用户名: 密码: 验证码:
CCHP及其所构成微网的运行特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小型冷热电联产系统(简称CCHP)具有能源利用效率高,污染小,可满足用户冷热电多种形式能源需求的特点。微网技术为分布式CCHP提供了灵活的运行平台,可以实现冷热电负荷之间灵活匹配,提高整体系统的经济和社会效益。本文针对CCHP和微网的系统结构、控制方式、数学模型以及运行规律等开展了下述研究工作:
     (1)研究了单轴结构微型燃气轮机的结构特点、控制方式以及运行规律。针对传统二极管整流方式下单轴结构微型燃气轮机缺少灵活控制方式、动态响应速度慢的不足,提出了采用双PWM变流器结构的改进方案,设计了基于电压外环和电流内环双层控制的PWM整流器控制方法,进行了不同结构系统动态特性的仿真实验,验证了双PWM结构可以提高系统动态性能、减小变流器直流波动以及减小直流谐波的结论。
     (2)针对现有分轴结构微型燃气轮机模型分析精度的不足,建立了可以模拟不同转轴动态特性的分轴结构微型燃气轮机小信号线性化仿真模型,研究了分轴结构微型燃气轮机多种控制方式,对不同方式下分轴结构微型燃气轮机的运行特性进行了仿真,为微网中分轴结构微型燃气轮机的研究奠定了基础。
     (3)研究了由多台微型燃气轮机组成的微网在由联网运行模式切换为孤岛运行模式时不同控制策略下的运行特性问题。分别采用单主控制和多主控制策略,研究了计划性切换和非计划性切换情况下微网动态特性,分析了微网在脱网时能够保证系统平稳过渡的条件和影响因素,总结了由多台微型燃气轮机组成的微网运行和控制规律,实现了微网在运行模式切换时能够安全、平稳的过渡。
     (4)研究了CCHP系统中不同结构微型燃气轮机在微网中配置选型问题,对比了不同结构微型燃气轮机设备成本、发电效率等技术参数,通过对微网中不同类型微型燃气轮机的负荷跟踪能力、不同类型负荷下的动态特点以及不同微网拓扑结构下的运行规律的分析,为不同运行环境下的系统抗干扰能力研究、动态特性评估以及系统建设时的电源选型提供了参考指标。
The distributed Combined Cooling Heating and Power (CCHP) has highefficiency in energy utilization and low pollution in emitting, and can satisfy differentkinds of energy demands such as cooling, heating and power by the users. MicroGrid,which can flexibly supervise the cooling heating, and power load and increase theeconomic and social benefits, provides a flexible operation platform for distributedCCHP. Aimed at the system structures, control modes, math models and operationrules etc. of CCHP and MicroGrid, this paper carries on the related research work asfollows:
     The structure characteristic, control modes, and operation rules of a single shaftMicroTurbine are investigated. Aimed at the shortages of flexibleness in control modeand slowness in dynamic respond of a single shaft MicroTurbine rectified by diode, aimproved scheme based on double PWM converter is presented, and the controlmethod based on voltage outer loop and current inner loop is designed. Through thesystem simulation of dynamic characteristic research under different structures, wecan draw a conclusion that, by the double PWM structure, the dynamic performanceof system can be improved, and the direct current fluctuation and the harmonic ofconverter can be decreased.
     Aimed at the lack of analysis precision of split-shaft MicroTurbine, a dynamicmodel, which use small signal linear approach, is presented for the simulating ofdifferent shafts. Then the control modes of split shaft MicroTurbine are investigated,and the simulation tests are carried on to analyze the operation characteristic underdifferent control modes. The result of simulation can be used as a theory basis for afurther research on the split shaft MicroTurbine.
     The operation characteristic of MicroGrid, composed of multi MicroTurbines, isinvestigated when the MicroGrid operation mode switches from grid-connected modeto islanding mode under different control strategies. Adopting single master controlstrategy and multi masters control strategy separately, the MicroGrid dynamiccharacteristic under intentional islanding and unintentional islanding is investigated,and the seamless transition condition and influencing factors under MicroGridislanding are studied. Through the research results, the MicroGrid operation and control rules composed of multi MicroTurbines are summarized and a safe andsmooth transition in the process can be achieved.
