用户名: 密码: 验证码:
汽车半主动悬架的首次穿越与随机最优控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
悬架系统是汽车中实现行驶平顺性和行驶安全性的主要机械结构,虽然国内外学者对汽车半主动悬架进行了大量的研究,但其研究主要集中在确定系统中。由于路面激励是典型的随机激励,因此用随机非线性动力学理论研究汽车半主动悬架系统中的非线性运行规律及动力学特性和控制策略是十分必要的。本文主要完成了以下工作:
     1、考虑外界随机激励对汽车半主动悬架系统的影响,将路面激励简化为高斯白噪声,建立了汽车半主动悬架系统的单自由度随机非线性动力学模型,对该弱阻尼弱激励的拟不可积Hamilton系统,首次运用拟不可积Hamilton理论和乘积遍历性定理计算了模型的Lyapunov指数,分析了系统的局部稳定性,通过对一维扩散过程的边界分析,得出该系统的全局稳定性条件;根据系统响应的联合概率密度和平稳概率密度以及不同参数条件,研究了该汽车半主动悬架系统的随机Hopf分岔行为,还通过数值仿真进行了验证,并对分岔参数进行了分析。
     2、考虑外界随机因素(路面激励)的影响,建立二自由度汽车半主动悬架系统随机非线性动力学模型,首次运用随机平均法,将Hamilton函数表示为一维扩散过程,通过分析系统奇异边界的性态,得到了系统全局稳定性的条件,并建立了可靠性函数和“首次穿越”时间的概率密度所满足的BK方程。结合初始条件和边界条件得到了数值结果,还分析了“首次穿越”现象对系统性态的影响,得到了该系统发生首次穿越现象后的动力学行为。
     3、首次利用随机平均法及随机动态规划原理导出了以最大可靠性为目标的随机最优控制策略,说明了当控制力为有界函数时,随机最优控制即是Bang-Bang控制。并采用有限差分法对受控系统的可靠性函数、“首次穿越”损坏的概率密度函数所满足的偏微分方程进行了数值仿真。数值结果表明,随着控制约束力的增大,系统的安全性得到了增强,系统被破坏的可能性将会降低。
Suspension is the basic structure in cars to ride comfortable and safety. Lots of researches on semi-active suspension system have been done at home and abroad, but most of them focus on certainty system. It is necessary to discuss the character of vehicle semi-active suspension system in the frame of stochastic nonlinear dynamics theory for the road excitation is obviously stochastic excitation. This dissertation studies the complex nonlinear phenomenon in the semi-active suspension system and the control strategy using stochastic nonlinear dynamics theory. The main content is as follows:
     1 Applying the stochastic nonlinear dynamics theory to semi-active suspension system of vehicle considering the impact of random factors. Simplifying road excitation as gauss white noise, establish vehicle semi-active suspension system model based on stochastic nonlinear dynamics theory, considering the law of force and acceleration. The max Lyapunov exponent is calculated by quasi non-integrable Hamiltonian theory and Oseledec multiplicative ergodic theory, the local stability conditions have been obtained; the global stability conditions have also been obtained by judging the modality of the singular boundary; the stochastic Hopf bifurcation is analyzed from the sharp change of stable and joint probability densities, and the parameter condition of stochastic Hopf bifurcation have been discussed through the numerical simulation.
     2 A two-dimension stochastic nonlinear dynamical model of Semi-Active Suspension System has been presented considering the stochastic factor of the road. The Hamilton function is described as one dimension diffusion process by using stochastic average method, the global stability conditions is also obtained by judging the modality of the singular boundary; the backward Kolmogorov equation for reliability function and the generalized Pontryagin equation for conditional moment of the first-passage time have been established, the numerical results are given according to the classification of boundary conditions and initial conditions of these two equations. At last, the charactor of first-passage on system had been analyzed .
