用户名: 密码: 验证码:
生物制气—柴油双燃料发动机燃烧试验与模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内燃机燃料的主要来源为石油和天然气,化石能源渐趋枯竭,温室效应导致全球灾难性气候频繁发生,环境污染日益严重。因此,寻找新的内燃机能源迫在眉睫。生物质能作为可储存和运输的可再生能源,其高效转换和洁净利用日益受到全世界的重视。本文简述了内燃机的能源现状和发展趋势;综述了生物质能源的现状,双燃料发动机技术和双燃料发动机燃烧模拟的进展以及生物质气化技术的发展和研究现状。在前人研究的基础上对生物制气-柴油双燃料发动机的应用技术和理论模型进行了较为深入的探讨,为生物质能源在双燃料发动机上的利用及发展方向提供了的依据。
     采用自行设计的下吸式气化炉,以农林废弃的生物质为原料产生生物制气,并经过冷却滤清后,将洁净的常温生物制气通入由ZH1115直喷式柴油机改装而成的双燃料发动机。针对可燃生物制气的存在使进入气缸中的空气比相同排量柴油机少,有可能使发动机由于空气不足而使燃料不能充分燃烧,发动机动力性、经济性下降,分析了生物制气的成份及性能,推导了气体-柴油双燃料发动机与柴油机相比的动力性变化计算公式并与试验结果吻合较好。分别进行了纯柴油和双燃料运行时的试验研究。对比分析了柴油机和生物制气-柴油双燃料发动机的万有特性、燃烧特性和比排放特性。分析了负荷、转速、供油提前角等参数对柴油机及双燃料发动机燃烧过程的影响。结果表明:双燃料发动机的燃烧始点落后于柴油机;除低速大负荷外,最高燃烧压力、最大燃烧压力升高率均低于柴油机,最高燃烧压力与最大燃烧压力升高率对应相位均滞后于柴油机;双燃料发动机的后燃较为严重。双燃料发动机的NO_x排放量远比柴油机低。
     以引燃油喷雾混合、燃烧化学反应机理、湍流运动和燃烧计算、NO_x预测模型、初始及边界条件设定和计算网格划分为主要内容,探讨并建立了生物制气-柴油双燃料发动机的三维燃烧模型。引燃油喷雾混合模拟中,采用离散相液滴模型模拟引燃油液滴的运动;实心圆锥体(solid cone)射流源和Rosin-Rammler分布来描述引燃油的喷射,并采用多段射流源的方法贴近实际的喷油规律;Wave Breakup模型模拟引燃油液滴的破碎:O'Rourke随机碰撞模型模拟液滴的碰撞,并考虑了液滴与壁面碰撞的反弹和粘附;采用Hardcnburg和Hase提出的公式计算滞燃期。湍流运动采用RNG(Renormalization Group Theory)κ-ε方程模拟,并采用壁面函数对壁面湍流进行修正。燃烧计算中,将层流有限速率模型与涡耗散模型进行结合来计算净反应速率;采用单步反应来描述柴油的燃烧;生物制气,则分别采用简化机理和一氧化碳、氢气、甲烷各自的单步反应来处理。NO_x预测模型中,包含了热力型NO_x、瞬发型NO_x和燃料型NO_x的形成,并采用概率密度函数(PDF)方法进行计算。初始条件尽量采用试验中获得的数据,以便获得较好的模拟结果。网格模型中,由于喷油嘴为均布四孔喷嘴,因此只建立缸内四分之一几何空间模型,结合周期性边界,可减小计算时间;用六面体和楔形单元进行网格划分,结合网格刚体运动和网格层铺实现动态网格模拟。
     通过模拟结果与试验结果的对比表明:本文建立的三维燃烧模型可以较好的模拟柴油机和生物制气-柴油双燃料发动机的燃烧过程,预测发动机的各项性能参数。在此基础上,利用三维燃烧模型,预测分析了不同引燃油量、不同生物制气成份和不同进气量等参数对双燃料发动机燃烧过程的影响。结果表明:引燃油量减小,燃烧始点延迟,最高燃烧压力降低,最高燃烧压力对应转角滞后,后燃增加,NO_x的排放量降低。生物制气的热值越高,缸内最高燃烧压力越大,平均温度也越高,同时NO_x排放量也越大。
Up to the present, petroleum and nature gas are still the main sources of fuel for the internal-combustion engine. However, the reserves of petroleum and nature gas are reducing sharply. Moreover, greenhouse effect results in the frequent appearance of global catastrophic climate and the situation of environment are getting serious. So to searching a new substitute of energy for the engine is urgent. Biomass energy is considered as the reproducible energy that can be stored and transported, and its high efficiency of conversion and low pollution are more and more significant. The present situation and development trend of internal-combustion engine are briefly discussed. The developments of biomass energy, the technology and combustion modeling of dual fuel engine and the technology of biomass gasification are summarized. The re-equip technology and theory model of the dual fuel engine are developed on the basis research of predecessors. The foundation for the utilizing and development trend of biomass energy sources is given.
