用户名: 密码: 验证码:
透室壁性心肌血运重建生物可降解性药物缓释支架
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
透室壁性心肌血运重建术(TMR)是近些年发展起来的一项新型外科技术,主要用于治疗冠状动脉路移植术(CABG)或经皮腔内冠状动脉成型术(PTCA)不适应症的晚期心绞痛患者,其减轻心绞痛、提高缺血心肌灌注、改善心功能的作用已得到广泛关注。但是TMR术后短时间内,心肌管道便因凝血而闭塞,原始的心肌管道本身并不能对心肌直接供血。将心肌打孔血运重建术和支架置入方法结合起来,在缺血心肌区域进行阵列式打孔,产生多个直通心腔的隧道,置入支架后可以阻止心肌孔道自行闭合,将会增进血流灌注效果。
     细胞生长因子能够诱发缺血心肌的血管形成、建立侧枝循环、刺激血管再生,细胞生长因子血管再生治疗法已被用于心肌缺血性疾病的治疗,改善组织血液灌流。TMR术结合细胞生长因子血管再生法治疗冠心病等缺血性心脏病在实验研究和临床试验方面取得较好的结果,它能够提高局部心肌灌注效果,促进动脉血管生成,有助于局部心肌功能的修复。但是生长因子在血液循环中的半衰期很短,而且靶向定位差,难以发挥长久的、持续的促血管生成作用,另外,由于肝素与细胞生长因子有很高的亲和性,它能提高细胞生长因子生物活性、延长其半衰期,还有助于凝血现象的抑制。因此能够缓控释细胞生长因子类药物的肝素改性支架可以应用到透室壁性心肌血管重建术中,它不仅能阻止TMR后孔道自行闭合,又能够防止血栓形成,还可促进孔壁生成血管内皮,使之最终成为与壁间微细结构相交通的“血管”,补偿冠状动脉的供血不足,提高血运重建效果。
     由于心肌支架研究较少,其它用途的支架也不能完全满足于心肌血运重建的需要,而且释放的药物也有较大的差别,因此应该针对心肌血运重建的需要进行专门设计。本文对心肌内生物可降解性复合缓释支架进行深入研究,以生物可降解聚合物聚已内酯(PCL)、聚乳酸-羟基乙酸共聚物(PLGA)为支架材料,采用静电纺丝法、溶液浇注-溶剂挥发法、熔融挤出成型法等多种方式对支架制备方式进行优化;通过对PLGA药物缓释系统进行研究,分别制备了药物载体嵌入式PCL/PLGA复合支架和药物载体层支架结构层双层结构复合的PCL/PLGA药物支架,对支架结构组成与性能的关系,药物释放动力学等进行了测定和表征;为了制备抗凝血支架材料,通过化学键共价结合方式制备了肝素改性PLGA薄膜,对其结构进行了确证和分析,并测定了薄膜表面亲疏水性能及抗凝血性能;最后综合利用支架制备方式、药物缓释层、抗凝血材料制备等方面结果,制备透室壁性心肌血运重建生物可降解性药物缓释支架进行动物实验评价,通过心肌新生血管密度分析、组织化学染色分析、心功能的超声学评价和心肌灌注核素显像等手段研究生物可降解性药物缓释支架在促进血管再生以及心肌血流灌注方面的效果。实验结果表明,通过熔融挤出成型法制备的PCL支架结构层可以承受心肌压力,保持心肌孔道通畅;PCL/PLGA复合支架不仅阻止心肌孔道闭合,而且可以缓慢释放药物进行治疗;肝素修饰PLGA薄膜可以赋予支架一定的抗凝血性能;动物实验结果肯定了支架结合TMR作用后对心肌功能改善的效果,初步结果表明药物支架与TMR的结合有助于局部缺血心肌功能的改善,能够保持孔道的长期开放,显著增加新生血管密度,改善血流灌注和局部心肌收缩功能,促进心肌血运重建。
     本文研究的透心室壁生物可降解性药物支架不仅能阻止心肌自行闭合,又能够防止血栓形成,还可促进孔壁生成血管内皮,将是对透室壁性心肌血运重建术的优化,在心肌缺血性疾病的治疗中发挥一定的作用,为真正意义上的全心肌血运重建提供必要的基础条件。另外,该支架研究还可拓展到血管、胆管、食道、尿道等其它腔道内支架方面的应用,优化治疗效果。
Transmyocardial revascularization (TMR) is a popular novel surgical treatment recently for patients with severe chronic stable angina that is refractory to coronary artery bypass graft surgery (CABG) or percutaneous transluminal coronary angioplasty (PTCA). It is paid great attention that TMR can reduce the symptoms of angina and the occurrence of ischemia, promote blood perfusion and improve heart function. But the myocardial channels are closed soon after the TMR procedure because of blood clotting. The initial channels cannot remain long-term channel patency and there is little direct blood flow through channels created. The combinations of stent and TMR are applied by arraying drilling in ischemia myocardium and putting the stent into the transmyocardial channel. Thus, they can keep long-term channels patency to improve myocardial perfusion.
     Angiogenic growth factor can induce angiopoiesis throughout the ischemic tissue, build collateral circulation and stimulate blood vessel growth. Therapeutic angiogenesis of growth factor have been applied to treat the ischemic heart disease and improve blood perfusion of tissue. The strategies of combining TMR with therapeutic angiogenesis augment desired experimental and clinical effects on the therapy of ischemic heart disease. They are available to recovery the region myocardial function by promoting blood perfusion and improve the formation of arterial blood. Because of the short half-life and poor target location of the growth factors, they cannot improve angiogenesis for long time continuously. Additionally, heparin has good affinity with cells and some ability of inhibiting the blood coagulation. It can enhance the biological activity and the half-life of growth factors. So the application of heparin modified stents in TMR channel can not only avoid the occlusion of TMR channels but also prevent the thrombosis and improve the formation of blood vessel endothelium to build the blood vessel linked with fine structure of endothelium. The approach can compensate the deficient of blood supplement and enhance the effect of myocardial revascularization.
     Up to now, there is few report about the transmyocardial stent. Other stents cannot satisfy the need of myocardial revascularization and carry the protein drugs, therefore the transmyocardial stent need to be devised especially. In this paper, the transmyocardial biodegradable drug delivery stents were studied. The stents were prepared using poly (ε-caprolactone)(PCL) and poly (D, L-lactide-co-glycolide) (PLGA) as the materials of stents by electrospinning, solution spraying or melting extrusion. The drug delivery system of PLGA was discussed. The PCL/PLGA drug delivery stents were developed by the method of embedding or compounding bilayered materials. The relations of function and structure of stent were discussed. The kinetics of drug delivery were tested and analyzed. The anticoagulated blood films of heparin modified PLGA were prepared by covalent bonding and then were checked by structure analyses. The hydrophilicity and anticoagulant properties of film were evaluated. At last the transmyocardial biodegradable drug delivery stents were prepared by optimization of all above methods .The effects of biodegradable drug delivery stents in improving revascularization and blood perfusion were evaluated by analyses of new vessels densities, histochemical stain, echocardiography, and single photon emission computed tomography (SPECT). The results are shown as follows. The melting extrusion PCL stents can sustain the pressure of myocardial muscle and keep TMR channels patency. The PCL/PLGA stents cannot only avoid the TMR channels closed but also delivery drug for long time. The heparin modified PLGA film can afford the property of anticoagulated blood. The animal experiments show the therapeutic effects of combination stent with TMR in vivo. The experimental results show the drug stents can recovery partly the function of ischemia cardiac muscle, keep TMR channels patency for a long time, enhance the densities of new vessels, improve blood perfusion and heart contraction, and encourage myocardial revascularization.
     Transmyocardial biodegradable drug delivery stents can not only avoid the occlusion of myocardium channel but also prevent the thrombosis and improve the formation of blood vessel endothelium. The application of the stent will be an opinion method of TMR. It can produce a marked effect in the therapy of ischemia heart disease and afford the necessary basis to fully myocardial revascularization. Moreover, the stent can be extended to the application of other conduit stents such as blood vessel stent, bile duct stent, esophagus stent and urethra stent.
引文
[1]Kleiman NS, Patel NC, Allen KB, et al. Evolving revascularization approaches for myocardial ischemia[J].Am J Cardiol,2003,92(suppl):9N-17N.
    