     The research about configure selection of different kinds of MicroTuribnes inMicroGrid is carried on. The characteristic parameters such as equipment costs,generating efficiency and noise level etc. are compared. Through the research of theload tracking ability, dynamic characteristic under different types of loads andoperation rules under different MicroGrid topologies, the reference index can beachieved by analyzing the system anti-disturbence ability, evaluating the dynamiccharacteristic and selecting electrical sources.
引文
[1]中国的能源管理和能源结构调整,http://www.china5e.com
    [2]能源发展“十一五”规划,国家发展改革委员会,2007.4
    [3] 2007年国民经济和社会发展统计公报,中华人民共和国国家统计局,2008.2
    [4] COGEN Europe (The European Association for the promotion ofCogeneration, www.cogen.org). The European enducational tool oncogeneration, 2nd. December 2001
    [5]安青松,基于燃气轮机的冷热电三联供系统优化模拟,天津大学硕士论文,2004.3
    [6]刘莉,黄锦涛,丰镇平,100 kW微型燃机冷热电联供的经济性分析,工程热物理学报,2004,25(6): 909-912
    [7] Hirohisa Aki, The Penetration of Micro CHP in Residential Dwellings inJapan, IEEE Power Engineering SocietyGeneral Meeting, June, 2007: 1-4
    [8] Havelsky V., Energetic, Efficiency of Cogeneration Systems for CombinedHeat, Cold and Power Production. International of Refrigeration,1999, vol.22,no.6, pp: 479-485
    [9]胡滨朱守真郑竞宏等,北京分布式能源冷热电联供系统并网交易研究,电力系统自动化2006, 30(19): 18-22
    [10] Ackermann T.,Andersson G., Soder L., Distributed Generation:a Definition,Electic Power Systems Research,Apr. 2001, vol.57 no.3, pp: 195-204
    [11]王成山,陈凯,谢莹华等,配电网扩展规划中分布式电源的选址和定容.电力系统自动化, 2006 30(3):38-43,
    [12] Robert H. Lasseter, Paigi P., Microgrid: AConceptual Solution, IEEE PowerElecrronics Specialisrs Conference Aochen, Gemzany. 20-25, June, 2004vol.6, pp:4285-4290
    [13] Kroposki, Benjamin Pink, Christopher Basso, Thomas DeBlasio, RichardMicrogrid Standards and Technology Development, IEEE PowerEngineering SocietyGeneral Meeting, 24-28 June 2007, pp: 1-4
    [14] Marnay C., Robio F., Siddiqui A., Shape of the Microgrid, IEEE PowerEngineering Society Winter Meeting, Columbus, OH, Jan. 28-Feb.1 2001,vol.1, pp: 150-153
    [15] Hatziargyriou N., Asano H., Iravani R., Marnay C., Microgrids, IEEE PowerEnergy, Jul./Aug. 2007, vol.5, no. 4, pp: 78-94
    [16] Venkataramanan G., Illindala M., Microgrids and sensitive loads, IEEEPower Engineering SocietyWinter Meeting, 27-31 2002, vol.1, pp: 315-322
    [17] Moreira C., Rosende F., Pecas Lopes J.A., Using low voltage microgrids forservice restoration, IEEE Transction of Power System, Feb. 2007, vol.22,no.1, pp:395-403
    [18] Robert H. Lasseter, Microgrids, IEEE PES Winter Meeting, 27-31, January,2002, vol.1, pp:305-308
    [19]梁才浩,段献忠,陈允平,分布式发电及其对电力系统的影响,电力系统自动化,2001,25(12): 53-56
    [20] Public UtilityRegulatory PolicyAct(PURPA), 1978, http://www.ucsusa.org
    [21] Combined Heat and Power(CHP) Challenge, http://yosemite.epa.gov
    [22] United States Combined Heat & PowerAssociation, http://www.chpa.co.uk/
    [23] Lemar P, Honton EJ (Resource Dynamics Corporation), High natural gasprices and the updated market for CHP world energy engineering congress.September 2004
    [24] Chengzhang Z., CHP applications in US and Europe used for reference inChina. Popular Utilization of Electricity, 2003.2
    [25] National Energy Policy, National Energy Policy Development Group, May2001, www.whitehouse.gov/energy/National-Energy-Policy.pdf
    [26] WADE(www.localpower.org).World surveyof decentralized energy. 2004
    [27] Reicher D (Texas New Energy Capital). CHP roadmap workshop five yearsinto the challenge. September 2004
    [28] Matthew Cowie, Characterizing combined heating, cooling and powersystem for buildings through theory and testing, Master’s Thesis, 2002, pp:13-25
    [29] Dr. Predrag Popovic, BCHPResearch & Demonstration Project at Universityof Maryland BCHPWorkshop, September, 2000
    [30] WADE (www.localpower.org). A lower cost policy response to the NorthAmerican blackouts.August 2003.