     Biogas is made from agricultural and forestry residues by a negative pressure downdraft gasifier. It is utilized as main fuel in a biogas-diesel dual fuel engine that is refitted from the ZH1115 direct injection diesel engine after being cooled and filtrated. The power and economic performances of a gas-diesel dual fuel engine may be worse because its air volume in cylinder is less than the diesel engine with the same displacement volume due to the volume of gas fuel in cylinder. The components and their performances data of biogas are analyzed. The calculation formula of power performance of the gas-diesel dual fuel engine is deduced. The calculated results are fitted in with the experimental ones. The tests at different loads and speeds are carried out for the diesel engine and the dual fuel engine. The mapping characteristics, combustion characteristics and specific emission characteristics of the diesel engine and the dual fuel engine are compared and analyzed. The effects of parameters such as load, engine speed and fuel supply advance angle on combustion process are studied. The results show that compared with diesel engine, the ignition time of dual fuel engine delays, maximum combustion pressure and maximum combustion pressure rise rate are lower and their corresponding phases are later, after combustion period is longer except at low speed and large load. The NO_x emission of dual fuel engine is lower remarkably than diesel engine.
     Based on the pilot fuel spray and mix, combustion chemical reaction kinetic, turbulent flow, combustion calculation theory, NO_x formation model, initial and boundary conditions and mesh creation, a three dimension combustion model of biogas-diesel dual fuel engine has been established. In the pilot fuel spray and mix model, discrete phase liquid droplets model has been used to simulate the movement of pilot fuel liquid droplets. Multi-injection solid cone injector source and Rosin-Rammler distribution have been used to distribute fuel injection. The breakup of pilot fuel liquid droplets has been simulated by Wave Breakup model. Ignition delay has been calculated by the formula deduced by Hardenburg and Hase. Turbulent flow has been simulated by Renormalization Group Theory (RNG)κ-εformula and near-wall region turbulent flow has been amended by wall functions. In combustion calculation, net production rate has been gained based on combining the laminar finite-rate model and the eddy dissipation model. Diesel combustion has been described by single step reaction, and biogas combustion by simplified chemistry mechanism and single step reaction of CO, H_2 and CH_4. In NO_x estimating model, thermal NO_x formation, prompt NO_x formation and fuel NO_x formation have been calculated by probability density function (PDF). In order to get more reasonable results, initial conditions are set to testing data. In calculating mesh, periodic boundary has been adopted. Because the injector has four even collocation nozzle holes, in order to save calculation time, only a quarter geometry model has been considered. Mesh creation has been carried out with hexahedral and cuneiform cell. The mesh regions swept out by the moving surfaces has been represented by dynamic layering zones.
     By comparing the computer simulation results with the experiment ones, it is shown that the three-dimension combustion model can be used to simulate the combustion process of diesel engine and biogas-diesel dual fuel engine and to evaluate performance parameters of the two engines. Then, the effects of main parameters such as the quantity of pilot fuel, the biogas component and quantity on the combustion process of dual fuel engine have been researched. The results show that with the quantity of pilot fuel decreasing, ignition time delays, maximum combustion pressure becomes lower, the corresponding phase gets later, the after burning is heavier and NO_x emission reduces. The higher the heat value of biogas is, the higher the maximum combustion pressure and the average temperature are, and the worse the NO_x emission is.
引文
[1]BP集团.2004BP世界能源统计年鉴[R].北京:人民大会堂,2004.
