用户名: 密码: 验证码:
纳米结构薄膜中光生电荷传输性质的研究及其在太阳电池中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Electron Transport in the Nanostructure Film Electrodes and Application for Dye-sensitized Solar Cells
  • 作者:庞山
  • 论文级别:博士
  • 学科专业名称:物理化学
  • 学位年度:2008
  • 导师:王德军 ; 杜祖亮
  • 学科代码:070304
  • 学位授予单位:吉林大学
  • 论文提交日期:2008-12-01
摘要
光生电荷行为的研究是与太阳能转换、发光材料、光催化、纳米/分子光电子器件、光敏传感器等研究领域密切相关的,是表面和界面科学的前沿课题。利用光电压技术研究功能材料的光电行为,在国际上正处于蓬勃发展的时期。本文利用瞬态光电压技术术进行了无机功能材料:n型半导体材料TiO2的纳米颗粒薄膜,TiO2纳米管阵列以及ZnO纳米棒阵列中光生电荷行为的研究,并应用于太阳电池。
The utilization of the solar energy is a permanent subject. Dye-sensitized solar cells (DSSCs) are considered attractive for energy conversion application because of their relatively low cost and high efficiency. In 2003, the Gr?tzel group in EPFL (Switzerland) reported 11% light-to-electrical energy conversion efficiency. This arose more interests in the world for the research of this kind of solar cell. Dye-sensitized nanocrystal TiO2 porous film electrode is the key part of this kind of solar cell. The film electrodes consist of nanosize TiO2 colloids that are sintered on a transparent conducting substrate, which results in a porous geometry and a very large surface area. The film electrode is mesoscopic network structure formed by the interconnected nano-sized TiO2 particles. The interconnection of the particles can allow for the electronic conduction to take place. Electron transport through the nanoparticle network occurs by trap-mediated diffusion, a slow mechanism (with electron escape times of 1 to 10 ms for about 10μm-thick TiO2 film) that is nonetheless efficient for TiO2 cells that use the traditional radox couple in a liquid electrolyte. Due to such a slow transport, back transfer of electrons into the electrolyte can occur, which is believed to be one of the recombination mechanisms. So, improvement of electron transport and suppression of recombination are the important projects for the fundamental studies of the dye-sensitized nanocrystalline solar cell. In our dissertation, firstly, we have fabricated successfully the model of the dye-sensitized nanocrystalline TiO2 solar cell. And then, we study electron transport properties and suppression of recombination in dye-sensitized solar cells (DSSCs), which will provide a certain degree of experimental and theoretical basis for the preparation of high-efficiency solar cells. The main contents are following:
     1. Decrease the recombination of photo-generated charge in the thin-film electrode through constructing the interface barrier or blocking layer.
     By the glass rod or blade Guachu prepared about 10 um thick porous nano-crystalline TiO2 thin film electrode to dye - bipyridine ruthenium (II)-sensitization agent to assemble photoelectrochemical cell prototype device, and its performance were tested. The energy conversion efficiency of 4.0 to 7.0 % is obtained by adjusting the light intensity, the thickness of film electrode and the effective lighting area. The two routes for recombination via the nanocrystalline TiO2 and via the conducting fluorine doped tin oxide (FTO) substrate were presented usually. In order to prevent the loss of photoinjected electrons by back reaction, Electron transfer via both routes needs to be minimized. In the last years, it has been demonstrated that nanocrystalline film was coated by a thin overcoat of a different metal oxide with a higher conduction band edge, such as Al2O3, Nb2O5 etc. This overcoat is intended to increase the physical separation of injected electrons and oxidized dye/red-ox couple and thereby retarding the recombination reactions. To the second route of recombination, the FTO substrate may be partly exposed to the electrolyte through the porous TiO2 film, which could result in recombination via electrons in the FTO reducing I3?.