     3. The optimal control strategy aimed to obtain the maximization of reliable function have been accessed by dynamic programming principles. The optimal control laws are“bang-bang”controls which are derived from the finit control force. Numerical simulations have been done with the backward Kolmogorov equation for reliability function and the generalized Pontryagin equation for conditional moment of the first-passage time which is under control by using finite difference method. The numerical results indicated that the security enhanced when the constrained control force increasd.
引文
[1]曹民、范永法,汽车悬架技术的进展和预测[J],上海汽车,2000(7):16-19.
    [2]高国生等,汽车悬架控制系统研究动态与展望[J],机械强度,2005,25(3): 279-284.
    [3]杨谋存,半主动悬架系统设计与车辆性能协调研究[D],江苏大学硕士论文,2004.
    [4]尹丽丽、高婷婷,车辆半主动悬架技术和发展趋势[J],黑龙江交通科技,2005(1): 64-65.
    [5] B. Richter主动底盘系统的发展趋势,汽车工程,1992年,第1期.
    [6] L. Palkovics, P J. Th. Venhovens. Investigation on Stability and Possible Chaotic Motions in the Controlled Wheel Suspension System, Vehicle System Dynamics, 1992,21: 259-296.
    [7] Pinhas Barak. Design and Evaluation of an Adjustable Automobile Suspension, ASME,890089.
    [8]舒红宇等,汽车主动悬架的理论分析及模型试验,汽车工程,1991年第3期.
    [9] T J. Gordon. Second Generation Approaches to Active and Semi-active Suspension Control System Design, International Journal of Vehicle Design, 1993 vol.14.
    [10] D.Karnopp, M.J.Crosby, R.A.Harwood, Vibration Control Using semi-active Force Generators, Journal of Engineering for Industry,1974.5:619-626.
    [11]方子帆等,汽车半主动悬架系统研究进展[J],重庆大学学报,2003, 26(1): 104-108.
    [12] Hrovat D, Application of Optimal Control to Advanced Automotive Suspension Design, Trans. ASME, J. Dyn. Sys. Meal.Cont, 1993,115(1):328-342.
    [13] Margolis D L, Tyle J L and Hrovat D. Heave mode dynamics of a tracked air custion vehicle with semi-active airbag secondary suspension.Transactions of the ASME Journal of Dynamic System, Measurement and control, 1997, 119(4):399-407.
    [14] Yong-san Yoon and Hyuk Kim, Feedforword Neuro-Controlled Active Suspension Using Frequency and Time Mixed Shape Performance Index, Int.J. of Vehicle Design, 1996, 17(2): 63—81.
    [15] Lou, Z-Ervin, R-D-Filisko, A Preliminary Parametric Study of Electrorheological Damper, Trans. ASME Journal of Fluid Engineering, 1994,11(4): 570-577.
    [16] Jason E Lindler,Glen, A-Dimock and Norman M-Cdereley, Design ofA Magnetorheological Automotivc Shock Absorber, SPIE, Vol. 3985, 2000, 426-437.
    [17]廖昌荣、陈伟民、余森、黄尚廉,基于混合工作模式的汽车磁流变减振器阻尼特性研究[J],机械工程学报, 2001, 37(5): 52-55.
    [18]姚嘉伶、蔡伟义、陈宁,汽车半主动悬架系统发展状况[J],汽车工程,2006.28(3):276-280.
    [19]杨金霞、陈宁、姚嘉凌、蔡伟义,车辆非线性半主动悬架的模型跟踪变结构控制[J],南京林业大学学报(自然科学版),2007, 31(1):42-46.
    [20]翁建生,基于磁流变阻尼器的车辆悬架系统半主动控制[D],南京航空航天大学博士学位论文, 2000.
    [21]杨钫,基于PID控制空气悬架系统的仿真与试验研究[D],吉林大学硕士论文, 2004.
    [22]陈无畏等,汽车主动悬架的最优控制及计算机仿真[J],振动与冲击,1996, 15(4).