    [2]Riess FC, Bader R, Kremer P,et al.Coronary hybrid revascularization from January1997 to January 2001: a clinical follow-up[J].Ann Thorac Surg,2002,73:1849-1855.
    
    [3]Allen KB, Griffith GL, Heimansohn DA,et al. Endoscopic versus traditional saphenous vein harvesting:a prospective, randomized trial[J]. Ann Thorac Surg,1998,66:26-31.
    
    [4]Parisi AF, Folland ED, Hartigan P.For the veterans affairs ACME investigators.a comparison of angioplasty with medical therapy in the treatment ofsingle-vessel coronary artery disease[j]. N Engl J Med,1992,326:10-16.
    
    [5] Kuntz RE, Safian RD, Carrozza JP,et al. The importance of acute luminal diameter in determining restenosis after coronary atherectomy or stenting[J].Circulation, 1992,86:1827-1835.
    
    [6]CooperWoods T , Marks AR.Drug-eluting stents[J]. Annu Rev Med,2004,55:169-178.
    
    [7]Sindermanna JR, Verinb V, Hopewell JW,et al. Biological aspects of radiation and drug-eluting stents for the prevention of restenosis[J].Cardiovascular Research,2004,63:22-30.
    
    [8] Schofield PM,Sharpies LD,Caine N,et al. Transmycardial laser revascularization in patient with refractory angina:A randomized controlled trial[J].Lancet, 1999,353:519-524.
    
    [9]Paul S,Nathan M,Byrne JG,et al.Transmyocardial laser revascularization[J].Journal of Cardiothoracic and Vascular Anesthesia,2004,18(1):85-92.
    
    [10]Epps WM, Francalancia N.Transmyocardial laser revascularization (TMR) and its role in the treatment of patients with coronary artery disease and angina[J].Current Surgery,2002,59(3):253-257.
    
    [11]Leon MB, Kornowski R, Downey WE,et al. A blinded, randomized,placebo-controlled trial of percutaneous laser myocardial revascularization to improve angina symptoms in patients with severe coronary disease[J].Journal of the American College of Cardiology,2005,46(l0): 1812-1819.
    
    [12]Wearn JT, Mettler SR, Kiumpp TG, et al.The nature of the vascular communications between the coronary arteries and the chambers of the heart[J].Am Heart J, 1933,9:143-161.
    
    [13]Mirhoseini M. Revascularization of the myocardium with laser[A]. In: Davila JC,ed. Second Henry Ford Hospital international symposium on cardiac surgery[M].New York; Appleton, 1977:595.
    
    [14]Mirhoseini M, Cayton MM. Revascularization of the heart by laser[J]. J Micro surg,1981,2:253-256.
    