    [31] European Commission, http://ec.europa.eu/index_en.htm
    [32] P. S. Pak, Y. Suzuki., Thermodynamical Economical and EnvironmentalEvaluation of High Efficiency Gas Turbine Cogeneration Systems,International Journal of EnergyResearch, 1990,vol.14, pp:821-832
    [33] K Dolman, B Perters, The Signification of micro-turbines as CHP(combinedheat power system), Modern Techniques and Technologies,2003, MTT 2003.Proceedings of the 9th Internation Scientific and Practical Conference ofStudents, Post-graduates andYoung Scientists, 7-11,April, 2003, pp: 20-22
    [34] Hu B., Zhu S. Z., Zheng J H, Xu J., The Study on Pricing Policies andTrading Mechanism of Distributed Generation, 2006 InternationalConference on Power SystemTechnology, Oct. 2006, pp: 1-6
    [35] IEA (Internal Energy Agency, www.iea.org), Energy policies of IEAcountries. Japan. 1999, review
    [36] Japan Cogeneration Center (CGC). Current status and trends in Japan. 2007.
    [37] EPA,Overview of cogeneration and its status in Asia: cogeneration in AsiaToday. 1999
    [38]能源节约与资源综合利用“十五”规划,国家发展改革委员会,2006
    [39]西部节能网,http://www.jn118.cn/zhengwen.asp?lm2=107&id=1980,2008
    [40]中国能源网,http://www.china5e.com/academe/report_info.php?id=14,2007
    [41]林在豪,上海浦东国际机场能源中心冷、热、电三联供系统,上海节能,2005,6: 158-164
    [42]论小型冷热电联供,http://www.espt.cn/new_view.asp?id=2240,2006
    [43]王振铭,郁刚,冷热电联供现状、前景和建议,中国电力,2003,36(9):43-49
    [44]热电联供发展面临的问题与展望,http://www.chinapower.com.cn/article,中国电力网,2008
    [45] Smith M. (Office of Distributed Energy US Department of Energy). Fifthannual CHProadmap workshop. September 2004.
    [46] IEEE Standard for Interconnecting Distributed Resources with ElectricPower Systems, IEEE Standards Coordinating Committee 21 (IEEE SCC21)1547-2003, 2003
    [47] Akhil, A., C. Marnay, T. Lipman, Review of Test Facilities for DistributedEnergyResources, SAND2003-1602, LBNL-51954, October 2002.