    [23]李辉、顾亮、刘淡,车辆半主动悬挂控制理论的研究[J],汽车科技,2002.2: 26-28.
    [24]崔晓利等,基于神经网络的半主动悬架自适应模糊控制研究[7],中国机械工程, 2004,15(2): 125-128.
    [25]王洪礼,牛西泽,孙景,汽车悬架系统的半主动控制.天津大学学报,1996年第2期.
    [26] Spencer B F, Dyke S J, Sain M K, etal. Phenomenological model for magnetorheological dampers[J]. Journal of Engineering Mechanics, 1997(3):230--238.
    [27] Y. Q, Ni, J. M. Ko and C W. Wong. Non-parametric Identification of NonlinearHysteretic Systems[J]. Journal of Engineering Mechanics, 1999, 125(2); 206-215.
    [28] Y. Q. Ni, J. M.Ko and C. W. Wong, Modeling and identificatim of a Wire-Cable Vibration Isolator via a Cyclic Loading Tast Part I: Experiment and Model Development[J]. In: Pros. Inst. Mecb. Eng. Hongkong: Hong Kong Polytechnic University, 1999, 213 ; l63–171.
    [29] Y. Q. Ni, J. M. Ko and C. W. Wong. Modeling and identification of a Wirc-Cabie Vibration Isolator via a Cyclic Loading Test Part 2: Identification and Response Prediction[J]. In: Pros. Inst. Mecb. Eng. Hongkong: Hong Kong Polytechnic University, 1999, 213 ; l72-181.
    [30] Dafeng Jin, Yiming Zhang. Adaptive control of Semi-Active suspension for all-service vehicle[J]. JSAE review, 1995, 16(2): 214-215.
    [31] Choi, S.B, Lee, Chang, E.G. Field test results of a semi-active ER suspension system associated with skyhook controller[J]. Mechatronics, 2001,11(3): 345-353.
    [32]董小闵等.汽车磁流变半主动悬架仿人智能控制研究.中国机械工程, 18(7), 2007.
    [33]方子帆,邓兆祥.汽车磁流变半主动悬架控制方法研究.中国机械工程, 18(9), 2007.
    [34] Khasmiskii.R.Z., Stochastic Stability of Differential Equations, Alpen aan den Rijin, the Netherlands, Sijthoff and Noordhoff,1980.
    [35] Arnold L., Papanicolaou.G. and Wihstutz V., Asymptotic analysis of the Lyapunov exponent and rotation number of the random oscillator and applications, SIAM Journal of Applied Mechanics, 1986,46(3),427-450
    [36] Namachiwaya N.S., Roessel V. and Talwar S., Maximal Lyapunov exponent and almost-sure stability for coupled two degree of freedom stochastic systems, ASME Journal of Applied Mechanics,1994,61, 446-452
    [37] Par doux E. and Wihstutz V., Lyapunov exponent and rotation number of two-dimensional linear stochastic systems with small diffusion, SIAM Journal of Applied Mechanics, 1988,48(2),442-457
    [38] Ariaratnam S.T. and Xie W.C., Lyapunov exponents and stochastic stability of coupled linear systems under real noise excitation, ASME Journal of Applied Mechanics,1992,59, 664-673
    [39] Namachchiwaya N Sri., Stochastic bifurcation, Applied Mathematics andComputation, 1990,38:101-159
    [40] V.S.Anishchenko, T.E.Vadivasova, G.I.Strelkova, G.A.Okrokvertskhov, Statistical properties of dynamical chaos, Mathematical Biosciences and Engineering, 2004,1(1), 161-184
