.Electrophilic polyethylene oxides for the modification of polysaccharides,polypeptides(proteins)and surfaces[P].US:5650234,
    [89]Shearwater Corporation Catolog.In 2001.
    [90] 姜忠义,高蓉,王艳强, et al.蛋白质和多肽药物聚乙二醇化的问题与对策[J].药学学报, 2002, 37(5): 396-400.
    
    [91] Schiavon O, Pasut G, Moro S, et al. PEG-Ara-C conjugates for controlled release[J]. European Journal of Medicinal Chemistry,2004, 39: 123-133.
    
    [92] Luxon B A, Grace M, Brassard D, et al. Pegylated Interferons for the Treatment of Chronic Hepatitis C Infection[J]. CLINICAL THERAPEUTICS, 2002, 24(9): 1363-1383.
    
    [93] Holtsberg F W, Ensor C M, Steiner M R, et al. Poly(ethylene glycol) (PEG) conjugated arginine deiminase: effects of PEG formulations on its pharmacological properties[J]. Journal of Controlled Release,2002, 80: 259-271.
    
    [94] Wang Y, Youngster S, Bausch J, et al. Identification of the major positional isomer of PEGylated IFN alpha-2b[J]. Biochemistry, 2000,39: 10634-10640.
    
    [95] Grace M, Youngster S, Gitlin G, et al. Structural and biologic characterization of PEGylated recom[ binant IFN-a-2b[J]. J. IFN Cytokine Res., 2001, 21: 1103—1115.
    
    [96] Wylie D C, Voloch M, Lee S, et al. Carboxyalkylated histidine is a pH-dependent product of pegylation with SC-PEG[J]. Pharm. Res., 2001,18: 1354-1360.
    [97] Tsutsumi Y, Onda M, Nagata S, Lee B, Kreitman RJ, Pastan I.Site-specific chemical modification with polyethylene glycol of recombinant immunotoxin anti-Tac(Fv)-PE38 (LMB-2) improves antitumor activity, and reduces animal toxicity, and immunogenicity[J]. Proc. Natl. Acad. Sci. USA, 2000, 97: 8548—8553.
    [98] Harris J M, Kozlowski A. Polyethylene glycol and related polymers monosubstituted with propionic or butanoic acids and functional derivatives thereof for biotechnical applications[P]. US: 5672662,1997.
    
    [99] Bentley M D, Harris J M, Kozlowski A. Heterobifunctional poly(ethylene glycol) derivatives and methods for their preparation[P]. US99/23536, 1999.
    [100] Harris J M, Herati R M. Preparation and use of polyethylene glycol propionaldehyde, [P]. US: 5252714, .
    
    [101] Kinstler O B, Brems D N, Lauren S L. Characterization and stability of N-terminally PEGylated rhG-CSF[J]. Pharm. Res., 1996, 13: 996—1002.
    