    [48]王锡凡,现代电力系统分析,北京:科学出版社,2003
    [49] DolanTechnologyCenter, http://certsmicrogrid.com
    [50] EPRI(Electric Power Reaearch Institute), http://intelligrid.epri.com
    [51] National Renewable Energy Laboratory, http://www.nrel.gov/docs
    [52] United States Department of Energy Energy Efficiency and RenewableEnergy(EERE), http://www.eere.energy.gov
    [53] Thomas Key, Testing for Grid Integration of Distributed and RenewableResources
    [54] Ben Kroposki, National Renewable Energy Laboratory, Interconnection Testand Applications, 2004 Power Engineering Society General Meeting, 6-10,June, 2004
    [55] European research project microgrid, http:// microgrids power.ece.ntua.gr
    [56] Nikos Hatziargyriou, Power System Operation and Control IncludingDemand Response and Microgrids, Future of Smart Distribution Grids withDistributed EnergyResources, Dec 4-6, 2007, Napa, California
    [57] F V Edwards, G J W Dudgeon, J R McDonald, W.E.Leithead, Dynamics ofDistribution Networks with Distributed Generation, IEEE Power EngineeringSocietySummer Meeting, 2000, vol.2, pp:1032-1037
    [58] G. N. Kariniotakis, N. L. Soultanis, A. I. Tsouchnikas, S. A. Papathanaslou, D.N. Hatziargyrious, Dynamic Modeling of MicroGrids, Future Power Systems,2005 International Conference, 16-18, Nov. 2005, pp: 1-7
    [59] Paolo Piagi, Robert H. Lasseter, Autonomous Control of Microgrids, IEEEPower Engineering SocietyGeneral Meeting, 18-22 June 2006, 8pp
    [60] Y Zhu, Y. Zhu, K. Tomsovic, Development of Models for Analyzing theLoad-following Performance of Microturbines and Fuel Cells, ElectricPower Systems Research, 2002, vol. 62, no.1, pp:1-11
    [61] Amer Al-Hinai, Karl Schoder, Ali Feliachi, Control of Grid-connectedSplit-shaft Microturbine Distributed Generator, System Theory, Proceedingsof the 35th Southeastern Symposium on, 16-18 March 2003, pp: 84- 88
    [62] Al-Hinai, A., Feliachi, A., Dynamic Model of a Microturbine Used as aDistributed Generator, Proceedings of the 34th Southeastern Symposium onSystemTheory, 2002, pp: 209- 213
    [63] F. Jurado, A.. Cano, J. Carpio, Enhancing the Distribution System Stabilityusing Micro-turbines and Fuel Cells, Transmission and DistributionConference and Exposition, 2003 IEEE PES, 7-12 Sept. 2003, vol.2, pp: 717-722
    [64] Hajagos L. M., Berube G. R., Utility Experience with Gas Turbine Testingand Modeling, IEEE Power Engineering Society Winter Meeting, 2001.,vol.2, pp: 671-677
    [65] Yeager, K.E., and J.R.Willis, Modeling of Emergency Diesel Generators inan 800 Megawatt Nuclear Power Plant, IEEE Transactions on EnergyConversion, September, 1993, vol.8, No.3, pp: 433-441
    [66] J. A. Lopes, C. L. Moreira, A.G. Madureira, et al., Control Strategies forMicroGrids Emergency Operation, 2005 IEEE International Conference onFuture Power Systems, 16-18 Nov. 2005, pp:1-6
    [67]张洪伟,沈菊,分布式能源冷热电联产系统的热经济性分析,冷藏技术,2005(4):12-15
    [68]林儒一,105KW级微型燃机回热器控制的设计与实现,东北大学硕士论文,2006.2
    [69] EGG Services Parsons Inc., Fuel Cell Handbook (5th edition),. United StatesDepartment of Energy, October 2000
    [70] J. Padulles, G.W. Ault, and J.R. McDonald, An Integrated SOFC PlantDynamic Model for Power Systems Simulation, Journal of Power Sources,March 2000, vol. 86, pp: 495-500
    [71] K. Sedghisigarchi, A. Feliachi, Control of Grid-connected Fuel Cell PowerPlant for Transientstability Enhancement, IEEE Power Engineering SocietyWinter Meeting, January 2002, vol.1, pp: 383-388
    [72] D.J. Hall, R.G. Colclaser,.Transient Modeling and Simulation of a TubularSolid Oxide Fuel Cell, IEEE Transactions on Energy Conversion, September1999, vol.14, no.3, pp: 749-753
    [73] J. Padulles, G.W. Ault, and J.R. McDonald, An Approach to the DynamicModelling of Fuel Cell Characteristics for Distributed Generation Operation,IEEE Power Engineering SocietyWinter Meeting. 2000, vol.1, pp:134-138
    [74] J. Padulles, G.W. Ault, C.A. Smith, and J.R. McDonald, Fuel Cell PlantDynamic Modelling for Power Systems Simulation, 34th Universities PowerEngineering Conference, September 1999, vol.1, pp: 21-25
    [75] M.D. Lukas, K.Y. Lee, and H. Ghezel-Ayagh, Development of a StackSimulation Model for Control Study on Direct Reforming Molten CarbonateFuel Cell Power Plant, IEEE Transactions on Energy Conversion, December1999, vol.14, no.4, pp: 1651-1657.