    [15]Mirhoseini M,Mucherbeide M,Cayton MM.Transmyocardial revasculatization by lazer[J].Lazer surg Med,1982,2:187-198;
    
    [16]Horvath KA, Cohn LH, Cooley DA, et al. Transmyocardial laser revascularization:results of a multicenter trial with transmyocardial laser revascularization used as sole therapy for end-stage coronary artery disease[J].J Thorac Cardiovasc Surg, 1997,113:645-653.
    
    [17]Jeevanadam V,Auteri JS, Oz MC, et al.Myocardial revascularization by laser-induced channels[J] .Surg Forum, 1991,42:225-227.
    
    [18]0wen ER,Canfiled R, Bryant K,et al.Observations on the effects of CO_2 laser on rat myocardium[J].Microsurgery, 1984,5:140-143.
    
    [19]Kwong KF,Kanellopoulos GK, Nickols JC,et al.Transmyocardial laser denervates canine myocardium[J] J Thorac Cardiovase Surg,1997,l 14:883-889.
    
    [20]Kornowski R,Bhargava B,Leon MB.Equipment and technology percutaneous transmyocardial laser revascularization[J].Catheterization and cardiovascular interventions,1999,47:354-359.
    
    [21]Al-sheikh T,Allen KB,Straka SP,et al.Cardiac sympathetic denervation after transmyocardial laser revascularization[J].Circulation, 1999,100,135-140.
    
    [22]Schoebel FC, Frazier OH, Jessurum GA,et al. Refractory angina pectoris in end-stage coronary artery disease: evolving therapeutic concepts[J]. Am Heart J,1997,134:587-602.
    
    [23]Horvath KA, Aranki SF, Cohn LH,et al.Sustained angina relief 5 years after transmyocardial laser revascularization with a CO_2 laser[J].Circulation,2001,104:81-84.
    
    [24]Allen KB,Dowling RD,Angell WW,et al.Transmyocardial revascularization:5-year follow-up of a prospective,randomized multicenter trial[J].Ann Thorac Surg,2004,77(4):1228-1234.
    
    [25]Steimle AE,Stevenson LW,Chelimsky-Fallick C,et al._Sustained Hemodynamic Efficacy of Therapy Tailored to Reduce Filling Pressures in Survivors With Advanced Heart Failure[J].Circulation, 1997,96: 1165-1172.
    
    [26]Mirhoseini M, Fisher JC,Cayton MM.Myocardial revascularizafion by laser:A clinical report[J].Lasers Surg Med,1983,3:241-247.
    
    [27]Allen KB. Dowling RD, Schuch DR, et al. Adjunctive transmyocardial revascularization: five-year follow-up of aprospectiverandomized trial[J]. Ann Thorac Surg,2004,78(2):458-465.
    
    [28]Horvath KA.Results of prospective randomized controlledtrials of transmycardial laser revascularization[J]. Heart Surg Forum,2002,5(1):33-40.
    
    [29] Huikeshoven M , BeekJF, vander Sloot JA, etal. 35 years of experimental research in transmyocardial revascularization: what have we learned?[J]. Ann Thorac Surg, 2002, 74(3): 956-970.
    
    [30] Peterson ED,Kaul P, Kaczmarek RG, et al. From controlled trials to clinical practice: monitoring transmyocardial revascularization use and outcomes[J]. J Am Coll Cardiol, 2003, 42(9): I6II-I6I6.
    
    [31] I iao I . Sarria-Santamera A , M atchar DB, et al. Meta analysis of survival and relief of angina pectoris after transmyocardial revascularization[J]. Am J Cardiol,2005, 95(10): 1243-1245.
    
    [32] Allen KB, Dowling RD, Fudge TL , et al. Comparison of transmyocardial revascularlzsdon with medical therapy in patients with refractory angina[J]. N Engl J Med. 1999, 341: 1029.
    
    [33]Schofietd PM , Sharpies LD , Gaine N , et at .Transmyocardial laser revascularization in patients with refractory angina: a randomised controlled trial[J].Lancet, 1999, 353:519-524
    
    [34]Horvath KA,Aranki SF, cohn LH, et al. Sustained angina relief 5 years after transmyocardial laser revascularization with a CO_2 laser[J]. Circulation, 2001,104:181-84.
    
    [35]Bums SM,Sharples LD, Caine N,et al .The transmyocardial laser revascularization international registry report[J].Heart Journal,1999,20:31-37.
    
    [36]Cooley DA,Frazier OH,Kadipasaoglu KA,et al. Transmyocardial laser revascularization Clinical experience with twelve month folow up[J].J Thorac Cardiovasc Surg, 1996,111:791 -799.
    
    [37]Carmeliet P,Ferreira V,Breier G,et al.Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele[J].Nature,1996,380:435-439.
    [38]Ferrara N, Carver-MooreK, Chen H et al.Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene[J].Nature,1996,380:439-442.
    
    [39] Beck JL, Amore PD. Vascular development: cellular and molecular regulation[J].FASEB J, 1997,11:365-373.
    
    [40]Rosengart TK,Patel SR,Crystal RGTherapeutic angiogenesis:Protein and gene therapy delivery strategies[J].J cardiovasc Risk,1999,6(1):29-40.
    
    [41]Henry TD, Annex BH, McKendall GR, et al. The VIVA trial vascular endothelial growth factor in ischemia for vascular angiogenesis [J].Circulation, 2003, 107:1359-1365.
    