    [102] Kinstler OB, Gabriel N E, Farrar C E, et al. N-terminally chemically modified protein compositions and methods[P]. US: 5, 985, 265, 1999.
    [103] Veronese F M, Sacca B, de Laureto P P, et al. New PEGs for Peptide and Protein Modification, Suitable for Identification of the PEGylation Site[J]. Bioconjugate Chem., 2001, 12:
    [104] Sato H. Enzymatic procedure for site-specific pegylation of proteins[J]. Advanced Drug Delivery Reviews, 2002, 54: 487-504.
    [105] Gaertner H F, Offord R E. Site-specific attachment of poly(ethylene glycol) to the amino terminus of proteins[J].Bioconjug. Chem., 1996, 7: 38—44.
    [106] Goodson R J, Katre N V. Site-directed PEGylation of recombinant interlukin-2 at its glycosylation site[J]. BiolTechnology, 1990,8: 343—346.
    [107] Kuan C T, Wang Q C, Pastan I. Replacement of surface exposed residues in domain II with cysteine residues that can be modified with polyethylene glycol in a site-specific manner[J]. J. Biol. Chem., 1994, 269: 7610-7616.
    [108] Goodson R J, Katre N V. Site-directed pegylation of recomproteins binant interleukin-2 at its glycosylation site[J]. Biotechnology,1990, 8: 343—346.
    [109] Kogan T P. The synthesis of substituted methoxy-polymer (ethylene glycol) derivatives suitable for selective protein modification[J].Synth. Commun., 1992, 22: 2417-2424.
    [110] Morpurgo M, Veronese F M, Kachensky D, et al. Preparation and characterization of poly(ethylene glycol) vinyl sulfone[J].Bioconjug. Chem., 1996, 7: 363-368.
    [111] Woghiren C, Sharma B, Stein S. Protected thiol-polycoupling ethylene glycol: a new activated polymer for reversible protein modification[J]. Bioconjug. Chem., 1993, : 314—318.
    [112] Ishii Y, Lehrer SS. Effects of the state of the succinimido-ring on the #uorescence and structural properties of pyrine maleimidelabeled tropomyasi. [J]. Biophys. J., 1986, 50: 75—80.
    [113] Cristina M, Oddone S, Paolo C, et al. A Branched Monomethoxy-poly(ethylene glycol) for Protein[J]. Bioconjugate Chemistry, 1995,6(1): 62-69.
    [114] Veronese F M, Caliceti P, Schiavon 0. Branched and linear poly (ethylene glycol): influence of the polymer structure on enzymological, pharmacokinetic and immunological properties of protein conjugates[J]. J. Bioact. Compat. Polym., 1997, 12: 196—207.
    [115] Monfardini C, Schiavon 0, Caliceti P, et al. A branched monomethoxy-poly(ethylene glycol) for protein modification[J]. Bioconjugate Chem, 1995, 6: 62-69.
    [116] Yamasaki N, Matsuo A, Isobe H. Novel polyethylene glycol derivatives for modification of proteins[J]. Agric. Biol. Chem., 1988, 52: 2125—2127.
    