    [41] C.Castillo-Chavez and B.Song, Dynamical Models of tuberculosis and their applications, Mathematical Biosciences and Engineering, 2004,1(2), 361-404
    [42] Walter, M., Recknagel, F., Carpenter, C., Bormans, M., Prediction Eutrophication Effects in the Burrinjuck Reservior (Australia) by Means of the Deterministic Model SALMO and the Recurrent Neural Network Model ANNA, Ecol. Modelling, 2000
    [43] Y.Kuang, J.Huisman and J.J.Elser, Stoichometric plant-herbivore models and their interpretation, Mathematical Biosciences and Engineering, 2004,1(2), 215-222
    [44] R.López,-Ruiz and D.Fournier-Prunaret, Complex behavior in a discrete coupled logistic model for the symbiotic interaction of two species, Mathematical Biosciences and Engineering, 2004,1(2), 307-324
    [45] W.Q.Zhu, Z.L.Huang, Stochastic Stability of Quasi-nonintegrable- Hamiltonian Systems,Journal of Sound and Vibration, 1998,218(5), 769-789
    [46] W.Q.Zhu,Y.Q.Yang, Stochastic Averaging of Quasi- nonintegrable- Hamiltonian Systems, Journal of Applied Mechanics, Vol.64, 1997, 157-164
    [47] W.Q.Zhu,Z.L.Huang,Stochastic Hopf bifurcation of Quasi-nonintegrable- Hamiltonian Systems, Internatonal Journal of Non-Linear Mechanics,34(1999), 437-447
    [48] Dong-Wei Huang, Hong-Li Wang, Yu Qiao, Zhi-Wen Zhu, Stochastic Hopf Bifurcation of Four-wheel-steering System, Proceedings of the Fifth International Conference on Stochastic Structural Dynamics, Hangzhou, China, 2003,207-214
    [49] Kedai Xu . Stochastic pitchfork bifurcation , numerical simulations and symbolic calculations using MAPLE [J]. Mathematics and Computers in Simulation 38 ,(1995),199-209
    [50] L. Arnold, K.D. Xu. Normal-Forms for random diffeomorphism [J]. J.Dynamics Differential Equations, 4 (1992) ,445-483.
    [51] K.D.Xu. Bifurcations of random differential equations in dimension one [J]. Random Comput. Dynamics 1 (1992/1993) 277-305.
    [52]黄润生等,混沌及其应用,武汉大学出版社,2000年
    [53]郝柏林,从抛物线谈起——混沌动力学引论,上海科技教育出版社,1993年
    [54]陈予恕,唐云等,非线性动力学中的现代分析方法,科学出版社,2000年
    [55]陈予恕,非线性振动系统的分岔和混沌理论,高等教育出版社,1993年
    [56]王洪礼,张琪昌,现代非线性动力学理论及应用,天津科技出版社,2002年
    [57]张琪昌,王洪礼等,分岔与混沌理论及应用,天津大学出版社,2005
    [58]戎海武,徐伟,方同,二自由度耦合非线性随机系统的最大Lyapunov指数和稳定性,应用力学学报,1998,15(1),22-29
    [59]戎海武,孟光,徐伟,方同,二自由度耦合线性随机系统的最大Lyapunov指数和稳定性,应用力学学报,2000,17(3),46-53
    [60]戎海武,方同,二阶线性随机微分方程的渐近稳定性,应用力学学报,1996,13(3),72-78
    [61]刘先斌,陈虬,陈大鹏,非线性随机动力系统的稳定性和分岔研究,力学进展,1996,26(4),437-452
    [62]刘先斌,陈大鹏,陈虬,实噪声参激一类余维2分叉系统的最大Lyapunov指数(Ⅰ),应用数学和力学,1999,20(9),902-912
    [63]刘先斌,陈大鹏,陈虬,实噪声参激一类余维2分叉系统的最大Lyapunov指数(Ⅱ),应用数学和力学,1999,20(10),997-1003
    [64]刘先斌,陈虬,陈大鹏,白噪声参激Hopf分叉系统的两次分叉研究,应用数学和力学,1997,18(9),779-788
    [65]刘先斌,陈虬,实噪声参激Hopf分叉系统研究,力学进展,1997,29(2),158-166
    [66]刘先斌,一类随机分叉系统概率1分叉研究,固体力学学报,2001,22(3),297-302
    [67]王洪礼,汽车四轮转向运动的稳定性分析[J],机械强度,2000,22(1):23-25.
