用户名: 密码: 验证码:
锂离子和锂聚合物电池用LiFePO_4-C阴极材料的合成及其电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
最近,具有层状的橄榄石结构的锂过渡金属磷酸盐,LiMPO4 (M=Fe、Mn、Ni、Co),因为其高的理论比容量(170 mAh g-1),已经吸引了广泛的注意力。LiMPO4中M3+/M2+氧化还原对的电位如下所述:LiFePO_4的电位是3.5 V,LiMnPO4的电位是4.1 V,LiNiPO4的电位是5.2-5.4 V,LiCoPO_4的电位是4.8 V。在这些磷酸盐当中,LiFePO_4的出色的稳定性,低廉的价格和对环境的高度亲和性,是最吸引人的。
     我们采用水热法合成了LiFePO_4,随后对其进行了高效能球磨和热处理。为了加强LiFePO_4的电子电导率,我们加入了不同的碳导电添加剂:纳米级别的乙炔黑(acetylene black, AB)和多壁纳米碳管(multi-walled carbon nanotubes, MWCNTs)。通过X射线衍射仪、扫描电镜、透射电镜、高分辨透射电镜,我们调查了LiFePO_4-C的结构和形貌特性。组装电化学电池时,我们使用了不同的电解质:液体电解质(liquid electrolyte, LE)和固体聚合物电解质(solid polymer electrolyte, SPE)。通过循环伏安法和充放电实验,我们分析了Li/LE/LiFePO_4、Li/LE/LiFePO_4-C、Li/SPE/LiFePO_4、Li/SPE/LiFePO_4-C电池的电化学性能。实验结果证实了具有5 wt% MWCNTs的Li/LE/LiFePO_4-MWCNTs电池有最好的电化学性能,在0.25 C速率放电时,室温放电容量达到了142 mAh g-1。同时实验结果也表明了具有5 wt% MWCNTs的Li/SPE/LiFePO_4-MWCNTs电池有最好的电化学性能,在0.25 C速率放电时,室温放电容量达到了115 mAh g-1。
In this study, LiFePO_4 and LiFePO_4-C composite were synthesized by a hydrothermal method followed by ball-milling and heat treating. Different carbon conductive additives including nano-sized acetylene black (AB) and multi-walled carbon nanotubes (MWCNTs) were used to enhance the electronic conductivity of LiFePO_4. In the meantime, different electrolytes including liquid electrolyte (LE) and solid polymer electrolyte (SPE) were used. The physical performance of LiFePO_4 and LiFePO_4-C composite was analysed by electronic conductivity, BET, SEM, TEM HR-TEM and XRD. The electrochemical performance of Li/LE/LiFePO_4, Li/LE/LiFePO_4-AB, Li/LE/LiFePO_4-MWCNTs, Li/SPE/LiFePO_4 and Li/SPE/LiFePO_4-MWCNTs batteries was analysed by AC impedance, CV and charge/discharge tests.
     LiFePO_4 was synthesized by a hydrothermal method at different temperatures. LiFePO_4 synthesized at 170℃and subsequent 500℃can be indexed to a single-phase material having an orthorhombic olivine-type structure with a space group of Pnma and the average particle size of 200 nm. No impurity such as Fe2O3, Li_3Fe_2(PO_4)_3 and Li3PO4 is found in the LiFePO_4 powders. The discharge capacity of 167 mAh g-1 (98% of the theoretical capacity) at discharge rate of 0.1 C is the largest compared to other samples. CV results demonstrate that the reversibility and reactivity of lithium extraction/insertion reactions at the electrode/electrolyte interface in LiFePO_4 synthesized at 170℃and subsequent 500℃are the best. The charge/discharge tests at different C rates indicate that the battery may operate at relatively high rates, confirming the improved kinetics of LiFePO_4 cathode materials.
     LiFePO_4-AB composite was synthesized by a hydrothermal method followed by ball-milling and heat treating. The tests demonstrate that the electronic conductivities are 5.86×10-9 S cm-1 for LiFePO_4, 8.00×10-5 S cm-1 for LiFePO_4-AB with 5 wt%, 7.85×10-4 S cm-1 for LiFePO_4-AB with 10 wt% and 2.71×10-2 S cm-1 for LiFePO_4-AB with 15 wt%. SEM and TEM observations indicate that LiFePO_4 is mixed well with AB and make the elctronic conductivity of LiFePO_4-AB composite improve. XRD results demonstrate that LiFePO_4-AB composite can be indexed to a single-phase material having an orthorhombic olivine-type structure with a space group of Pnma. No impurity such as Fe2O3, Li_3Fe_2(PO_4)_3 and Li3PO4 is found in the LiFePO_4-AB powders. There is no evidence for amorphous carbon. It is demonstrated that the added nano-sized AB does not change crystal structure of LiFePO_4. The charge/discharge tests demonstrate that the discharge capacities of Li/LE/LiFePO_4-AB batteries with 5 wt%, 10 wt% and 15 wt% AB hardly change upon cycling and cycling performance of Li/LE/LiFePO_4-AB battery with 10 wt% is the best and its discharge capacity is 123 mAh g-1.