    [42] Simons M, Annex BH, Laham RJ, et al. Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor-2 double-Blind, randomized,controlled clinical trial[J]. Circulation,2002,105:788-793.
    
    [43]Gospodarowicz D. Expression and control of vascular adothelial cell.Proliferation and differentation by fibroblast growth factor[J]. J Invest Dermatol,1989,93 (2suppl): 39.
    
    [44]Schumacher B, Pecher P, von Specht BU, et al. Induction of neoangiogenesis in ischemic myocardium by human growth factors:first clinical results of a new treatment of coronary heart disease[J].Circulation,1998,97(7):645-650.
    
    [45]Cuevas P, Reimers D, Gimenez-Gallego G Loss of basic fibroblast growth factor in the subcommissural organ of old spontaneously hypertensive rats[J].Neurosci Lett,1996,221(1):25-28.
    
    [46]Lazarous DF, Shou M, Stiber JA, et al. Pharmacodynamic of basic fibroblast growth factonroute of administration determines myocardial and systemic distribution[J]. Cardiovasc Res,1997,36:78-85.
    
    [47]Rajanayagam MAS, Shou M, Thirumurti V, et al.Intracoronary basic fibroblast growth factor enhances myocardial collateral perfusion in dogs[J].J Am Coll Cardiol,2000,35:519-526.
    
    [48]Banai S, Jaklitsch MT, Shou M, et al. Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs[J]. Circulation, 1994,89:2183-2189.
    
    [49]Post MJ, Laham R, Sellke FW, et al.Therapeutic angiogenesis in cardiology using protein formulations[J].Cardiovasc Res,2001,49:522-531.
    
    [50]Harada K, Grossman W, Friedman M,et al. Basic Fibroblast growth factor improves myocardial function in chronically ischemic porcine hearts[J].Clinical Invest,1994,94,623-630.
    
    [51]Laham RJ, Sellke FW,Edelman ER,et al. Local perivascular delivery of basic fibroblast growth factor in patients undergoing coronary bypass surgery results of a phase I randomized, double-Blind, placebo-controlled trial[J].Circulation, 1999,100:1865-1871.
    
    [52]Sakakibara Y,Tambara K,Sakaguchi G,et al.Toward surgical angiogenesis using slow-released basic fibroblast growth factor[J].Eur J Cardio-thoracic Surgery,2003,24:105-112.
    
    [53]Tio RA,Tkebuchava T,Scheuermann TH,et al.Intramyocardial gene therapy with naked DNA encoding vascular endothelial growth factor improves collateral flow to ischemic myocardium[J].Hum Gene Ther,1999,10:2953-2960.
    
    [54]Tanaka E,Hattan N,Ando K,et al.Amelioration of microvascular myocardial ischemia by gene transfer of vascular endothelial growth factor in rabbits[J]. J Thorac Cardiovasc Surg,2000,120:720-728.
    
    [55]Rosengart TK , Lee LY, Patel SR, et al. Six-month assessment of a phase I trial of angiogenic gene therapy for the treatm ent of coronary artery disease using direct intram yocardial administration of an adenovirus vector expressing the VEGF121 cDNA[J]. Ann Surg, 1999,230:466-470.
    
    [56]Symes J F,Losordo DW,Vale PR,et al. Gene therapy with vascular endothelial growth factor for inoperable coronary artery disease[J]. Ann Thorac Surg, 1 999, 68:830-837.
    
    [57]Losordo DW,Vale PR,Symes JF, et al. Gene therapy for myocardial angiogenesis initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia[J].Circulation, 1998,98:2800-2804.
    
    [58]Heilmanna CA, Attmanna T, Samson P. Transmyocardial laser revascularization combined with vascular endothelial growth factor121 (VEGF121) gene therapy for chronic myocardial ischemia[J].European Journal of Cardio-thoracic Surgery,2003,23:74-80.
    
    [59]Attmanna T, Heilmannb C, Siepe M. Transgenic and transmural revascularization:regional myocardial tissue pressure during chronic ischemia[J]. Interactive Cardiovascular and Thoracic Surgery,2004,3:138-144.
    