    [68]朱位秋.随机振动[M].北京:科学出版社, 1998
    [69]裘春航,吕和祥,蔡志勤,在哈密顿体系下分析非线性动力学问题,计算力学学报,2000,17(2), 127-132
    [70]戎海武,孟光,徐伟,方同,二阶随机参激系统的Lyapunov指数和稳定性,振动工程学报,2002,15(3),295-299
    [71]戎海武,王命宇,方同,二阶随机系统的Lyapunov指数与稳定性,振动工程学报,1997,10(2),213-218
    [72]杨槐,朱华,褚亦清,一类非线性系统在随机激励下的分叉,应用力学学报,1993,10(4),69-71
    [73]陆启韶,常微分方程的定性方法和分岔,北京:北京航空航天大学出版社,1989
    [74]陆启韶,分岔与奇异性,上海:上海科技教育出版社,1995
    [75]张锦炎,冯贝叶,常微分方程几何理论与分岔问题,北京:北京大学出版社,1987
    [76]戎海武,徐伟,方同,随机分叉定义小议,广西科学,1997,4(1), 15-19
    [77]徐伟,戎海武,方同, C r随机中心流形定理,1997,14(3), 8-13
    [78]戎海武,孟光,王向东,徐伟,方同,FPK方程的近似闭合解,应用力学学报,2003,20(3), 95-98
    [79]朱位秋,非线性随机动力学与控制—Hamilton理论体系框架,科学出版社,2003;
    [80]曹庆杰,非线性系统随机振动与分叉理论研究:[D],天津;天津大学,1991
    [81]廖晓昕,动力系统的稳定性和应用,国防工业出版社,2000;
    [82]张志祥,随机扰动间断动力系统的极限性质及其应用,数学的实践与认识,2002,32(4),651-657
    [83]戎海武,王命宇,方同,随机ARNOLD系统的稳定性与分叉,应用力学学报,1996,13(4),112-116
    [84]冯剑丰,渤海赤潮生态动力学与预测研究:[D],天津;天津大学,2003
    [85] Oseledec V.L., A multiplicative ergodic theorem Lyapunov characteristic numbers for dynamical systems, Transaction of the Moscow Mathematical Society,1968, 19,197-231
    [86] Khasmiskii.R.Z., Stochastic Stability of Differential Equations, Alpen aan den Rijin, the Netherlands, Sijthoff and Noordhoff,1980.
    [87] Li Lin, Stability and Hopf Bifurcation of a Differential Delay System, Journal of Biomathematics,2002,17(2), 157-164
    [88] Arnold L., Papanicolaou.G. and Wihstutz V., Asymptotic analysis of the Lyapunov exponent and rotation number of the random oscillator and applications, SIAM Journal of Applied Mechanics, 1986,46(3),427-450
    [89] Namachiwaya N.S., Roessel V. and Talwar S., Maximal Lyapunov exponent and almost-sure stability for coupled two degree of freedom stochastic systems, ASME Journal of Applied Mechanics,1994,61, 446-452
    [90] Par doux E. and Wihstutz V., Lyapunov exponent and rotation number of two-dimensional linear stochastic systems with small diffusion, SIAM Journal of Applied Mechanics, 1988,48(2),442-457
    [91] Ariaratnam S.T. and Xie W.C., Lyapunov exponents and stochastic stability of coupled linear systems under real noise excitation, ASME Journal of Applied Mechanics,1992,59, 664-673
    [92] Juan Pablo Aparicio, Hern_an Gustavo Solari , Sustained oscillations in stochastic systems, Mathematical Biosciences 169 (2001) 15-25
    [93] Arnold L., Papanicolaou.G. and Wihstutz V., Asymptotic analysis of the Lyapunov exponent and rotation number of the random oscillator and applications, SIAM Journal of Applied Mechanics, 1986,46(3),427-450
    [94] Namachiwaya N.S., Roessel V. and Talwar S., Maximal Lyapunov exponent and almost-sure stability for coupled two degree of freedom stochastic systems, ASME Journal of Applied Mechanics,1994,61, 446-452