     LiFePO_4-MWCNTs composite was synthesized by a hydrothermal method followed by ball-milling and heat treating. The tests demonstrate that the electronic conductivities are 5.86×10-9 S cm-1 for LiFePO_4, 1.08×10-1 S cm-1 for LiFePO_4-MWCNTs with 5 wt%. SEM observations show that the MWCNTs intertwine with LiFePO_4 particles together to form a three-dimensional network. The dispersed MWCNTs provide pathways for electron transference and make the elctronic conductivity of LiFePO_4-MWCNTs composite obviously improve. XRD results demonstrate that LiFePO_4-MWCNT composite can be indexed to a single-phase material having an orthorhombic olivine-type structure with a space group of Pnma. No impurity such as Fe2O3, Li_3Fe_2(PO_4)_3 and Li3PO4 is found in the LiFePO_4-MWCNTs powders. There is no evidence for amorphous carbon. It is demonstrated that the added nano-sized MWCNTs do not change crystal structure of LiFePO_4. The charge/discharge tests demonstrate that the discharge capacities of Li/LE/LiFePO_4-MWCNTs batteries with 2.5 wt%, 5 wt% and 10 wt% MWCNTs hardly change upon cycling and cycling performance of Li/LE/LiFePO_4-MWCNTs battery with 5 wt% is the best and its discharge capacity is 142 mAh g-1. In the meantime, it is demonstrated that the cycling performance of Li/LE/LiFePO_4-MWCNTs battery with 5 wt% MWCNTs is better than that of Li/LE/LiFePO_4-AB battery with 5 wt% AB.
     The lithium-ion diffusion coefficient of LiFePO_4-MWCNTs composite with 5 wt% MWCNTs is improved from 2.41×10-15 cm2 s-1 for pure LiFePO_4 to 1.50×10-14 cm2 s-1 for LiFePO_4-MWCNTs composite with 5 wt% MWCNTs. It is demonstrated that the resistance of Li/SPE/LiFePO_4-MWCNTs battery with 5 wt% MWCNTs does not change upon cycling and is 280 ?. CV results demonstrate that the redox peak profile of Li/SPE LiFePO_4-MWCNTs battery with 5 wt% MWCNTs is more symmetric and spiculate than that of Li/SPE/LiFePO_4, demonstrating that the reversibility and reactivity of Li/SPE/LiFePO_4-MWCNTs battery with 5 wt% MWCNTs are enhanced due to improvement of electronic conductivity and the reduced diffusion length resulting from a decrease in the crystallite size by MWCNTs. The initial charge/discharge curves of Li/SPE/LiFePO_4-MWCNTs batteries with different MWCNTs contents at a discharge rate of 0.25 C demonstrate that Li/SPE/LiFePO_4 -MWCNTs battery with 5 wt.% MWCNTs exhibits the highest specific capacity with a charge capacity of 122 mAh g-1 and a discharge capacity of 115 mAh g-1. The rate capability of Li/SPE/LiFePO_4-MWCNTs batteries with different MWCNTs contents at various C rates ranging from 0.1C to 3C rate (1C=170 mA g-1) at room temperature demonstrate that the discharge rate capability of Li/SPE/LiFePO_4-MWCNTs battery with 5 wt% MWCNTs is better than that of Li/SPE/LiFePO_4. The cycling performance of Li/SPE/LiFePO_4-MWCNTs batteries with different MWCNTs contents at various C rates ranging from 0.1C to 3C rate (1C=170 mA g-1) at room temperature demonstrates that the high-rate discharge performance of Li/SPE/LiFePO_4-MWCNTs battery with 5 wt% MWCNTs is better than that of Li/SPE/LiFePO_4.
引文
[1] K. Ozawa. Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system[J]. Solid State Ion., 1994, 69:212-221.
    [2] G. Pistoia, D. Zane, Y. Zhang. Some aspects of LiMn2O4 electrochemistry in the 4 volt range[J]. J. Electrochem. Soc., 1995, 142:2551-2557.
    [3] J.N. Resimers, J.R. Dahn, U von Sacken. Effects of impurities on the electrochemical properties of LiCoO2[J]. J. Electrochem. Soc., 1993, 140:2752- 2754.
    [4] W. Li, J.N. Resimers, J.R. Dahn. In situ x-ray diffraction and electrochemical studies of Li1?xNiO2[J]. Solid State Ion., 1993, 67:123-130.
    [5] J.R. Dahn, U von Sacken, M.W. Juzkow, H. Al-Janaby. Rechargeable LiNiO2/carbon cells[J]. J. Electrochem. Soc., 1991, 138:2207-2211.