    [60]Remsey-Semmelweis E,Maisch B,Moosdorf R.Vascular endothelial growth factor-1 gene transfer effect of angiogenesis in transmyocardial laser revascularization treated procine myocardium[J].International Journal of Cardiology,2004,95(1): S70-72.
    [61]Chu V,Kuang JQ,McGinna A.Angiogenic response induced by mechanical transmyocardial revascularization[J].J Thorac Cardiovasc Surg,1999,118:849- 856.
    [62]Sayeed-Shah U,Reul RM,Byrne LG,et al.Combination TMR and gene therapy[J],Semin Thoracic Cardiovasc Surg,1999,11:36-39.
    [63]Kohmoto T,DeRosa C M,Yamamoto N,et al.Evidence of vascular growth associated with laser treatment of normal canine myocardium[J].Ann Thorac Surg,1998,65:1360- 1367.
    [64]Horvath KA,Chiu E,Maun DC,et al.U p-regulation of vascular endothelial growth factor mRNA and angiogenesis after transmyocardial laser revascularization[J].Ann Thorac Surg,1999,68:825-829.
    [65]Pelletier MP,Giaid A,Sivaraman S,et al.Angiogenesis and growth factor expression in a medel of transmyocardial revascularization[J].Ann Thorac Surg,1998,66:12-18.
    [66]Kawasuji M,Nagamine H,Ikeda M,et al.Therapeutic angiogenesis with intramyocardial administration of basic fibrdtilast growth factor[J].Ann Thorac Surg,2000,69:1155-1161.
    [67]蒋国顺,张向华,朱朗标等.TMLR联合VEGF基因治疗缺血心肌后心肌灌注和代谢的变化[J].军医进修学院学报,2002,23(3):164-166.
    [68]雷莉,郭静萱,张萍等.激光心肌血运重建术结合转VEGF基因对缺血心肌侧枝循环的影响[J].基础医学与临床,2001,21(3):214-217.
    [69]商建峰,张慧信,赵红艳等.激光心肌血运重建术与血管内皮生长因子基因治疗慢性缺血性心脏病的对比研究[J].心肺血管病杂志,2006,25(4):236-238.
    [70]王永武,刘华,孙林等.穿心室壁内支架联合血管内皮生长因子治疗急性心肌梗死的研究[J].中华心血管病杂志,2006,34(7):631-634.
    [71]张晓东,曹润武,李若凡等.VEGF在机械性TMR中促心肌血管再生与重建的实验研究[J].中华临床解剖学杂志,2002,20(3)214-217.
    [72]张晓东,王冬,李若凡等,CO_2激光TMR与机械TMR管道内应用VEGF后的形态学对照观察[J].中华临床解剖学杂志,2002,20,2:139-142。
    [73]张晓东,曹润武,李若凡等.VEGF在激光TMLR中促心肌血管生成的实验研究[J].解剖学报,2002,33(2)204-207.
    [74]Fishman DL,Leon MB,Baim DS,et al.A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease[J].N Engl J Med,1994,331:496-501.
    [75]Serruys PW, Jaegere P, Kiemeneij F,et al.A comparison of balloon expandable stent implantation with balloon angioplasty in patients with coronary artery disease[J].N Engl J Med,1994,331:489-495.
    
    [76]Stefanidis IK, Tolis VA, Sionis DG,et al. Development in intracoronary stents[J].Hell J Cardiol, 2002,43:63-67.
    
    [77]Dumonceau JM, Deviere J.Self-expandable metal stents. Baillieres Best Pract[J].Res Clin, 1999,13:109-130.
    
    [78]Ozaki Y, Violaris AG, Serruys PW.New stent technologies[J]. Prog. Cardiovasc Dis,1996,39:129-140.
    
    [79]Vioralis AG, Ozaki Y, Serruys PW.Endovascular stents: a 'break through technology',future challenges[J].Int J Cardiac Imaging,1997,13:3-13.
    
    [80]Hoevena BL, Piresa NM,Warda HM,et al. Drug-eluting stents: results, promises and problems[J]. International Journal of Cardiology.2005, 99,9-17.
    
    [81]Acharya G, Park Ko Mechanisms of controlled drug release from drug-eluting stents[J].Advanced Drug Delivery Reviews,2006,58,3:387-401.
    
    [82]Gallo R, Padurean A,Jayaraman T,et al.Inhibition of intimal thickening after balloon angioplasty in porcine coronary arteries by targeting regulators of the cell cycle[J]. Circulation, 1999,99(1)2164-2170.
    
    [83]Eberhart RC, Su SH, Kytai TN,et al. Bioresorbable polymeric stents: current status and future promise[J]. J Biomater Sci Polym Ed,2003,14(4):299-312.
    
    [84]Zilberman M,Eberhart RC,Drug-Eluting Bioresorbable Stents for Various Applications, Annu Rev Biomed Eng,2006,8:153-80
    
    [85] Nguyen K, Su SH, Zilberman M, et al. Biomaterials and stent technology[A].In:Tissue Engineering and Novel Delivery Systems, ed. Yaszemski M, Trantolo D,Lewandrowski KU,et al,New York: Marcel Dekker; 2004.,5:107-130.
    
    [86]Kohn J, Langer R.Bioresorbable and bioerodible materials[A]. In: Biomaterials Science—An Introduction to Materials in Medicine, ed. Ratner BD, Hoffman AS,Schoen FJ,Lemons JE, New York: Academic,2000,64-73.
    
    [87]Leenslag JW, Pennings AJ, Rosema FR,et al. Resorbable materials of poly(l-lactic acid). VI. Plates and screws for internal fracture fixation[J].Biomaterials,1987, 8:70-73.
    
    [88] Bergsma EJ, Rozema FR, Bos RRM, et al. Foreign body reactions to resorbable poly(1-lactide) bone plates and screws used for the fixation of unstable zygomatic fractures[J]. J Oral Maxillofac Surg,1993, 51:666-670.
    [89]Bergsma EJ, de Bruijn WC, Rozema FR, et al. Late degradation tissue response to poly(1-lactide) bone plates and screws[J]. Biomaterials, 1995,16:25-31.
    
    [90]Agrawal CM, Haas KF, Leopold DA, et al. Evaluation of poly(1-lactic acid) as a material for intravascular polymeric stents[J]. Biomaterials, 1992,13:176-182.
    
    [91]Pachence JM, Kohn J. Bioresorbable polymers for tissue engineering[A].In Principles of Tissue Engineering, ed. RP Lanza, R Langer,WL Chick, pp. San Diego: Academic, 2000,267-270.
    
    [92]Lewis DH. Controlled release of bioactive agents from lactide/glycolide polymers[A]. In Biodegradable Polymers as Drug Delivery Systems, ed. Chasin M,Langer R, New York: Marcel Dekker, 1990,1-41.
    