    [2]中国石油网.2003年世界石油产量和油气储量年终统计[OL].http://www.monarch.com.cn.2006-04-13.
    [3]中国社会科学院世界经济与政治研究所国际战略研究室国际能源战略研究咨询小组.世界能源地缘政治格局的新态势[J].亚洲纵横,2004(3):1-7.
    [4]支德瑜.我国汽车工业发展中的石油能源问题[J].汽车科技,2005(6):11-15.
    [5]赵文智,黎民,王社教.中国石油发展新能源和可再生能源的机遇与挑战[J].中国石油勘探,2005(5):81-86.
    [6]唐宁嘉.中国石油能源战略之思考[J].中国市场,2005(35):54-55.
    [7]徐胜.世界能源格局新趋势与我国石油战略对策[J].重庆大学学报,2005(3):39-42.
    [8]罗艳托,朱建华,陈光进.替代石油的能源--天然气水合物[J].天然气工业,2005(8):53-55
    [9]Kvenvolden K A.A Review of The Geochemistry of Methane in Natural Gas Hydrate[J].Organic Geochemistry,1995,Vol 23(11):997-1008.
    [10]Michael D M.Natural Gas Hydrate in Oceanic and Permafrost Environment[M].The Netherlands:Kluwer Academic Publishers,2000.
    [11]葛倩,王家生,向华,等.天然气水合物资源量研究进展[J].海相油气地质,2005(4):51-54.
    [12]Gross R,Leach M,Bauen A.Progress in renewable energy[J].Environment International,2003,29(1):105-122.
    [13]吴创之,马隆龙.生物质能现代化利用技术[M].北京:化学工业出版社,2003.
    [14]蒋剑春.生物质能源应用研究现状与发展前景[M].林产化学与工业,2002,22(2):76-80.
    [15]马隆龙,吴创之,孙立.生物质气化技术及其应用[M].北京:化学工业出版社,2003.
    [16]Cook J,Beyea J.Bioenergy in the United States:Progress and Possibilities[J].Biomass and Bioenergy,2000,18(6):411-414.
    [17]Yokoyama S Y,Ogi T,Nalampoon A,et al.Biomass energy potential in Thailand[J].Biomass and Bioenergy,2000,18(5):405-410.
    [18]Steininger K W,Voraberger H.Exploiting the medium term biomass energy potentials in Austria[J].Environmental and Resource-Economics,2003,24(4):359-377.
    [19]Demirbas A.Energy Balance,Energy Sources,Energy Policy,Future Developments and Energy Investments in Turkey[J].Energy Conversion and Management,2001,42(10):1239-1258.
    [20]吴创之.欧洲生物质能利用的研究现状及探讨[J].新能源,1999,21(3):30-35.
    [21]张包钊.欧洲联盟生物质能发展远景[J].能源工程,1995(1):11-13.
    [22]Mandal K G,Saha K P,Ghosh P K,et al.Bioenergy and Economic Analysis of Soybean-based Crop Production Systems in Central India[J].Biomass and Bioenergy,2002,23(5):337-345.
    [23]Dai L.The Development and Prospective of Bioenergy Technology in China[J].Biomass and Bioenergy,1998,15(2):181-186.
    [24]孙济美.天然气和液化石油气汽车[M].北京:北京理工大学出版社,1999.
    [25]刘维.天然气/柴油双燃料发动机性能研究[D].天津:天津大学,2002.
    [26]Beta R M,Lyons D W.Natural Gas:A Promising Fuel for the I.C Engine[C].SAE Paper 930929,1993.
    [27]Hodgins K B,Gunawan H,Philip H G.Intensifier-Injector for Natural Gas Fueling of Diesel Engine[C].SAE Paper 921553,1992.
    [28]Christopher S W,Sean H T.Duel Fuel Natural Gas/Diesel Engine:Technology,Performance,and Emissions[C].SAE Paper 940548,1994.
    [29]Oueliette P.High Pressure Direct Injection of Natural Gas in Diesel Engines[C].Natural Gas Vehicle Conference,Yokohama Japan,2000,October:17-19.
    [30]Hannu E J,James S W.Performance and Emissions of a Natural Gas-Fueled 16 Valve Dohc Four-Cylinder Engine[C].SAE Paper 930380,1993.