    [76] M.D. Lukas, H. Ghezel-Ayagh, Mark C. Cervi, K.Y. Lee, and S.G. Abens,Experimental Transient Validation of a Direct Fuel Cell Stack Model,. IEEEPower Engineering Society Summer Meeting, July 2001, vol.3, pp:1363-1368
    [77] J.C. Amphlett, E.H. de Oliveria, R.F. Mann, et al., Dynamic Interaction of aProton Exchange Membrane Fuel Cell and a Lead-acid Battery, Journal ofPower Sources, 1997, vol.65, pp: 173-178
    [78] Wolfgang Friede, St′ephane Ra¨el, and Bernard Davat, Mathematical Modeland Characterization of the Transient Behavior of a Pem Fuel Cell, IEEETransactions on Power Electronics, September 2004, vol.19, no.5, pp.1234-1241
    [79] Lorenzo E., Araujo G., Cuevas A., et al., Solar Electricity Engineering ofPhotovoltaic Systems,Artes Graficas Gala, S.L., Spain, 1994.
    [80] Katiraei F., Iravani M.R., Lehn P.W., Micro-Grid Autonomous OperationDuring and Subsequent to Islanding Process, IEEE Transactions on PowerDelivery, Jan 2005, vol.20, issue 1, pp: 248-257
    [81] Hannu Laaksonen, Pekka Saari, Risto Komulainen, Voltage and FrequencyControl of Inverter Based Weak LV Network Microgrid, 2005 InternationalConference on Future Power Systems, 16-18 Nov. 2005, 6pp
    [82]翁一武,翁史烈,苏明,以微型燃气轮机为核心的分布式供能系统,中国电力,2003,36(3):1-4
    [83]魏兵,王志伟,蒋露等,微型燃气轮机冷热电联供系统的优化运行研究,华北电力大学学报,2007,34(2): 138-144
    [84]左政,分布式冷热电联供系统的集成建模与优化设计,华南理工大学硕士论文,2005
    [85]陈继承,钱照明,吕征宇等,串联型电能质量控制装置中逆变器输出端滤波器的设计,第15届全国电源技术年会,2003.11
    [86]张洪伟,黄素逸,龙妍,分布式能量系统与可持续发展战略,节能,2004(2): 41-44
    [87] Edwards F.V., Dudgeon G.J.W., McDonald, J.R., et al., Dynamics ofDistribution networks with distributed generation, IEEE Power EngineeringSocietySummer Meeting, 2000, vol.2, pp:1032-1037
    [88] Kariniotakis G..N., Soultanis N.L., Tsouchnikas, A.I., et al., DynamicModeling of MicroGrids, 2005 International Conference on Future PowerSystems, 16-18 Nov. 2005, pp:1-7
    [89] Y Zhu, Y. Zhu, K. Tomsovic, Development of Models for Analyzing theLoad-following Performance of Microturbines and Fuel Cells, ElectricPower Systems Research, 2002, vol.62, no.1, pp:1-11
    [90] Amer Al-Hinai, Karl Schoder, Ali Feliachi, Control of Grid-connectedSplit-shaft Microturbine Distributed Generator, Proceedings of the 35thSoutheastern Symposium on SystemTheory, 16-18 March, 2003, pp: 84-88.
    [91] Y.Q. Zhan, S.S. Choi, D.M. Vilathgamuwa, Using Quality Control Center toImprove Power System Stability, The 4th International Power Electronicsand Motion Control Conference, 14-16Aug, 2004, vol.3, pp: 1236-1241.
    [92] IEA PVPS, Evaluation of Islanding Detection Methods for PhotovoltaicUtilityinteractive Power Systems, Report IEA PVPS T5-09 www.iea.org.September 7, 2006
    [93] Li Y.W., Vilathgamuwa D.M., Loh P.C., Microgrid Power QualityEnhancement Using a Three-phase Four-wire Grid-interfacing Compensator.,39th IAS Annual Meeting IEEE Industry Applications Conference, vol.3,3-7 Oct 2004, pp:1439–1446
    [94] M. E. Baran, I. El-Markaby, Fault Analysis on Distribution Feeders withDistributed Generators, IEEE Transaction of Power Systems, vol.20, no.4,2005, pp: 1757-1764
    [95]衣宝廉,燃料电池——原理技术应用,化学工业出版社, 2003.