    [93]Leelarusamee N, Howard SA, Malango CJ, et al. A method for the preparation of polylactic acid microencapsules of controlled particle size and drug loading[J]. J Microencapsul,1998,5:147-157.
    
    [94]Pachence JM, Kohn J. Bioresorbable polymers for tissue engineering. In Principles of Tissue Engineering, ed. Lanza RP, Langer R, Chick WL, San Diego:Academic, 2000,267-270.
    
    [95]Zilberman M, Eberhart R, Schwade N. In vitro study of drug loaded bioresorbable films and support structures[J]. J Biomater Sci Polym Ed, 2002,13:1221-1240.
    
    [96]Ye YW, Landau C,Willard JE, et al. Bioresorbable microporous stents deliver recombinant adenovirus gene transfer vectors to the arterial wall[J]. Ann Biomed Eng,1998,26:398-408.
    
    [97]Vogt F, Stein A, Rettemeier G, et al. Longterm assessment of a novel biodegradable paclitaxel-eluting coronary polylactide stent[J]. Eur Heart J, 2004,25:1330-1340.
    
    [98]Zilberman M, Schwade N, Meidell R,et al.Structured drug loaded bioresorbable films for support structures[J]. J Biomater Sci Polym Ed, 2001,12:875-892.
    
    [99]Vaz CM,Tuijl SV, Bouten CV,et al. Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique[J].Acta Biomaterialia,2005,1:575-582.
    
    [100]Xu CY, Inaic R, Kotaki M, et al. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering[J].Biomaterials,2004,25:877-886.
    
    [101]Nguyen K, Su SH, Zilberman M, et al. Biomaterials and stent technology[A]. In Tissue Engineering and Novel Delivery Systems, ed. Yaszemski M, Trantolo D,Lewandrowski KU, et al, New York: Marcel Dekker, 2004,5:107-130.
    [102]Zilberman M,Schwade ND,Eberhart RC.Protein-loaded bioresorbable fibers and expandable stents:mechanical properties and protein release[J].J Biomed Mater Res.Part B Appl Biomater,2004,69B:1 - 10.
    [103]Su S,Chao RY,Landau CL,et al.Expandable bioresorbable endovascular stent.I.Fabrication and properties[J].Ann.Biomed.Eng,2003,31:667-677.
    [104]Zidar J,Lincoff A,Stack R.1999.Biodegradable stents[A].In Textbook of Interventional Cardiology,ed.EJ Topol,Philadelphia:WB Saunders.3~(rd) ed.1999,787-802.
    [105]Stack RS,Califf RM,Phillips HR,et al.1988.Interventional cardiac catheterization at Duke Medical Center:new interventional technology[J].Am J Cardiol,1988,2:3-24.
    [106]Gao R,Shi R,Qiao S,et al.A novel polymeric local heparin delivery stent:initial experimental study[J].J Am Coll Cardiol,1996,27:85A.
    [107]Yamawaki T,Shimokawa H,Kozai T,et al.Intramural delivery of a specific tyrosine kinase inhibitor with biodegradable stent suppresses the restenotic changes of the coronary artery in pigs in vivo[J].J Am Coll Cardiol,1998,32:780-786.
    [108]Tamai H,Igaki K,Kyo E,et al.Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans[J].Circulation,2000,102:399-404.
    [109]Nuutinen JP,Valimaa T,Clerc C,et al.Mechanical properties and in vitro degragation of bioresorbable knitted stents[J].J Biomater Sci Polym Ed.,2002,13(12):1313-1323.
    [110]Saito Y,Minami K,Kobayashi M,et al.2002.New tubular bioabsorbable knitted airway stent:biocompatibility and mechanical strength[J].J Thorac Cardiovasc Surg,2002,123:161-167.
    [111]Susawa T,Shiraki K,Shimizu Y Biodegradable intracoronary stents in adult dogs[J]J Am Coll Cardiol,1993,21(2):483A
    [112]乔树宾 高润霖 史瑞文等.局部释放肝素的生物降解性支架的初步实验研究[J].中华心血管病杂志,1998,26(4):299-301.
    [123]Vogt F,Stein A,Rettemeier G,et al.Long-term assessment of a novel biodegradable paclitaxel-eluting coronary polylactide stent[J].European Heart Journal,2004,25:1330-1340.
    [114]Venkatraman S,Tan LP,Vinalia T,et al.Collapse pressures of biodegradable stents[J].Biomaterials,2003,24:2105-2111.
    [115]Venkatraman SS,Tan LP,Joso JF,et al.Biodegradable stents with elastic memory[J].Biomaterials,2006,27:1573-1578.
    
    [116]Wang XT, Venkatraman SS, Boey FY,et al. Controlled release of sirolimus from a multilayered PLGA stent matrix[J]. Biomaterials,2006,27:5588-5595.
    
    [117]Eury RP.Multilayered biodegradable stent and method for its manufacture[P].EP604022,1994-6-29.
    
    [118]Tsuji T, Tamai H, Igaki K, et al One year follow-up of biodegradable self-expanding stent implantation in humans[J] J Am Coil Cardiol, 2001, 37(2): 47A;
    
    [119]Haber GB, Freeman ML, Bedford R, et al. A prospective multicenter study of a bioabsorbable biliary Wallstent in 50 patients with malignant obstructive jaundice[J]. Gastrointest Endosc, 2001, 53(5): 3447-3450.
    
    [120]Gregory G, Costantin C, Janak S, et al. In vivo evaluation of a new bioabsorbable self-expanding biliary stent[J] . Gastrointest Endosc , 2003 ,8(5):777-784.
    