     (1) Design and Constructing three different kinds of TiO2 surface barrier. The annealed TiO2 nanoparticles electrode was used as the electrode for fabricating DSSCs after soaking in TiCl4, ZnAc and SnCl4 aqueous solutions, respectively. Electrochemical measurements reveal that the TiO2/ZnO electrode posses the highest open circuit photovoltage and minimum dark current. Surface work function results indicate that the treating with three different types of aqueous solutions induce the different surface energy band structures at TiO2 nanoparticles surface. The downward bend of TiO2/ZnO interface energy band causes the formation of electron traps in ZnO, which should effectively hinder the recombination of electrons and holes at the surface states of TiO2, while the higher barrier at ZnO and electrolyte reduce the dark current. By comparing the TPV results of four film electrode, it indicates that the existence of energy band structure could affect the separation process of photo-generated electron-hole pairs. The design of the interface barrier should be beneficial for decreasing the dark current and increasing the open circuit photovoltage.
     (2) Three different metal oxides are used as blocking layers, TiO2, ZnO and SnO2 respectively. The experimental results show that ZnO is the best. From the results of work function and the open circuit voltage and (Voc-Jsc) curves measurements, work function of ZnO is greater than that of conductive glass substrate and TiO2 films. ZnO as a blocking layer can not only inhibit charge recombination, but also be propitious to charge transport from TiO2 film to conductive glass substrate.
     2. Improving the charge transfer properties in the thin film electrode by using one-dimensional nanostructures.
     (1). To solve the problem of slow electron flow, several vertical TiO2 nanotubular or ZnO nanorod-like architectures are used for DSSCs, which offer the potential for the improvement of electron transport. But the preparation processes are commonly time-consuming, complicated, and demanding. ZnO nanorod has a large surface area and a long conduction pathway that lead straight to the electrode for efficient and fast electron transport. It was reported that electron transport is tens to hundreds of times faster in nanorod array electrodes than in nanocrystalline particulate electrodes in dye sensitized ZnO solar cells. However, ZnO solar cells show significantly lower conversion efficiencies compared to the most efficient naoctrystalline TiO2 photoanodes. The high efficiency of DSSCs is achieved only when the nanoporous TiO2 electrodes are introduced. In this works, The TiO2 based dye-sensitized solar cells doped with different sizes of ZnO nanorods were fabricated and studied by photoelectrochemical measurements. The results show that the solar conversion efficiency of the dye-sensitized solar cells after the addition of ZnO nanorods (1 wt %) was increased by about 15 % compared to that without ZnO nanorods. The effect of different sizes of ZnO nanorods on the charge carrier transport properties has been studied in the composite semiconductor film by means of transient photovoltage technique. The result indicates that the carrier diffuse rate in N3-sensitized TiO2/ZnO film electrode was about 1 to 3 order of magnitude faster than that in TiO2 electrode. The cyclic voltammograms suggest that the conduction band edge shifts toward the vacuum level after the addition of ZnO nanorods in working electrodes, which may be the main cause of the enhancement of the open-circuit photovoltage (Voc). The experimental results indicate that the addition of ZnO nanorods can improve charge carrier transport, decrease recombination, enhance Voc, and increase efficiency of energy conversion.