    [31]Simon K C,John N B.Gas Engine Combustion Principles and Applications[C].SAE Paper 2001-01-2489,2001.
    [32]Shui C L,Kresimir G,Wtlliams F A.A Reduced Reaction Mechanism for Prediction Knock in Dual-Fuel Engines[C].SAE Paper 2000-01-0957,2000.
    [33]Tetsuya T,Masahiro I,Hironobu U,et al.Effects of Equivalence Ratio and Temperature of CNG Premixture on Knock Limit in a Dual-Fueled Diesel Engine[C].SAE Paper 2003-01-1934,2003.
    [34]Saidi M H,Pirouzpanah V,Eisazadeh K E Analysis of Combustion Process in Dual Fuel Diesel Engines:Knock Phenomena Approach[C].SAE Paper 2005-01-1132,2005.
    [35]Mohamed Y E S.Combustion Noise Measurements and Control from Small Diesel and Dual Fuel Engines[C].SAE Paper 2004-32-0072,2004.
    [36]David M C,Liu B L,Robert E H.Experimental and Modeling Study of Variable Cycle Time for a Reversing Flow Catalytic Converter for Natural Gas/Diesel Dual-Fuel Engines[C].SAE Paper 2000-01-0213,2000.
    [37]Takuji I,Masahiro S,Makoto I,et al.Improvement of Performance and Exhaust Emissions in a Converted Dual-Fuel Natural Gas Engine[C].SAE Paper 2000-01-1866,2000.
    [38]Yusaf T F,Al-Atabi M T A,Buttsworth D.Engine Performance and Exhaust Gas Emissions Characteristics of CNG/Diesel Dual-Fuel Engine[C].SAE Paper 2001-01-1808,2001.
    [39]Naris A,Gajendra M K B,Ramesh A.Experimental Investigations of Different Parameters Affecting the Performance of a CNG-Diesel,Dual-Fuel Engin[C].SAE Paper 2005-01-3767,2005.
    [40]Naris A,Gajendra M K B,Ramesh A.Investigations on Combustion and Performance Characteristics of a Turbocharged Natural gas and pilot Ignition Dual Fuel Engine[C].SAE Paper 2005-01-3775,2005.
    [41]Mohanan P,Suresh Y K.Effect of LPG Intake Temperature,Pilot Fuel and Injection Timing on the Combustion Characteristics and Emission of a LPG-Diesel Dual-Fuel Engine[C].SAE Paper 2001-28-0028,2001.
    [42]Sudhir C V,Vijay H D,Suresh Y K,et al.Performance and Emission Studies on the Effect of Injection Timing and Diesel Replacement on a 4-S LPG-Diesel Dual-Fuel Engine[C].SAE Paper 2003-01-3087,2003.
    [43]Papagiannakis R G,Hountalas D T,Kotsiopoulos P N.Experimental and Theoretical Analysis of the Combustion and Pollutants Formation Mechanisms in Dual Fuel DI Diesel Engines[C].SAE Paper 2005-01-1726,2005.
    [44]Abd-Alla G H,Soliman H A,Badr O A,et al.Effects of Diluent Admissions and Intake Temperature in Exhaust Gas Recirculation on the Emissions of An Indirect-Injection,Dual-Fuel Engine[C].SAE Paper 2000-01-2796,2000.
    [45]Gamal H A,Sollman H A,Osama A B,et al.A Computational Investigation of the Effect of Exhaust Gas Recirculation on the Performance of a Dual-Fuel Engine[C].SAE Paper 2000-01-2040,2000.
    [46]Tomita E,Nobuyuki K,Piao Z Y,et al.Effects of EGR and Early Injection of Diesel Fuel on Combustion Characteristics and Exhaust Emissions in a Methane Dual-Fuel Engine[C].SAE Paper 2002-01-2723,2002.
    [47]Stanglmaier R H,Thomas W R,Jason S S.Hcci Operation of a Dual-Fuel Natural Gas Engine for Improved Fuel Efficiency and Ultra-Low NOx Emissions at Low-To-Moderate Engine Loads[C].SAE Paper 2001-01-1897,2001.