    [6] I. Koetschau, M.N. Richard, J.R. Dahn, J.B. Soupart, J.C. Rousche. Orthorhombic LiMnO2 as a high capacity cathode for Li-ion cells[J]. J. Electrochem. Soc., 1995, 142:2906-2910.
    [7] I.-S. Jeong, J.-U. Kim, H.-B. Gu. Electrochemical properties of LiMgyMn2?yO4 spinel phases for rechargeable lithium batteries[J]. J. Power Sources, 2001, 102:55-59.
    [8] B. Jin, J.-U. Kim, H.-B. Gu. Electrochemical properties of lithium-sulfur batteries[J]. J. Power Sources, 2003,117:148-152.
    [9] J.-U. Kim, Y.-J. Jo, G.-C. Park, H.-B. Gu. Charge/discharge characteristics of LiMnO2 composite for lithium polymer battery[J]. J. Power Sources, 2003, 119-121: 686-689.
    [10] B. Jin, D.-K. Jun, H.-B. Gu. Electrochemical characteristics of LiMnO2 for lithium secondary battery[J]. Trans. Electr. Electron. Mater., 2006, 7:76-80.
    [11] B. Jin, K.-H. Park, H.-B. Gu. A novel sulphur cathode materials for rechargeable lithium batteries[J]. Trans. Electr. Electron. Mater., 2007, 8:157-160.
    [12] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. J. Electrochem. Soc., 1997, 144:1188-1194.
    [13] N.N. Bramnik, K.G. Bramnik, T. Buhrmester, C. Baehtz, H. Ehrenberg, H. Fuess. Electrochemical and structural study of LiCoPO4-based electrodes[J]. J. Solid State Electrochem., 2004, 8:558-564.
    [14] K. Amine, H. Yasuda, M. Yamachi. Olivine LiCoPO4 as 4.8 V electrode material for lithium batteries[J]. Electrochem. Solid State Lett., 2000, 3:178-179.
    [15] S. Okada, S. Sawa, M. Egashira, J. Yamaki, M. Tabuchi, H. Kageyama, T. Konishi, A. Yoshino. Cathode properties of phospho-olivine LiMPO4 for lithium secondary batteries[J]. J. Power Sources, 2001, 97-98:430-432.
    [16] A. Yamada, M. Hosoya, S.-C. Chung, Y. Kudo, K. Hinokuma, K.-Y. Liu, Y. Nishi. Olivine-type cathodes: achievements and problems[J]. J. Power Sources, 2003, 119-121:232-238.
    [17] P. Deniard, A.M. Dulac, X. Rocquefelte, V. Grigorova, O. Lebacq, A. Pasturel, S. Jobic. High potential positive materials for lithium-ion batteries: transition metal phosphates[J]. J. Phys. Chem. Solids, 2004, 65:229-233.
    [18] J.M. Loris, C. Perez-Vicente, J.L. Tirado. Improvement of the electrochemical performance of LiCoPO4 5 V material using a novel synthesis procedure[J]. Electrochem. Solid State Lett., 2002, 5:A234-A237.
    [19] G. Li, H. Azuma, M. Tohda. LiMnPO4 as the cathode for lithium batteries[J]. Electrochem. Solid State Lett., 2002, 5:A135-A137.
    [20] Y.-S. Jeon, E.M. Jin, B. Jin, D.-K. Jun, Z.J. Han, H.-B. Gu. Structural and electrochemical characterization of LiFePO4 synthesized by hydrothermal method[J]. Trans. Electr. Electron. Mater., 2007, 8:41-45.
    [21] B. Jin, H.-B. Gu, K.-W. Kim. Effect of different conductive additives on charge/discharge properties of LiCoPO4/Li batteries[J]. J. Solid State Electrochem., 2008, 12:105-111.
    [22] H.-B. Gu, B. Jin, D.-K. Jun, Z.J. Han. Improved electrochemical performance of nanoparticle LiCoPO4 for Li-ion batteries[J]. J. Nanosci. Nanotechnol., 2007, 7: 4037-4040.
    [23] H.-B. Gu, B. Jin. Improved electrochemical performance of nanoparticle LiCoPO4 for Li-ion batteries[C]. Proceedings of International Conference on Nano Science and Nano Technology, 2006:128.
    [24] B. Jin, H.-B. Gu. Structural and electrochemical properties of olivine LiCoPO4cathode material for lithium secondary batteries[C]. Proceedings of Korean Battery Society Spring Conference, 2006:40.
    [25] H.-B. Gu, B. Jin. Effect of different conductive additives on charge/discharge properties of LiCoPO4/Li batteries[C]. Proceedings of the 8th International Symposium on Eco-Materials Processing and Design, 2007:115.