    [121]Korpela A, Aarnlo P, Sariola H, et al Bioabsorbable self-reinforced poly-L-lactide, metalic, and silicone stents in the management of experimental tracheal stenosis[J]chest,1999,15(2): 490-495.
    
    [122]Gorman S, Tunney M. Assessment of encrustation behavior on urinary tract biomaterials[J]. J Biomater Appl,1997,12:136-166.
    
    [123] Multanen M,Talja M, Hallanvuo S, et al. Bacterial adherence to ofloxacin-blended polylactone-coated self-reinforced lactic acid polymer urological stents[J]. BJU Int,2000,86:966-969.
    
    [124]Petas A, Vuopio-Varkila J, Siitonen A,et al.Bacterial adherence to self-reinforced polylactic acid 96 urological spiral stents in vitro[J].Biomaterials, 1998,19:677-681.
    
    [125] Jeon O, Kang SW, Lim HW, et al. Long-term and zero-order release of basic fibroblast growth factor from heparin-conjugated poly(L-lactide-co-glycolide) nanospheres and fibrin gel[J].Biomaterials,2006,27:1598-1607.
    
    [126]Boury F,Marchais H,Proust JE,et al. Bovine serum albumin release from poly(oL-hydroxy acid) microspheres: effects of polymer molecular weight and surface properties[J].Journal of Controlled Release, 1997,45:75-86.
    
    [127]Horvath KA,Lu CY,Robert E,et al. Improvement of myocardial contractility in a porcine model of chronic ischemia using a combined transmyocardial revascularization and gene therapy approach[J].J Thorac Cardiovasc Surg,2005,129(5):1071-1077.
    [128]Xu CY, Inai R,Kotaki M,et al.Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering[J].Biomaterials,2004, 25 :877-886.
    
    [129]Stitzel J,Liu J,Lee SJ,et al. Controlled fabrication of a biological vascular substirute[J].Biomaterials,2006,27:1088-1094.
    
    [130]Li WJ,Tuli R,Okafor C, et al. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells[J].Biomater,2005,25:599-609.
    
    [131]Courtney T,Sacks MS,Stankus J,et al.Design and analysis of tissue engineering scaffolds that mimic soft tissue mechanical anisotropy[J].Biomaterials,2006,27:3631-3638.
    
    [132]Vaz CM,Tuijl SV,Bouten CV,et al. Design of scaffolds for blood vessel tissue engineering using a multi-layering electrospinning technique[J].Acta Biomaterialia ,2005,1:575-582.
    
    [133] Yoshimoto H, Shin YM, Terai H,et al. A biodegradable nanofibre scaffold by electrospinning and its potential for bone tissue engineering[J].Biomater,2003,24:2077-2082.
    
    [134]Jin HJ, Chen J, Karageorgiou V,et al. Human bone marrow stromal cell responses on electrospun silk fibroin mats[J]. Biomater, 2004,25:1039-1047.
    
    [135]Unger RE, Wolf M, Peters K,et al. Growth of human cells on a non-woven silk fibroin net: a potential for use in tissue engineering[J]. Biomater,2004,25:1069-1075.
    
    [136]Mo XM, Xu CY, Kotaki M, et al. Electrospun P(LLACL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation[J]. Biomater,2004,25:1883-1890.
    
    [137]Shin M, Ishii O, Sueda T,et al.Contractile cardiac grafts using a novel nanofibrous mesh[J].Biomater,2004,25:3717-3723.
    
    [138]Panyam J,Zhou WZ, Prabha S,et al. Rapid endolysosomal escape of poly (D,L-lactide-co- glycolide) nanoparticles: Implications for drug and gene, a novel marker for angiogenesis up regudelivery[J].FASEB J,2002, 16:1217-1226.
    
    [139]Panyam J, Labhasetwar V. Dynamics of endocytosis and exocytosis of poly (D,L-lactide-co-glycolide) nanoparticles in vascular smooth muscle cells[J].Pharm.Res,2003,20(2):212-220.
    
    [140]Panyam J, Labhasetwar V.Sustained cytoplasmic delivery of drugs with intracellular receptors using biodegradable nanoparticles[J].Molecular pharmaceutics,2004,1:77-84.
    [141]Kim K, Lee M, Park H.Target-specific cellular uptake of PLGA nanoparticles coated with Poly(L-lysine)-Poly(ethylene glycol)-folate conjugate[J] .Langmuir,2005,21: 8852-8857.
    
    [142]Hu Y, Xie JW, Tong YW, Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells[J].Journal of Controlled Release,2007,118 :7-17.
    
    [143]Kim K, Lee M, Park H.Cell-Permeable and Biocompatible Polymeric Nanoparticles for Apoptosis Imaging[J].J am chem. Soc,2006,128, 3490-3491.
    
    [144]Chithrani BD, Ghazani AA, Chan WC.Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells[J].nano lett,2006,6:662-668.
    
    [145]Hu Y, Xie J, Tong YW,et al.Effect of PEG conformation and particle size on the cellular uptake efficiency of nanoparticles with the HepG2 cells[J]. J Controlled Release., 2007,118:7-17.
    
    [146]Oh JM, Choi SJ, Kim ST,et al.Cellular Uptake Mechanism of an Inorganic Nanovehicle and Its Drug Conjugates: Enhanced Efficacy Due To Clathrin-Mediated Endocytosis[J].Bioconjugate Chem,2006,17, 1411-1417
    
    [147]Harush O,Debotton N, Benita S,et al. Targeting of nanoparticles to the clathrin-mediated endocytic pathway[J]. Biochemical and Biophysical Research Communications ,2007,353(1) 26-32.
    