    [48]Bengtsson J,Strandh P,Johansson R,et al.Cycle-To-Cycle Control of a Dual-Fuel Hcci Engine[C].SAE Paper 2004-01-0941,2004.
    [49]而青,田文凯,张纪鹏,等.天然气/柴油双燃料燃烧特性及规律的研究[J].内燃机学报,2000,18(2):127-132.
    [50]张武高,周明,欧阳明高.柴油、天然气双燃料发动机的燃烧特性分析[J].内燃机学报,2000,18(3):299-304.
    [51]尧命发,段家修,覃军,等.双燃料发动机燃烧放热规律分析及燃烧特性研究[J].内燃机学报,2002,20(4):312-316.
    [52]苏万华,林志强,汪洋,等.气口顺序喷射、稀燃、全电控柴油/天然气双燃料发动机的研究 [J].内燃机学报,2001,19(2):103-108.
    [53]刘雄,张惠明,吕筱萍,等.降低双燃料发动机HC和CO排放的研究[J].内燃机学报,2003,21(1):35-38.
    [54]李志军,付晓光,刘文胜,等.柴油/CNG双燃料发动机开发及其性能分析[J],燃烧科学与技术,2003,9(6):497-500.
    [55]尧命发,黄宁,段家修,等.增压中冷柴油-天然气双燃料发动机燃烧特性的试验研究[J].内燃机学报,2003,21(4):211-216.
    [56]张春化,边耀璋.机电联合控制LPG-柴油双燃料增压发动机的研究[J].内燃机学报,2002,20(4):329-334.
    [57]张春化,解亚利,马荣贵.电子控制气体燃料-柴油双燃料汽车控制装置[J].交通与计算机,2003,21(3):34-36.
    [58]曹建明,武涛,程前,等.柴油与LPG/柴油双燃料喷雾特性的对比[J].交通运输工程学报,2003,3(2);40-44.
    [59]钟辉,刘圣华,刘传李,等.供气系统参数变化对双燃料发动机低负荷排放的影响[J].内燃机学报,2001,19(5):425-428.
    [60]马征,李国岫,张欣,等.电喷双燃料发动机排放性能的试验研究[J].内燃机学报,2001,19(6):547-550.
    [61]张红光,盛宏至,潘奎润,等.车用柴油/天然气双燃料发动机的开发[J].农业机械学报,2003,34(5):8-11.
    [62]张新塘,高孝洪,潘志翔,等.增压柴油/CNG双燃料发动机CNG电控技术研究[J].武汉理工大学学报,2003,27(3):294-296.
    [63]楚书华,王丽君,熊树生,等.490Q直喷型柴油机改装成柴油-LPG双燃料发动机的试验研究[J].内燃机工程,2004,25(4):53-56.
    [64]刘震涛,费少梅.天然气柴油双燃料发动机油气切换过程的优化控制[J].浙江大学学报,2004,38(7):868-871.
    [65]袁银男,郭晓亮,聂春飞,等.LPG-柴油双燃料发动机电控喷气系统设计[J].内燃机工程,2004,25(2):23-27.
    [66]汪云,王春发,张幽彤.电控柴油天然气(双燃料)发动机性能研究[J].内燃机工程,2004,25(5):76-78.
    [67]Karim G A,Yan Z D.An Analytical Model for Knock in Dual Fuel Engines of the Compression Ignition Type[C].SAE Paper 880151,1988.
    [68]Karim G A,Liu Z G.A Predictive Model for Knock in Dual Fuel Engines[C].SAE Paper 921550,1992.
    [69]Liu Z G,Karim G A.A Predictive Model for the Combustion Process in Dual Fuel Engines[C].SAE Paper 952435,1995.
    [70]费少梅,严兆大.压燃式双燃料发动机燃烧模型的新进展[J].燃烧科学与技术,1996,2(4):349-356.
    [71]费少梅.双燃料发动机燃烧过程的模拟[J].浙江大学学报,1997,31(3):335-340.
    [72]Yah Z D,Zhao L W,Fei S M,et al.Study and Application of Combustion Model for Dual Fuel Engine[J].内燃机学报,2001,19(2):133-138.
    [73]黄敬党,翁红林,曾德超.双燃料涡流室式发动机的燃烧模拟计算[J].农业机械学报,1994,25(4):5-10.