    [26] H.-B. Gu, B. Jin. Improved electrochemical performance of olivine LiCoPO4 cathode material for Li-ion batteries[C]. Proceedings of the 8th International Symposium on Eco-Materials Processing and Design, 2007:116.
    [27] B. Jin, H.-B. Gu, K.-W. Kim. Optimization and electrochemical properties of LiCoPO4 cathode materials for lithium-ion batteries[C]. Proceedings of International Conference on Polymer Batteries-Fuel Cells, 2007:279.
    [28] S.-J. Kwon, C.-W. Kim, W.-T. Jeong, K.-S. Lee. Synthesis and electrochemical properties of olivine LiFePO4 as a cathode material prepared by mechanical alloying[J]. J. Power Sources, 2004, 137:93-99.
    [29] W.-T. Jeong, K.-S. Lee. Electrochemical cycling behavior of LiCoO2 cathode prepared by mechanical alloying of hydroxides[J]. J. Power Sources, 2002, 104:195-200.
    [30] M.E. Rabanal, M.C. Gutierrez, F. Garcia-Alvarado, E.C. Gonzalo, M.E. Arroyo-de Dompablo. Improved electrode characteristics of olivine–LiCoPO4 processed by high energy milling[J]. J. Power Sources, 2006, 160:523-528.
    [31] B. Jin, H.-B. Gu. Preparation and characterization of LiFePO4 cathode materials by hydrothermal method[J]. Solid State Ion., 2008, 178:1907-1914.
    [32] E.M. Jin, B. Jin, D.-K. Jun, K.-H. Park, H.-B. Gu, K.-W. Kim. A Study on the electrochemical characteristics of LiFePO4 cathode for lithium polymer batteries by hydrothermal method[J]. J. Power Sources, 2008, 178:801-806.
    [33] B. Jin, E.M. Jin, K.-H. Park, H. Li, H.-B. Gu. Synthesis and electrochemical properties of LiFePO4/C via a novel synthetic route[C]. 212th ECS Meeting, 2007:160.
    [34] E.M. Jin, B. Jin, D.-K. Jun, K.-H. Park, H.-B. Gu. Hydrothermal synthesis of multi-walled carbon nanotube added lithium iron phosphate cathode materials for lithium polymer batteries[C]. 212th ECS Meeting, 2007:159.
    [35] B. Jin, E.M. Jin, D.-K. Jun, K.-H. Park, K.-W. Kim, H.-B. Gu. Synthesis of LiFePO4-C cathode materials by hydrothermal method and ball-milling forrechargeable lithium batteries[C]. Proceedings of International Conference on Nano Science Nano Technology, 2007:176.
    [36] E.M. Jin, B. Jin, D.-K. Jun, K.-H. Park, H.-B. Gu, G.-C. Park, K.-W. Kim. Electrochemical characteristics of lithium iron phosphate with multi-walled carbon nanotube for lithium polymer batteries[C]. Proceedings of International Conference on Nano Science Nano Technology, 2007:175.
    [37] E.M. Jin, B. Jin, D.-K. Jun, H.-B. Gu. Effect of carbon additive on electrochemical properties of LiFePO4 by hydrothermal method[C]. Proceedings of Korean Battery Society Autumn Conference, 2006:70.
    [38] Y.-S. Jeon, E.M. Jin, B. Jin, D.-K. Jun, Z.J. Han, H.-B. Gu. Structural and electrochemical characterization of LiFePO4 synthesized by hydrothermal method[C]. Proceedings of the KIEEME Annual Autumn Conference, 2006:48.
    [39] B. Jin, E.M. Jin, K.-H. Park, H.-B. Gu. Improved electrochemical performance of LiFePO4/C cathode materials by a novel synthetic method[C]. Proceedings of Korean Battery Society Spring Conference, 2007:33.
    [40] E.M. Jin, B. Jin, D.-K. Jun, K.-H. Park, H.-B. Gu. Fine-particle LiFePO4 synthesized by hydrothermal method and its electrochemical behavior[C]. Proceedings of Korean Battery Society Spring Conference, 2007:29.
    [41] B. Jin, H. Li, K.-H. Park, H.-B. Gu, B.-K. Park. Electrochemical properties of LiFePO4 cathode materials by hydrothermal route[C]. Proceedings of the KIEEME Annual Summer Conference, 2007:363.
    [42] B. Jin, E.M. Jin, K.-H. Park, B.-K. Park, H.-B. Gu. Effect of ball-milling condition on electrochemical properties of LiFePO4-C cathode materials[C]. Proceedings of the KIEEME Annual Autumn Conference, 2007:338.
    [43] E.M. Jin, B. Jin, H. Li, K.-H. Park, H.-B. Gu. A study on the capacity characteristics of LiFePO4 cathode for lithium polymer batteries according to kinds of the conductive materials[C]. Proceedings of the KIEEME Annual Autumn Conference, 2007:316.