     (2). The vertical nano-architectures are used for DSSCs. The electron transport properties were studied in TiO2 nanotube arrays electrodes and ZnO nanorod arrays electrodes by means of transient photovoltage technique. Part I: TiO2 nanotube arrays were grown from a starting titanium sheet by potentiostatic anodization. When different light intensity of laser excitation (355 nm in wavelength), Two diametrically opposite-voltage transient phenomenon in the 10-7 s are showed. Under poor light, the small amounts of freedom carriers are in nanotube arrays, the carriers can be fast captured by surface states, which results in a negative-voltage transient phenomenon. And under glare light, the relatively more freedom carriers are in nanotube arrays. Due to the increment of the light penetration depth, the Schottky barrier between Ti metal and TiO2 has played a decisive direction factors on the charge transmission, which lead to the positive voltage transient phenomenon. In the chapter, the electron transport properties are also studied in the dye-sensitized TiO2 nanotubes arrays and nanocrystalline TiO2 films (532 nm in wavelength). The experimental results show that the electron diffusion coefficient in the TiO2 nanotube arrays electrode is about 3 orders of magnitude larger compared with that in TiO2 electrode. Efficient and fast transport in TiO2 nanotubes indicates that the traped/detraped electrons are decreased greatly. The superior transport properties may allow for the quasi-Fermi level for electrons is closer to the conduction band minimum, which results in a large value of the open-circuit photovoltage. The vertical growth ZnO nanorod arrays of the different scales on conductive glass are in synthesis of the water bath method, The carrier transport mechanism have been studied. The energy conversion efficiency of the ZnO-based on devices is far less that of traditional ZnO nanoparticle film solar cells. This phenomenon has also been discussed.
引文
[1] S?RENSEN B. Renewable energy 1st edi [M]. London: Academic Press, 1979
    [2] WINTER C J. SIZMANN R L. VANT-HULL L L. Solar power plants springer- verlag [M]. Berlin Heidelberg, 1991
    [3]李俊峰.王斯成.张敏吉.马玲娟.中国光伏发展报告·2007[M].北京:中国环境科学出版社, 2007.
    [4] BECQUEREL E. ACAD C R. Science Paris[J]. 1839(9): 561-
    [5] CHAPIN D M. FULLER C S. PEARSON G L. Journal of Applied Physics. 1954(51): 676-
    [6] SCHOCK H W. NOUFI R. CIGS-based solar cells for the next millennium[J]. Progress in Photovoltaics: Research and Applications, 2000, 8(1): 151-160.
    [7] MEYERS P V. ALBRIGHT S P. Technical and economic opportunities for CdTe PV at the turn of the millennium[J]. Progress in Photovoltaics: Research and Applications, 2000, 8(1): 161-169.
    [8] O’REGAN B. GR?TZEL M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991, 353: 737-740.
    [9] WOLFBAUER D I G. Thesis of Doctor [M]. Monash University, 1999
    [10] TSUBOMURA H. MATSUMURA M. NOMURA Y. AMAMIYA T. Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell[J]. Nature (London), 1976, 261: 402-403.
    [11] NAZEERUDDIN M K. KAY A. RODICICIO I. HUMPHRY-BAKER R. MULLER E. LISKA P. VLACHOPOULOS N. GR?TZEL M. Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes[J]. Journal of the American Chemical Society, 1993,115(14): 6382- 6390.
    [12] GR?TZEL M. Dye-sensitized solar cells[J]. Journal of Photochemistry and Photobiology A: Chemistry Reviews, 2003, 4(2): 145-153.
    [13] LIANG L Y. DAI S Y. HU L H. KONG F T. XU W W. WANG K G. Porosity effects on electron transport in TiO2 films and its application to dye- sensitized solar cells[J].The Journal of Physical Chemistry B, 2006, 110(25): 12404-12409.
    [14] HU L H. DAI S Y. WENG J. XIAO S G. SUI Y F. HUANG Y. CHEN S G. KONG F T. PAN X. LIANG L Y. WANG K J. Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules[J]. The Journal of Physical Chemistry B, 2007, 111(2): 358-362.
    [15]戴松元.肖尚锋.史成武.陈双宏.黄阳.孔凡太.胡林华.潘旭.隋毅峰.翁坚.王孔嘉.染料敏化纳米薄膜太阳电池电解质的优化[J].高等学校化学学报, 2005, 26(3): 518-521.
    [16]戴松元.陈双宏.肖尚锋.史成武.黄阳.孔凡太.胡林华.潘旭.翁坚.郭力.王孔嘉.温度对不同电解质的大面积DSSCs电池性能的影响[J].高等学校化学学报, 2005, 26(6): 1102-1105.