    [74]Pirouzpanah V,Kashani B O.Prediction of Major Pollutants Emission in Direct-Injection Dual-Fuel Diesel and Natural Gas Engines[J].International Journal of Engineering,2000,Vol.13(2):55-67.
    [75]Hountalas D T,Papagiannakis R G.A Simulation Model for the Combustion Process of Natural Gas Engines with Pilot Diesel Fuel as an Ignition Source[C].SAE Paper 2001-01-1245,2001.
    [76]Hountalas D T,Papagiannakis R G..Development of a Simulation Model for Direct Injection,Dual Fuel,Diesel-Natural Gas Engines[C].SAE Paper 2000-01-0286,2000.
    [77]Hountalas D T,Papagiannakis R G..Theoretical and Experimental Investigation of a Direct Injection Dual-Fuel Diesel-Natural Gas Engine[C].SAE Paper 2002-01-0868,2002.
    [78]Papagiarmakis R G,Hountalas D T,Kotsiopoulos P N.Experimental and Theoretical Analysis of the Combustion and Pollutants Formation Mechanisms in Dual Fuel DI Diesel Engines[C].SAE Paper 2005-01-1726,2005.
    [79]Zhang Y T,Kong C S,Reitz R D.Modeling and Simulation of a Dual-Fuel(Diesel/Natural Gas) Engine With Multidimensional Cfd[C].SAE Paper 2003-01-0755,2003.
    [80]Singh S,Kong C S,Reitz R D,et al.Modeling and Experiments of Dual-Fuel Engine Combustion and Emissions[C].SAE Paper 2004-01-0092,2004.
    [81]Kusaka J,Tsuzuki K,Daisho Y.A Numerical Study on Combustion and Exhaust Gas Emissions Characteristics of a Dual-Fuel Natural Gas Engine Using a Multi-Dimensional Model Combined With Detailed Kinetics[C].SAE Paper 2002-01-1750,2002.
    [82]Kusaka J,Ito S,Mizushima N,et al.A Numerical Study on Combustion and Exhaust Gas Emissions Characteristics of a Dual-Fuel Natural Gas Engine Using a Multi-Dimensional Model Combined With Detailed Kinetics[C].SAE Paper 2003-01-1939,2003.
    [83]张欣,刘伟,胡准庆,等.天然气/柴油双燃料发动机燃烧过程二维数学模型的研究[J].铁道学报,2001,23(1):103-107.
    [84]刘震涛,费少梅.基于RBF网络的舣燃料发动机排放模型[J].农业机械学报,2002,33(7):1-4.
    [85]尧命发,许斯都,李远洪,等.双燃料发动机的燃烧模型[J].燃烧科学与技术,2002,8(4):358-363.
    [86]宋金瓯,姚春德.涡流比对双燃料发动机燃烧过程影响的数值分析[J].汽车工 程,2004,26(1):20-23.
    [87]左承基,赵俊华.涡流室式LPG柴油双燃料发动机燃烧模型[J].热科学与技术,2004,3(2):185-188.
    [88]戴磊,李宗立,辛强之,等.8300生物质气体发动机的研制[J].柴油机,2004(5):4-6.
    [89]Lapuerta M,Hemandez J J,Tinaut F V,et al.Thermoehemical Behavior of Producer Gas From Gasification of Lignocellulosic Biomass in SI Engines[C].SAE Paper 2001-01-3586,2001.
    [90]Wtlson M.Evaluation of Engine Running With Gas of Low Power Heat Rate From Biomass (Rice Husk) Produced By Gasifier[C].SAE Paper 2005-01-2185,2005.
    [91]程冠华,杨启岳,陈熔.用于双燃料发动机的移动层下吸式生物质气化炉及净化系统[J].农村能源,1998(6):18-22.
    [92]Henham A,Makkar M K.Combustion of Simulated Biogas in a dual-fuel Diesel Engine[J].Energy Conversion and Management,1998,Vol.39(16):2001-2009.
    [93]张无敌,夏朝风,宋洪川.生物质热解气化技术的评价[J].节能,1998(3):37-40.
    [94]Yoshikawa K.Gasification and Power Generation from Solid Fuels Using High Temperature Air[C].Beijing:Proceeding of Temperature Air Combustion Symposium,Oct.1999:48-68.