    [44] B. Jin, E.M. Jin, H. Li, K.-H. Park, H.-B. Gu. Optimization and synthesis of multi-walled carbon nanotube coated LiFePO4 cathode materials for lithium secondary batteries[C]. Proceedings of Korean Battery Society Autumn Conference, 2007:367.
    [45] E.M. Jin, B. Jin, K.-H. Park, H.-B. Gu. Electrochemical properties of LiFePO4electrode by multi-walled carbon nanotube contents[C]. Proceedings of Korean Battery Society Autumn Conference, 2007:378.
    [46] D. Linden. Handbook of batteries[M], 2nd ed., McGraw-Hill, New York, 1995.
    [47] B. Jin, E.M. Jin, K.-H. Park, H.-B. Gu. Electrochemical properties of LiFePO4-multiwalled carbon nanotubes composite cathode materials for lithium polymer battery[J]. Electrochem. Commun., 2008, 10:1537-1540.
    [48] B. Jin, H.-B. Gu, W.X. Zhang, K.-H. Park, G.P. Sun. Effect of different carbon conductive additives on electrochemical properties of LiFePO4-C/Li batteries[J]. J. Solid State Electrochem., 2008, 12:1549-1554.
    [49] K. Brandt. Historical development of secondary lithium batteries[J]. Solid State Ion. 1994, 69:173-183.
    [50] T. Ohzuku. Lithium Batteries, Vol. 5 of Industrial Chemistry Library[M], Edited by G. Pistoia, Elsevier, Amsterdam, 1994.
    [51] B. Scrosati. Lithium rocking chair batteries: an old concept?[J]. J. Electrochem. Soc., 1992, 139:2776-2781.
    [52] K.M. Abraham. Directions in secondary lithium battery research and development[J]. Electrochim. Acta, 1993, 38(9):1233-1248.
    [53] C. Julien, G.A. Nazri. Solid State Batteries, Materials Design and Optimization[M], Klumer, Boston, 1994.
    [54] W. Weppner. In: C. Julien, Z. Stoynov (Ed.), Materials for Lithium-Ion Batteries[M], NATO-ASI Series, Vol. Ser. 3-85, Klumer, Dordrecht, 2000.
    [55] J.B. Goodenough, H.Y.P. Hong, J.A. Kafalas. Fast Na+-ion transport in skeleton structures[J]. Mater. Res. Bull., 1976, 11:203-220.
    [56] A. Manthiram, J.B. Goodenough. Lithium insertion into Fe2(MO4)3 frameworks: comparison of M = W with M = Mo[J]. J. Solid State Chem., 1987, 71:349-360.
    [57] M. de la Rochère, F. ?Yvoire, G. Collin, R. Comès, J.P. Boilot. NASICON type materials - Na3M2(PO4)3 (M=Sc, Cr, Fe): Na+-Na+ correlations and phase transitions[J]. Solid State Ion., 1983, 9-10:825-828.
    [58] M.A. Subramaniam, R. Subramaniam, A. Clearfield. Lithium ion conductors in the system AB(IV)2(PO4)3 (B = Ti, Zr and Hf)[J]. Solid State Ion., 1986, 18-19:562-569.
    [59] K. Rissouli[D]. University of Chouaib Doukkali, El-Jadida, Morocco, 1996.
    [60] K. Rissouli, K. Benkhouja, M. Bettach, A. Sadel, M. Zahir, A. Derory, M. Drillon. Crystallochemical and magnetic studies of LiMi1?xMx'PO4 (M, M' = Mn, Co, Ni; O≤x≤1)[J]. Ann. Chim. Sci. Mat., 1998, 23:85-88.
    [61] A. Manthiram, J.B. Goodenough. Lithium insertion into Fe2(SO4)3 frameworks[J]. J. Power Sources, 1989, 26:403-408.
    [62] A.K. Padhi, K.S. Nanjundaswamy, C. Masquelier, S. Okada, J.B. Goodenough. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates[J]. J. Electrochem. Soc., 1997, 144:1609-1613.
    [63] J.B. Goodenough. Mapping of Redox Energies[J]. Mol. Cryst. Liq. Cryst., 1998, 311:1-14.
    [64] J.B. Goodenough. Lithium Ion Batteries, M. Wakihara, O. Yamamoto, Editors, Chap. 1, Kodansha, 1998.
    [65] J.B. Goodenough, V. Manivannan. Cathodes for lithium-ion batteries: some comparisons[J]. Denki Kagaku Oyobi Kogyo Butsuri Kagaku, 1998, 66:1173- 1181.
    [66] S. Megahed, W. Ebner. Lithium-ion battery for electronic applications[J]. J. Power Sources, 1995, 54:155-162.