    [148] Ramesh DV,Medlicott N,Razzak M,et al. Microencapsulation of fitc-BSA into poly (ε-caprolactone) by a water-in-oil-in-oil solvent evaporation technique[J].Trends Biomater Artif Organs,2002,15(2), 31-36.
    
    [149] Sinha V R,Bansal K,Kaushik R,et al. A novel spray-drying technique to produce low density particles for pulmonary delivery[J].Int J Pharm,2004,278(1):187-195.
    
    [150]Passerini N, Albertini B, Cavallari,C ,et al.Preparation and characterisation of ibuprofen-poloxamer 188granules obtained by melt granulation[J].Eur J Pharm Sci,2002,15(1):71 -78.
    
    [151]Molpeceres J, Aberturas MR, Guzman M.Biodegradable nanoparticles as a delivery system for cyclosporine: preparation and characterization[J]. Journal of Microencapsulation, 2000,17(5) 599-614.
    
    [152]Sun HF, Mei L, Song CX,et al. The in vivo degradation, absorption and excretion of PCL-based implant[J].Biomaterials,2006,27(9):1735-1740.
    
    [153]Ma GL, Song CX.PCL/Poloxamer 188 Blend Microsphere for Paclitaxel Delivery: Influence of Poloxamer 188 on Morphology and Drug Release [J].J Appl Polym Sci, 2007,104: 1895-1899.
    
    [154]Ma GL, Song CX,Sun HF,et al.A biodegradable levonorgestrel-releasing implant made of PCL/F68 compound as tested in rats and dogs[J].Contraception,2006,74(2), 141-147.
    
    [155] Pan CJ, Tang JJ, Weng YJ , et al. Preparation, characterization andanticoagulation of curcumin-eluting controlled biodegradable coating stents[J].Journal of Controlled Release, 2006,116:42-49.
    
    [156] Gu J W,Yang YL, Zhu HS. Surface modification of silk fibroin film by plasma treatment and in vitro antithrombogenicity study[J]. Mater Sci Eng, 2002,20:199-202.
    
    [157] Jeon O, Song SJ, Kang SW, et al. Enhancement of ectopic bone formation by bone morphogenetic protein-2 released from a heparin-conjugated poly (L-lactic-co-glycolic acid) scaffold [J].Biomaterials, 2007, 28: 2763-2771.
    
    [158]Yoon JJ, Chung HJ, Lee HJ,et al.Heparin-immobilized biodegradable scaffolds for local and sustained release of angiogenic growth factor[J]. J Biomed Mater Res A,2006, 79:934-942.
    
    [159] Amiji M, Park K. Surface modification of polymeric biomaterials with polyethylene oxide albumin and heporin for reduced thrombogenici[J]. J Biomater Sci Polym Ed,1993,4(3):217-234.
    
    [160]Riesenfield J,Olsson P,Sanchez J,et al.Surface modification with functionally active heparin[J]. Med Device Technol, 1995,6(2): 24-31.
    
    [161]Jeona O, Kanga SW,Lim HW, et al. Long-term and zero-order release of basic fibroblast growth factor from heparin-conjugated poly (L-lactide-co-glycolide) nanospheres and fibrin gel[J]. Biomaterials, 2006, 27:1598-1607
    
    [162]Chung Y, Taea G, Yuk SH.A facile method to prepare heparin-functionalized nanoparticles for controlled release of growth factors [J].Biomaterials, 2006,27:2621-2626
    
    [163]Chung HJ, Kim HK, Yoon JJ,et al. Heparin Immobilized Porous PLGA Microspheres for Angiogenic Growth Factor Delivery[J].Pharmaceutical Research,2006,23(8): 1835-1841.
    
    [164] Bonan R, Bhat K, Lefevre T, et al. Coronary artery stenting after angioplasty with self-expanding parallel wire metallic stents[J]. Am Heart J, 1991,121(5):1522-1530.
    [165] Fujita M. Heparin and angiogenic therapy[J]. European Heart Journal,2000,21,270-274.
    
    [166] Noishiki Y, Miyata T. A simple method to heparinize biological materials[J].J Biomed Mater Res,1986,20(3):337-346.
    
    [167]Tsai CC, Chang Y, Sung HW, et al. Effects of heparin immobilization on the surface characteristics of a biological tissue fixed with a naturally occurring crosslinking agent (genipin): an in vitro study[J].Biomaterials,2001,22(6):523-533.
    
    [168] Chung HJ, Kim HK, Yoon JJ, et al. Heparin immobilized porous PLGA microspheres for angiogenic growth factor delivery[J].Pharm Res,2006,23(8):1835-1841.
    
    [169]Saksela O, Moscatelli D, Sommer A, et al. Endothelial cell-derived heparan sulfate binds basic fibroblast growth factor and protects it from proteolytic degradation[J] J Cell Biol,1988,107(2):743-751.
    
    [170]Klagsbrun M. Mediators of angiogenesis: the biological significance of basic fibroblast growth factor (bFGF)-heparin and heparan sulfate interactions[J].Semin Cancer Biol,1992,3(2):81-87.
    
    [171]Resnick N, Yahav H, Khachigian LM, et al. Endothelial gene regulation by laminar shear stress[J]. Adv Exp Med Biol, 1997,430,155-164.
    
    [172]Folkow B. Structure and function of the arteries in hypertension[J]. Am Heart J,1987,114:938-948.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700