    [95]Pian C C.Biomass Fueled MEET Gasifier[C].Beijing:Proceeding of Temperature Air Combustion Symposium,Oct.1999:69-88.
    [96]钟浩,谢建,杨宗涛,等.生物质热解气化技术的研究现状及其发展[J].云南师范大学学报,2001,21(1):41-45.
    [97]杨安,陈坤.ND-600型生物质气化干燥系统[J].农村机械化,1996(4):4.
    [98]王海滨.国外生物质能转化技术与应用[J].新能源,2001(6):15-16.
    [99]黄保圣.我国植物生物质能源开发展望[J].新能源,2003(1):20-23.
    [100]郭东彦.发展中的生物质气化集中供气技术[J].农村能源,2000(4):19.
    [101]田成民.我国生物质气化技术研究概况[J].化工时刊,.2004,18(12):19-21.
    [102]江淑琴.生物质燃料的燃烧与热解特性[J].太阳能学报,1995,16(1):40-47.
    [103]孙立.固定床气化器中生物质原料的热解气化特性[J].山东科学,1998,11(4):1-7.
    [104]Reed T B,Agua Das.(1988)Handbook of biomass downdraft gasifier engine systems[M].Golden,Colo.:Solar Technical Information Program,Solar Energy Research Institute 1988,SERI/SP-271-3022.
    [105]Sun L,Min X,Gu Z Z,at al.Crop straw gasifier and village biomass gas supply network[C].Proceedings of the 5~(th) international energy conference,Vol.3,1993:290-299.
    [106]Ralf Kopsel,Henryk Zabawski.Catalytic effects of ash components in low rank coal gasification[J].Fuel,1990,69(5):275-281.
    [107]Lang R J,Neavel R C.Behavior of calcium as a stream gasification catalyst[J].Fuel,1982,61(7):620-626.
    [108]Edward Furimaky.Catalytic effect of mineral matter of high wah onakawana lignite stream gasification[J].Can J Chem Eng,1986,64(2):293-298.
    [109]刘国喜,庄新姝,李文,等.生物质气化技术讲座(二) 生物质气化炉[J].农村能源,1999(6):17-19.
    [110]Reed T B.Biomass Gasification Pyrolysis and Technology[M].Data Corporation USA,1981.
    [111]马隆龙.秸杆气化技术[M].北京:中国环境科学出版社,2002.
    [112]罗福强,高宗英.柴油机瞬变工况瞬时转速及工作过程测量分析系统[J].内燃机工程,1996,17(1):13-17.
    [113]赵骆伟.基于化学反应动力学的天然气-柴油电控双燃料发动机燃烧模型的研究[D].杭州:浙江大学,2001.
    [114]FLUENT Inc.FLUENT 6.1 User's Guide[M].2003,2.
    [115]Reitz R D.Mechanisms of Atomization Processes in High-Pressure Vaporizing Sprays[J].Atomization and Spray Technology,1987,3:309-337
    [116]O'Rourke P J.Collective Drop Effects on Vaporizing Liquid Sprays[D].Princeton:New Jersey Princeton University,1981.
    [117]Hardenburg H O,Hase F W.An Empirical Formula for Computing the Pressure Rise Delay of a Furl from its Cetane Number and from the Relevant Parameters of Direct Injection Diesel Engines[C].SAE Paper 790493,1979.
    [118]王珂.柴油引燃式天然气内燃机电子控制及多维仿真技术研究[D].北京:北京理工大学,2002.
    [119]Karim G A,Yah Z D.Modeling of the Combustion Process in a Dual Fuel Direct Injection Engine[J].ASME,1990,Vol.112:254-259.
    [120]Sorenson S C,Myers P S,Uyehara O A.The Reaction of Ethane in Spark Ignition Engine Exhaust Gas[C].SAE Paper 700471,1970.
    [121]Aceves S M,Flowers D L,Martinez F J,et al.A Sequential Fluid-Mechanic Chemical-Kinetic Model of Propane HCCI Combustion[C].SAE Paper 2001-01-1027,2001.
    [122]Wang S Q,David LM,Nicholas P C.Prediction of Pre-ignition Reactivity for N-Butane and Iso-Butane Blends Using a Reduced Chemical Kinetic Model[C].SAE Paper 961154,1996.