    [96] Oapos, Sullivan J.B., Fuel Cells in Distributed Generation, IEEE PowerEngineering SocietySummer Meeting, 18-22, July, 1999, vol.1, pp:568-572.
    [97] Eschbach S.P., Hydrogen Infrastructure and Fuel Cell Applications,Viewpoint and Experiences of FuelCell Energy, Inc, IEEE PowerEngineering SocietyGeneral Meeting, June 2004, vol.2, pp:2287-2288
    [98] Maru H., Farooque M., Leitman J., Progress in Direct Carbonate Fuel Cellfor Distributed Generation, IEEE Power Engineering Society SummerMeeting, 2001, vol.1, pp:719-724
    [99] Correa, J. M., Farret, F. A., Canha, L. N., An analysis of the dynamicperformance of proton exchange membrane fuel cells using anelectrochemical model. IECON’01:The 27th Annual Conference of the IEEEIndustrial Electronics Society, pp:141-146
    [100] Lamquet O., Massa R., Parodi F., et al., Dynamic Model of an Hybrid PantBased on MCFC Fuel Cells and Microturbine for Process Analysis andControl, IEEE Bologna Power Tech Conference Proceedings, June 2003,vol.2, 6pp
    [101] Azmy A.M., Erlich I., Dynamic Simulation of Fuel Cells and MicroturbinesIntegrated with a Multimachine Network, IEEE Bologna Power TechConference Proceedings, June 2003, vol.2,6pp
    [102] Takeuchi A., Yamashita N., Yachi T., Distributed Polymer Electrolyte FuelCell Generation System Withload Power Restriction Control, IECON’01,The 27th Annual Conference of the IEEE Industrial Electronics Society,2001, vol.2, pp:1297-1302
    [103] Jim McDowall, High Power Batteries for Utilities - the World’s MostPowerful Battery and Other Develpoments, IEEE Power Engineering societyGeneral Meeting, June 2004, vol.2, 2034-2037
    [104] C.J.Hatziadoniu, A.A.Lobo, F.Pourboghrat, M.Daneshdoost, A SimplifiedDynamic Model of Grid-Connected Fuel-Cell Generators, Power Delivery,IEEETransactions,Apr 2002, vol.17, pp: 467-473.
    [105] Johnson D. Malengret M., Pillay P., High-speed, Low-cost Flywheels forEnery Storage in Sustainable Power Systems with Distributed Generation,IEEE Power Engineering SocietySummer Meeting, 2001, vol.1, pp:553-554
    [106] Anca D. Hansen, Polu Sorense, Florin lov, Frede Blaabjerg, Control ofVariable Speed Wind Turbines with Doubly-fed Induction Generators, WindEngineering, vol.28, no.4, June 2004, pp:411-432
    [107]叶杭冶,贺益康,刘其辉,变速风力发电机组的运行控制,21世纪太阳能新技术,上海:上海交通大学出版社,2003
    [108] Muljadi E., Butterfield. C. P., Conto J., Donoho K., ERCOT’s DynamicModel of Wind Turbine Generators, WindPower 2005, Denver, Colorado,15-18 May2005
    [109] Canever D., Dudgeon G.J.W., Massucco S., et al., Model Validation andCoordinated Operation of a Photovoltaic Array and a Diesel Power Plant forDistributed Generation, IEEE Power Engineering Society Summer Meeting,2001, vol.1, pp: 626-631
    [110] Freitas W., Asada E., Morelato A., Wilsun Xu, Dynamic Improvement ofInduction Generators Connedted to Distribution Systems Using aDSTATCOM, International Conference on PowerSystem Technology, 13-17Oct 2002, vol.1, pp: 173-177
    [111] Al-Hinai A., Schoder K., Feliachi A., Control of Grid-Connected Split-ShaftMicroturbine Distributed Generator, IEEE Proceedings of the 35thSoutheastern Symposium on SystemTheory, 16-18 March 2003, pp: 84-88.