    [67] T. Ohzuku, M. Kitagawa, T. Hirai. Electrochemistry of manganese dioxide in lithium nonaqueous cell[J]. J. Electrochem. Soc., 1990, 137:769-775.
    [68] J.M. Tarascon, E. Wang, F.K. Shokoohi, W.R. Mekinnon, S. Colson. The spinel phase of LiMn2O4 as a cathode in secondary lithium cells[J]. J. Electrochem. Soc., 1991, 138:2859-2864.
    [69] M.M. Thackeray, A. De Kock, M.H. Rossouw, D.C. Liles, D. Hoge, R. Bittihn. Spinel electrodes from the Li-Mn-O system for rechargeable lithium battery applications[J]. J. Electrochem. Soc., 1992, 139:363-366.
    [70] R.J. Gummow, A. de Kock, M.M. Thackeray. Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells[J]. Solid State Ion., 1994, 69:59-67.
    [71] Y. Gao, J.R. Dahn. Thermogravimetric analysis to determine the lithium to manganese atomic ratio in Li1 + xMn2– xO4[J]. Appl. Phys. Lett., 1995, 66 (19):2487-2489.
    [72] K.M. Abraham, S.B. Brummer. Lithium Batteries[M], Ed. by J.P. Gabano, Ch. 14, Academic Press, 1983.
    [73] F. Kita, H. Sakata, S. Sinomato, A. Kawakami, H. Kamizori, T. Sonoda, H. Nagashima, J. Nie. Characteristics of the electrolyte with fluoro organic lithium salts[J]. J. Power Sources, 2000, 90:27-32.
    [74] G.E. Blomgren. Lithium Batteries [M], Ed. by J.P. Gabano, Ch. 2, Academic Press, 1983.
    [75] Y. Matsuda. Nippon Kagtaku Kaishi[M], 1989, 1.
    [76] Y. Matsuda, H. Satake. Mixed electrolyte solutions of propylene carbonate and dimethoxyethane for high energy density batteries[J]. J. Electrochem. Soc., 1980, 127:877-879.
    [77] Y. Matsuda, H. Nakashima, M. Morita, Y. Takasu. Behavior of some ions in mixed organic electrolytes of high energy density batteries[J]. J. Electrochem. Soc., 1981, 128:2552-2556.
    [78] M.B. Armand, J.M. Chabagno, M.J. Duclot. The 2nd International Meeting on Solid Electrolytes[C], St. Andrew, Scotland, (1978) 20.
    [79] M. Ratner, D.F. Shriver. Ion transport in solvent-free polymers. Chem. Res., 1988, 88:109-124.
    [80] M. Armand. The history of polymer electrolytes[J]. Solid State Ion., 1994, 69:309-319.
    [81] J.Y. Song, Y.Y. Wang, C.C. Wan. Review of gel-type polymer electrolytes for lithium-ion batteries[J]. J. Power Sources, 1999, 77:183-197.
    [82] F.B. Dias, L. Plomp, J.B.J. Veldhuis. Trends in polymer electrolytes for secondary lithium batteries[J]. J. Power Sources, 2000, 88:169-191.
    [83] B.E. Fenton, J.M. Parker, P.V. Wright. Complexes of alkali metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14:589.
    [84] P.V. Wright. Electrical conductivity in ionic complexes of poly(ethylene oxide)[J]. Brit. Polymer J., 1975, 7:319-327.
    [85] K. Murata, K. Takeuch. Yuasa-Jiho[J], 1991, 71:4-12.
    [86]土田,小林.高分子固體電解質 Ion傳導と擧動表面[J], 1989, 27:3.
    [87] S. Passerini, B. Scrosati, A. Gorenstein. The intercalation of lithium in nickel oxide and its electrochromic properties[J]. J. Electrochem. Soc., 1990, 137:3297-3300.
    [88] M.B. Armand, J.M. Chabagno, M.J. Duclot. In Fast Ion Transport in Solid[M], Eds. P. Vashita, J.N. Mundy, G.K. Shenoy, 1919.
    [89] C.A. Angell, C. Liu, E. Sanchez. Rubbery solid electrolytes with dominant cationic transport and high ambient conductivity[J]. Nature, 1993, 362:137-139.
    [90] C.A. Angell, J. Fan, C. Liu, Q. Lu, E. Sanchez, K. Xu. Li-conducting ionic rubbers for lithium battery and other applications[J]. Solid State Ion., 1994, 69: 343-353.
    [91] C.A. Angell, K. Xu, S.-S. Zhang, M. Videa. Variations on the salt-polymer electrolyte theme for flexible solid electrolytes[J]. Solid State Ion., 1996, 86-88:17-28.
    [92] C.T. Imrie, M.D. Ingram, G.S. McHattie. Ion transport in glassy polymer electrolytes[J]. J. Phys. Chem. B, 1999, 103:4132-4138.