    [95] Par doux E. and Wihstutz V., Lyapunov exponent and rotation number of two-dimensional linear stochastic systems with small diffusion, SIAM Journal of Applied Mechanics, 1988,48(2),442-457
    [96] Ariaratnam S.T. and Xie W.C., Lyapunov exponents and stochastic stability of coupled linear systems under real noise excitation, ASME Journal of Applied Mechanics,1992,59, 664-673
    [97] Namachchiwaya N Sri., Stochastic bifurcation, Applied Mathematics and Computation, 1990,38:101-159
    [98] V.S.Anishchenko, T.E.Vadivasova, G.I.Strelkova, G.A.Okrokvertskhov, Statistical properties of dynamical chaos, Mathematical Biosciences and Engineering, 2004,1(1), 161-184
    [99] C.Castillo-Chavez and B.Song, Dynamical Models of tuberculosis and their applications, Mathematical Biosciences and Engineering, 2004,1(2), 361-404
    [100] W.Q.Zhu, Z.L.Huang, Stochastic Stability of Quasi-nonintegrable- Hamiltonian Systems,Journal of Sound and Vibration, 1998,218(5), 769-789
    [101] W.Q.Zhu, Y.Q.Yang, Stochastic Averaging of Quasi- nonintegrable-Hamiltonian Systems, Journal of Applied Mechanics, Vol.64, 1997, 157-164
    [102] W.Q.Zhu, Z.L.Huang, Stochastic Hopf bifurcation of Quasi-nonintegrable- Hamiltonian Systems, Internatonal Journal of Non-Linear Mechanics,34(1999): 437-447
    [103] Dong-Wei Huang, Hong-Li Wang, Yu Qiao, Zhi-Wen Zhu, Stochastic Hopf Bifurcation of Four-wheel-steering System, Proceedings of the Fifth International Conference on Stochastic Structural Dynamics, Hangzhou, China, 2003:207-214
    [104] Kim C, Ro P I. A sliding mode controller for vehicle active suspension system with non-linearities. Proc Instn Mech Engrs, 1998, 212:79-92.
    [105] L. Arnold, K.D. Xu. Normal-Forms for random diffeomorphism [J]. J.Dynamics Differential Equations, 4 (1992) : 445-483.
    [106] K.D.Xu. Bifurcations of random differential equations in dimension one [J]. Random Comput. Dynamics 1 (1992/1993) : 277-305.
    [107]黄东卫,渤海赤潮生态系统的非线性随机动力学研究[D],2005.
    [108]王江,柳俊中,王先来,王洪礼,变结构控制在汽车主动悬架中的应用,电机与控制学报,2000, 14(1): 43-46.
    [109] Gao Qiang, Wang Hongli, Intelligent control scheme of engineering machinery of cluster Hybrid system[J]. Transactions of Tianjin university, 2005,11(3) :194-198.
    [110]王洪礼,汽车四轮转向运动的稳定性分析[J],机械强度,2000,22(1):23-25.
    [111]王洪礼,汽车悬架系统非线性振动的主动控制[J],机械强度,2000, 22(3):164-166.
    [112] Roberts J B, Spanos P D. Stochastic averaging: An approximate method of salving random vibration problem[J]. Int J Nonlinear Mechanics, 1986,21;111-134.
    [113]乔宇,王洪礼,竺致文,王江,汽车主动悬架非线性振动的VOFB控制,机械工程学报,2002,38(22): 21-24.
    [114] Zhu W. Q, Ying, Z. G, Soong, T.T. An optimal nonlinear stochastic control strategy for randomly excited structural systems[J]. Nonlinear Dynamics, 2001, 24: 31-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700