    [112] Electricity Delivery and Energy Reliability Research, Development andAnalysis, U.S. Department of Energy Funding opportunity DE-PS02-05CH11270; June 2005
    [113] Zarringhalam A.M., Kazerani M., Comprehensive Analysis of a DispersedGeneration Scheme Based on Microturbine and Induction Generator, IEEEPower Engineering Society General Meeting, June 2004, vol.2, pp:2206-2211
    [114] Fethi O., Dessaint L.-A., Al-Haddad K., Modeling and Simulation of theElectric part of a Grid Connected Microturbine, IEEE Power EngineeringSocietyGeneral Meeting, June 2004, vol.2, pp:2212-2219
    [115] Al-Hinai A., Sedhisigarchi K., Feliachi A., Stability Enhancement of aDistribution Network Comprising a Fuel Cell and a Microturbine, IEEEPower Engineering Society General Meeting, June 2004, vol.2,pp:2156-2161
    [116] Nichols D.K., Loving K.P., Assessment of Microturbine Generators, IEEEPower Engineering Society General Meeting, July 2003, vol.4, pp:2308-2315
    [117] Jurado F., Carpio J., Modeling Microturbines on the Distribution SystemUsing NARX Structures, IEEE Power Engineering Society General Meeting,June 2004, vol.2, pp: 1504-1509
    [118] Jan Peirs, Dominiek Reynaerts, Filip Verplaetsen, AMicroturbine for ElectricPower Generation, Science Direct, 15 June 2004, vol.113, issue1, pp: 86-93
    [119] Christian Rembe, Bernd Tibken, Eberhard P. H., Analysis of the Dynamics inMicroactuators Using High-Speed Cine Photomicrography,Microelectromechanical Systems,march 2001, vol.10 no.1, pp: 137-145
    [120] Holmes AS, Hong G., Pullen KR, et al., Axial-flow Microturbine withElectromagnetic Generator Design CFD Simulation and PrototypeDemonstration, 2004 IEEE MEMS Conference, pp:568-571
    [121] Ahn J.B., Jeong Y.H., Kang D.H., et al., Development of High Speed PMSMfor Distributed Generation Using Microturbine, 30th Annual Conference ofIEEE Industrial Electronics Society, Nov. 2004, vol.3, pp:2879-2882
    [122] Guerrero, Josep M. Berbel, Nestor Matas, Jose Sosa, Jorge L., Droop ControlMethod with Virtual Output Impedance for Parallel Operation ofUninterruptible Power Supply Systems in a Microgrid, Applied PowerElectronics Conference,APEC 2007, Feb. 25-March 1 2007, pp: 1126-1132.
    [123] S. Barsali, M. Ceraolo, P. Pelacchi, D. Poli, Control techniques of DistributedGenerators to improve the continuity of electricity supply, IEEE PowerEngineering SocietyWinter Meeting, vol. 2, pp: 789–794
    [124] Pecas Lopes., J. A. Moreira,. C. L. Madureira. A. G.., Resende. F. O., ControlStrategies for MicroGrids Emergency Operation, 2005 InternationalConference on Future Power Systems, 16-18 Nov. 2005 pp: 1-6
    [125] Dimeas A. L., Hatziargyrious N. D., Operation of a Multiagent System forMicrogrid Control, IEEE Transactions of Power System, vol 20, issue 3, Aug.2005, pp: 1447-1455
    [126] Oyarzabal, J., Jimeno, J., Ruela, J.; et al., Agent Based Micro GridManagement System, 2005 International Conference on Future PowerSystems, 16-18 Nov 2005, pp:1-6
    [127] A. Arulampalam, M. Barnes, A. Engler, A. Goodwin, N. Jenkins, Control ofPower Electronic Interfaces in Distributed Generation MicroGrids,International Journal of Electronics, Sep. 2004, vol. 91, no. 9, pp: 503-523
    [128] A. Engler, Applicability of Droops in LV Grids, International Journal ofDistributed EnergyResources, Jan. 2005, vol. 1, no. 1, pp:3–16