    [93] Y. Zheng, F. Chia, G. Ungar, P.V. Wright. Self-tracking in solvent-free, low-dimensional polymer electrolyte blends with lithium salts giving high ambient DC conductivity[J]. Chem. Commun., 2000, 16:1459-1460.
    [94] M. Anderman. Lithium-polymer batteries for electrical vehicles: a realistic view[J]. Solid State Ion., 1994, 69:336-342.
    [95] M. Egashira, B. Scrosati, M. Armand, S. Béranger, C. Michot. Lithium dicyanotriazolate as a lithium salt for poly(ethylene oxide) based polymer electrolytes[J]. Electrochem. Solid-State Lett., 2003, 6:A71-A73.
    [96] B. Scrosati, F. Croce, L. Persi. Impedance spectroscopy study of PEO-based nanocomposite polymer electrolytes[J]. J. Electrochem. Soc., 2000, 147:1718-1721.
    [97] L. Persi, F. Croce, B. Scrosati, E. Plichta, M.A. Hendrickson. Poly(ethylene oxide)-based, nanocomposite electrolytes as improved separators for rechargeable lithium polymer batteries[J]. J. Electrochem. Soc., 2002, 149:A212-A216.
    [98] S. Pamero, D. Satolli, A. D’Epifano, B. Scrosati. High voltage lithium polymer cells using a PAN-based composite electrolyte[J]. J. Electrochem. Soc., 2002, 149:A414-A417.
    [99] Y. Aihara, G.B. Appetecchi, B. Scrosati. A new concept for the formation of homogeneous, Poly(ethylene oxide) based, gel-type polymer electrolyte[J]. J. Electrochem. Soc., 2002, 149:A849-A854.
    [100] G.B. Appetecchi, Y. Aihara, B. Scrosati. Investigation of swelling phenomena in poly(ethylene oxide)-based polymer electrolytes[J]. J. Electrochem. Soc.,2003, 150:A301-A305.
    [101] J.-M. Tarason, A.S. Gozdz, C. Schmutz, F. Shokoohi, P.C. Warren. Performance of Bellcore's plastic rechargeable Li-ion batteries[J]. Solid State Ion., 1996, 86-88:49-54.
    [102] G. Feuillade, Ph. Perche. Ion-conductive macromolecular gels and membranes for solid lithium cells[J]. J. Appl. Electrochem., 1975, 5:63-69.
    [103] E. Tsuchida, H. Ohno, K. Tsunemi. Conduction of lithium ions in polyvinylidene fluoride and its derivatives—I[J]. Electrochim. Acta, 1983, 28:591-595.
    [104] K. Tsunemi, H. Ohno, E. Tsuchida. A mechanism of ionic conduction of poly (vinylidene fluoride)-lithium perchlorate hybrid films[J]. Electrochim. Acta, 1983, 28:833-837.
    [105] A. Du Pasquier, T. Zheng, G.G. Amatucci, A.S. Gozdz. Microstructure effects in plasticized electrodes based on PVDF–HFP for plastic Li-ion batteries[J]. J. Power Sources, 2001, 97-98:758-761.
    [106] H. Wang, H. Huang, S.L. Wunder. Novel microporous poly(vinylidene fluoride) blend electrolytes for lithium-ion batteries[J]. J. Electrochem. Soc., 2000, 147: 2853-2861.
    [107] H. Huang, S.L. Wunder. Ionic conductivity of microporous PVDF-HFP/PS polymer blends[J]. J. Electrochem. Soc., 2001, 148:A279-A283.
    [108] K.N. Han, H.M. Seo, J.K. Kim, Y.S. Kim, D.Y. Shin, B.H. Jung, H.S. Lim, S.W. Eom, S.I. Moon. Development of a plastic Li-ion battery cell for EV applications[J]. J. Power Sources, 2001, 101:196-200.
    [109] A. Du Pasquier, F. Disma, T. Bowmer, A.S. Gozdz, G. Amatucci, J.M. Tarascon. Differential scanning calorimetry study of the reactivity of carbon anodes in plastic Li-ion batteries[J]. J. Electrochem. Soc., 1998, 145:472-477.
    [110] H. Maleki, S. Al Hallaj, J.R. Selman, R.B. Dinwiddie, H. Wang. Thermal properties of lithium-ion battery and components[J]. J. Electrochem. Soc., 1999, 146:947-954.
    [111] H. Maleki, G. Deng, A. Anani, J. Howard. Thermal stability studies of Li-ion cells and components[J]. J. Electrochem. Soc., 1999, 146:3224-3229.
    [112] D. MacNeil, J.R. Dahn. The reaction of charged cathodes with nonaqueous solvents and electrolytes: I. Li0.5CoO2[J]. J. Electrochem. Soc., 2001,148:A1205-A1210.