    [123]Curran H J,Pitz W J,Westbrook C K,et al.A Wide Range Modeling Study of Dimethyl Ether Oxidation[J].International Journal Chemical Kinetics,1998,30(3):229-241.
    [124]贾明,解茂昭.均质压燃发动机燃烧与排放的多区模型模拟[J].燃烧科学与技术,2005,11(3):261-267.
    [125]蒋勇,邱榕.耦合详细反应动力学机理的碳氢燃料预混火焰结构数值预测[J].江苏大学学报,2002,23(2):22-25.
    [126]费少梅.压燃式双燃料发动机燃烧模型的研究[D].杭州:浙江大学,1993.
    [127]Karim G A,Yah Z D,Liu Z G Modeling of Auto ignition and Knock in a Compression Ignition Engine of the Dual Fuel Type[C].In:Advance in Power Engineering Beijing:International Academic Publishers,1992,34-38.
    [128][128]Hunter T B,Wang H,Litzinger T A,et al.Oxidation of Methane at Elevated Pressures:Experiments and Modeling[J].Combustion and Flame,1994,97:201-224.
    [129]董刚,蒋勇,陈义良,等.大型气相化学动力学软件包CHEMKIN及其在燃烧中的应用[J].火灾科学,2000,9(1):27-33.
    [130]王智微,李定凯,沈幼庭,等.一氧化碳在循环流化床燃烧室中的燃烧模型[J].清华大学学报,2000,40(2):110-113.
    [131]Mass U,Pope S B.Simplifying Chemical Kinetics:Intrinsic Low-Dimensional Manifolds in Composition Space[J].Combustion and Flame,1992,88:239-264.
    [132]詹樟松.燃气汽车发动机燃烧特性及工作性能研究[D].杭州:浙江大学,2001.
    [133]Lawrence Livermore National Laboratory.Chemistry,Materials,Life Sciences[OL].http://www-cms.llnl.gov/combustion/combustion_home.html,2005-11-10.
    [134]Yakhot V,Orszag S A.Renormalization Group Analysis of Turbulence:I.Basic Theory[J].Journal of Scientific Computing,1986,1(1):1-51.
    [135]Miller R,Davis G,Lavoie G,et al.A super-Extended Zeldovich Mechanism for NO_x Modeling and Engine Calibration[C].SAE Paper 980781,1998.
    [136]Missaghi M,Pourkashanian M,Williams A,et al.Experimental Studies and Computer Modeling of Nitrogen Oxides in a Cylindrical Furnace[C].ln Proceedings of American Flame Days Conference,USA,1990.
    [137]Tang W K,Reitz R D.Three-Dimensional Computations of Combustion in Premixed-Charge and Direct-Injected Two-Stroke Engines[C].SAE Paper 920425,1992.
    [138]黄勇成,周龙保,潘克煜.直喷式柴油机燃用F-T柴油时燃烧特性的研究[J].西安交通大学学报,2006,40(1):5-9.
    [139]董敬,庄志,常思勤.汽车拖拉机发动机[M].北京:机械工业出版社,1996.
    [140]Launder B E,Spalding D B.The Numerical Computation of Turbulent Flows[J].Computer Methods in Applied Mechanics and Engineering,1974,3:269-289.
    [141]程冠华.固定床移动层下吸式生物质气化炉的研究[J].能源工程,1997,2:30-32.
    [142]Bedford F,Hu X.Engine and Combustion Modeling Developments in Fluent 6.1[OL].www.erc.wisc.edu/modeling/multi_dimensional/ModelingMtng2003/Bedford-Fluent.pdf,2005-11-11
    [143]Bedford F,Hu X,Schmidt U.In-cylinder combustion modeling and validation using Fluent[OL].www.erc.wisc.edu/modeling/multi_dimensional/ModelingMtng2004/10-Fluent _Abstract_Ⅲ.pdf,2005-11-12
    [144]周龙保主编.内燃机学[M].北京:机械工业出版社,2003.
    [145]罗福强,李小华,汤东,等.生物制气.柴油双燃料发动机燃烧特性研究[J].工程热物理学报,2004,25(5):879-882.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700