    [129] T. Ackermann, V. Knyazkin, Interaction Between Distributed Generation andthe Distribution Network: Operation Aspects”, in Proc. 2002 IEEE/PES AsiaPasific Trans. and Distr. Conf. and Exh., 6–10 Oct. 2002, vol.2, pp:1357–1362
    [130] G. Jóos, B.T. Ooi, D. McGillis, F.D. Galiana, R. Marceau, The Potential ofDistributed Generation to Provide Ancillary Services, IEEE PowerEngineering SocietySummer Meeting, 2000, vol.3., pp:1762–1767
    [131] J. Morren, S.W.H. de Haan, J.A. Ferreira, Model reduction and control ofelectronic interfaces of voltage dip proof DG Units, in Proc. 2004 IEEEPower Engineering Society (PES) General Meeting, Denver, Co, USA, June2004, pp: 6-10
    [132] M.A. Kashem, G. Ledwich, Multiple Distributed Generators for DistributionFeeder Voltage Support, IEEE Transaction of Energy Conversion, Sept 2005,vol.20, no.3, pp: 676-684
    [133] N. Hatziargyriou, N. Jenkins, G. Strbac, et al., Microgrids– Large ScaleIntegration of Microgeneration to Low Voltage Grids, in Proc. CIGRE 06,Paris, paper C6-309,Aug. 2006
    [134] F. Katiraei, M.R. Iravani, P.W. Lehn, Micro-Grid Autonomous OperationDuring and Subsequent to Islanding Process, IEEE Transactions on PowerDelivery, Jan. 2005.vol.20, no.1. pp: 248–257
    [135] J.A. Pe?as Lopes, C.L. Moreira, A.G. Madureira, Defining Control Strategiesfor MicroGrids Islanded Operation, IEEE Transactions on Power Systems,vol. 21, no.2, May2006, pp: 916-924.
    [136] Industrial Electrical Engineering and Automation, Islanding Detection inPower Electronic Converter Based Distributed Generation, 2007.
    [137]魏兵,王志伟,李莉,微型燃气轮机与冷热电联供系统,山西能源与节能,2006(4): 29-30
    [138] Guda, S.R., Wang, C., Nehrir M.H., A Simulink-based Microturbine Modelfor Distributed Generation Studies, Power Symposium, 2005. Proceedings ofthe 37thAnnual NorthAmerican, 23-25 Oct. 2005, pp: 269–274
    [139] Jurado F., Saenz J.R., Adaptive Control of a Fuel Cell-Microturbine HybridPower Plant, IEEE Power Engineering Society Summer Meeting, July 2002,vol.1, pp: 76-81
    [140]林汝谋,金红光.燃气轮机发电动力装置及应用,中国电力出版社2004.
    [141] Lasseter, R., Dynamic Models for Micro-turbine and Fuel Cell, IEEE PowerEngineering SocietySummer Meeting, 2001. vol.2, pp: 761-766
    [142] Gaonkar, D. N. Patel, R.N., Pillai, G. N., Dynamic Model of MicroturbineGeneration System for Grid Connected Islanding Operation, IEEEInternational Conference on Industrial Technology, ICIT 2006, 15-17 Dec.2006, pp:305-310
    [143] Braun R J, Klein S A, Reindi D T, Review of State-of-the-art Fuel CellTechnologies for Distributed Generation-a Technical and Marketing AnalysisWisconsin, USA: Energy Center ofWisconsin, 2000.
    [144]张颖颖,曹广益,朱新坚,燃料电池——有前途的分布式发电技术,电网技术,2005(29): 57-60
    [145] Sihvo V., Nerg J., Pyrhonen J., Insulation System and Thermal Design of aHermeticallySealed Turbo-Generator Operating in a Small-Power CHPPlant,International Conference on Clean Electrical Power, 21-23, May, 2007,pp:45-50
    [146]黄兴华,李赟,孔祥强等,燃气内燃机和吸附制冷机组成的冷热电三联供系统,动力工程,2006,26(4): 604-608
    [147] Networks and Niches for Microturibne Technology in Europe and U.S,Department of Energy and Environment, http://www.chalmers.se, Sweden,2007
    [148]卡普斯通公司微型燃气轮机网站, http://www.microturbine.com
    [149]英格索罗公司微型燃气轮机网站, http://www.irenergysystem.com

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700