    [117] Levy Y. Adenosine deaminase deficiency with late onset or recurrent infections: response to treatment with polyethylene glycol modified adenosine deaminase[J].J.Pediatr.,1988,113:312-317.
    [118]Graham L M.PEGASPARAGINASE:a review of clinical studies[J].Adv.Drug Deliv.Rev.,2003,55:1293-1302.
    [119]Wang Y S.Structural and biological characterisation of pegylated recombinant interferon α-2b and its therapeutic implications.[J].Adv.Drug Deliv.Rev.,2002,54:547-570.
    [120]Trainer P J.Treatment of acromegaly with the growth hormone receptor antagonist pegvisomant[J].N.Engl.J.Med.,2000,342:1171-1177.
    [121]Bailon P.Rational design of a potent,long lasting form of interferon:a 40kDa branched poly-ethylene glycol-conjugated interferon alpha-2a for the treatment of hepatitis C.[J].Bioconjug.Chem.,2001,12:195-202.
    [122]The EyeTech Study Group.Preclinical and phase 1A clinical evaluation of an anti-VEGF pegylated aptamer(EYE001) for the treatment of exudative age-related macular degeneration[J].Retina,2002,22:143-152.
    [123]李力,郑意端.蛋白药物聚乙二醇化技术的研究进展[J].中国临床药理学杂志,2003,19(3):226-229.
    [124]Wei J,Huang J.Synthesis of an amphiphilic star triblock copolymer of polystyrene,poly(ethylene oxide),and polyisoprene using Lysine as core molecule[J].Macromolecules,2005,38:1107-1113.
    [125]何明磊,苏志国.合成分枝型聚乙二醇的简便新方法[J].高等学校化学学报,2003,24:1495-1498.
    [126]Vogl O,Jaycox G D.'Trends in Polymer Science'- Polymer science in the 21st century[J].Prog.Polym.Sci.,1999,24:3-6.
    [127]stevens M P.polymer chemistry,an introduction[M],oxford:oxford university press,1999.
    [128]周其凤,胡汉杰.高分子化学[M].北京:化学工业出版社,2001.
    [129]王行柱.硕士学位论文.湘潭大学,2004.
    [130]Andrea G,Michela P,Chiara S,et al.An Improved Procedure for the Synthesis of Branched Polyethylene Glycols(PEGs) with the Reporter Dipeptide Met-Ala for Protein Conjugation[J].Bioorganic & Medicinal Chemistry Letters 12(2002) 177 - 180,2002,12:177-180.
    [131]陈心,罗素兰,张本,et al.多肽固相合成的研究进展[J].生物技术,2006,16(1):81-83.
    [132]Bodanszky M,Bodanszky A.The practice of peptide synthesis 2~(nd)edition[M],berlin:springer-verlag,1994.
    [133]Greene T W,Wuts P G M.Protective Groups in Organic Synthesis,3~(rd)Edition.[M].New York:John Wiley & Sons,Inc.,1999.
    [134]高旭红,李炳奇.有机合成中的氨基保护及应用[J].石河子大学学报(自然科学版),1999,3(1):76-86.
    [135]邱传亮,王德心.氨基二元酸的Boc化研究[J].化学试剂,2004,26(1):37-38.
    [136]OCP.amino acid and peptide synthesis,2nd edition[M],oxford:oxford higher education,2003.
    [137]吴蕾,韩香,甘一如,et al.胸腺素α1的Fmoc固相合成法[J].化学工业与工程,2001,18(6):323-330.
    [138]Wang J,Tam S,Huang H,et al.Site-directed PEGylation of trichosanthin retained its anti-HIV activity with reduced potency in vitro[J].Biochemical and Biophysical Research Communications,2004,317:965-971.
    [139]王良友,潘和平,柳川,et al.人甲状腺素(1-34)的合成与聚乙二醇化修饰[J].中国生化药物杂志,2005,26(2):76-79.
    [140]陈鸿彬.高纯试剂提纯与制备[M].上海:上海科学技术出版社,1983.
    [141]宁永成.有机化合物结构鉴定与有机波谱学[M].北京:科学出版社,2000.
    [142]朱树新.开环聚合[M].北京:化学工业出版社,1987.
    [143]李述文,范如霖编译.实用有机化学手册[M].上海:上海科学技术出版社,1979.
    [144]郭玉凤,李景印,李淑芳.4-二甲氨基吡啶的催化作用[J].化学试剂,2001,23(6):338-339.
    [145]熊成东,王亚辉.聚乙二醇衍生物的合成研究进展[J].高分子通报,2000,(1):39-45.
    [146]吴洁,胡卓逸,刘景晶.mal-sac-mPEG的制备及对溶菌酶的初步修饰研究[J].药物生物技术,2005,12(1):6-9.
    [147]刘东华,王孝杰,李效东,et al.6-马来酰亚胺基己酸的合成与表征[J].合成化学,2005,13(2):183-184.
    [148]黄梅芳,刘朋生.N-(L-异丙酸基)-马来酰胺酸的合成研究[J].湘潭大学自然科学学报,2003,25(1):29-31.
    [149]艾娇艳.含柔性侧链的N-取代马来酰亚胺的研究[J].2001,:44.
    [150]Bodanszky M,Klausner Y S,Ondetti M A.peptide synthesis 2~(nd)edition[M].New York:John Wiley & Sons,Inc.,1976.
    [151]Sewald N,Jakubke H D.Peptides:Chemistry and Biology[M].Darmstadt :Wiley-VCH Verlag GmbH & Co.KGaA,2002.
    [152]刘谦,严玖凤,张晓伟等.化学修饰的粒细胞集落刺激因子偶联物及其制备方法[P].CN 1778821A,2005.
    [153]嵇世山,朱德权.聚乙二醇-脂肪酸衍生物及其药物结合物[P].CN1511861A,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700