    [113] D. MacNeil, J.R. Dahn. The reaction of charged cathodes with nonaqueous solvents and electrolytes: II. LiMn2O4 charged to 4.2 V[J]. J. Electrochem. Soc., 2001, 148:A1211-A1215.
    [114] D. MacNeil, J.R. Dahn. Can an electrolyte for lithium-ion batteries be too stable?[J]. J. Electrochem. Soc., 2003, 150:A21-A28.
    [115] Z.H. Liu, Q. Yao, L.M. Liu. Experimental studies of ultra-thin lithium batteries[J]. J. Power Sources, 1993, 45:15-19.
    [116] W.R. Harris. Ph. D. Dissertation, Berkeley: University of California, 1958.
    [117] A.N. Dey, ECS Meeting, Atlantic City, NJ, USA, October, 1970:62.
    [118] R.D. Rauh, S.B. Brummer. The effect of additives on lithium cycling in propylene carbonate[J]. Electrochim. Acta, 1977, 22:75-83.
    [119] E. Peled. The electrochemical behavior of alkali and alkaline earth metals in nonaqueous battery systems—the solid electrolyte interphase model[J]. J. Electrochem. Soc., 1979, 126:2047-2051.
    [120] D. Aurbach, M.L. Daroux, P.W. Faquy, E. Yeager. Identification of surface films formed on lithium in propylene carbonate solutions[J]. J. Electrochem. Soc., 1987, 134:1611-1620.
    [121] K. Kanamura, S. Shiraishi, H. Tamura, Z. Takehara. X-ray photoelectron spectroscopic analysis and scanning electron microscopic observation of the lithium surface immersed in nonaqueous solvents[J]. J. Electrochem. Soc., 1994, 141:2379-2385.
    [122] D. Aurbach, Y. Ein-Ely, A. Zaban. The surface chemistry of lithium electrodes in alkyl carbonate solutions[J]. J. Electrochem. Soc., 1994, 141:L1-L3.
    [123] D. Aurbach, A. Zaban, Y. Ein-Ely, I. Weissman, O. Chusid, O. Abramson. Recent studies of the lithium-liquid electrolyte interface Electrochemical, morphological and spectral studies of a few important systems[J]. J. Power Sources, 1995, 54:76-84.
    [124] K. Kanamura, H. Tamura, S. Shiraishi, Z. Takehara. XPS analysis of lithium surfaces following immersion in various solvents containing LiBF4[J]. J. Electrochem. Soc., 1995, 142:340-347.
    [125] D. Pletcher, J.F. Rohan, A.G. Ritchie. Microelectrode studies of the lithium/propylene carbonate system—Part I. Electrode reactions at potentialspositive to lithium deposition[J]. Electrochim. Acta, 1994, 34:1369-1376.
    [126] T. Roisnel, J. Rodriguez-Carjaval. FullProf Manual[M], Institut Laue-Langevin, Grnoble, 2000.
    [127] M. Takahashi, S. Tobishima, K. Takei, Y. Sakurai. Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries[J]. J. Power Sources, 2001, 97-98:508-511.
    [128] M.A.E. Sanchez, G.E.S. Brito, M.C.A. Fantini, G.F. Goya, J.R. Matos. Synthesis and characterization of LiFePO4 prepared by sol–gel technique[J]. Solid State Ion., 2006, 177:497-500.
    [129] G. Arnold, J. Garche, R. Hemmer, S. Strobele, C. Volfer, M. Wohlfahrt-Mehrens. Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique[J]. J. Power Sources, 2003, 119-121:247-251.
    [130] J.F. Ni, H.H. Zhou, J.T. Chen. X.X. Zhang. LiFePO4 doped with ions prepared by co-precipitation method[J]. Mater. Lett., 2005, 59:2361-2365.
    [131] K. Dokko, K. Shiraishi, K. Kanamura. Identification of surface impurities on LiFePO4 particles prepared by a hydrothermal process[J]. J. Electrochem. Soc., 2005, 152:A2199-A2202.
    [132] A.J. Bard, L.R. Faulkner. Electrochemical Methods[M], Second ed., Wiley, 2001.
    [133] H. Liu, Q. Cao, L.J. Fu, C. Li, Y.P. Wu, H.Q. Wu. Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries[J]. Electrochem. Commun., 2006, 8:1553-1557.
    [134] X.Z. Liao, Z.F. Ma, Q. Gong, Y.S. He, L. Pei, L.J. Zeng. Low-temperature performance of LiFePO4/C cathode in a quaternary carbonate-based electrolyte[J]. Electrochem. Commun., 2008, 10:691-694.
    [135] E.M. Jin, B. Jin, Y.-S. Jeon, K.-H. Park. H.-B. Gu. Electrochemical properties of LiMnO2 for lithium polymer battery[J]. J. Power Sources, DOI: 10.1016/j.jpowsour.2008.09.102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700