    [17] NATHAN S L. Basic Research Needs for Solar Energy Utilization [M]. Argonne National Laboratory, 2005(4): 1-276.
    [18] BELLINO M G. LAMAS D G. WALS?E DE RECA N. A mechanism for the fast ionic transport in nanostructured oxide-ion solid electrolytes[J]. Advanced Materials, 2006, 18(22): 3005-3009.
    [19] YANG H. YU C Z. SONG Q L. XIA Y Y. LI F Y. CHEN Z G. LI X H. TAO Y. HUANG C H. High-temperature and long-term stable solid-state electrolyte for dye-sensitized solar cells by self-assembly[J]. Chemical Materials, 2006, 18(22): 5173-5177.
    [20] TARANEKAR P. QIAO Q Q. JIANG H. GHIVIRIGA I. SCHANZE K S. REYNOLDS J R. Hyperbranched conjugated polyelectrolyte bilayers for solar-cell applications[J]. Journal of the American Chemical Society, 2007, 129(29): 8958-8959.
    [21] GAO Y. WANG C C. WANG L Y. WANG H L. Conjugated polyelectrolytes with pH-dependent conformations and optical properties[J]. Langmuir, 2007, 23(14): 7760-7767.
    [22] CHEN C Y. WU S H. WU C G. CHEN J G. HO K C. A ruthenium complex with super-high light-harvesting capacity for dye-sensitized solar cells[J]. Angewandte Chemie International Edition, 2006, 45(35): 5822-5825.
    [23] MAKAROV S. LITWINSKI C. ERMILOV E A. SUVOROVA O. R?DER B. W?HRLE D. Synthesis and photophysical properties of annulated dinuclear and trinuclear phthalocyanines[J]. Chemistry- A European Journal, 2006, 12(5): 1468-1474.
    [24] ELEMANS J. HAMEREN R. NOLTE R. ROWAN A E. Molecular materials by self-assembly of porphyrins, phthalocyanines, and perylenes[J]. Advanced Materials, 2006, 18(10): 1251-1266.
    [25] NAKAMURA Y. ARATANI N. SHINOKUBO H. TAKAGI A. KAWAI T. MATSUMOTO T. YOON Z S. KIM D Y. AHN T K. KIM D. MURANAKA A. KOBAYASHI N. OSUKA A. A directly fused tetrameric porphyrin sheet and itsanomalous electronic properties that arise from the planar cyclooctatetraene core[J]. Journal of the American Chemical Society, 2006, 128(12): 4119-4127.
    [26] MA C Q. OSTERITZ E M. DEBAERDEMAEKER T. WIENK M M. JANSSEN R. B?UERLE P. Functionalized 3D oligothiophene dendrons and dendrimers novel macromolecules for organic electronics[J]. Angewandte Chemie International Edition, 2007, 46(10): 1679-1683.
    [27] KIM Y. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophenefullerene solar cells[J]. Nature Materials, 2006, 5: 197-203.
    [28] ELLINGER S. ZIENER U. THEWALT U. LANDFESTER K. M?LLER M. Synthesis and self-organization of  ??-substituted oligothiophenes with long, branched alkyl substituents[J]. Chemistry of Materials, 2007, 19(5): 1070-1075.
    [29] TAN Z. ZHOU E. YANG Y. HE Y J. YANG C H. LI Y F. Synthesis, characterization and photovoltaic properties of thiophene copolymers containing conjugated side-chain[J]. European Polymer Journal, 2007, 43(3): 855-861.
    [30] SKABARA P J. BERRIDGE R. SEREBRYAKOV I M. KANIBOLOTSKY A L. KANIBOLOTSKAYA L. GORDEYEV S. PEREPICHKA I F. SARICIFTCI N S. WINDERD C. Fluorene functionalised sexithiophenes: utilising intramolecular charge transfer to extend the photocurrent spectrum in organic solar cells[J]. Journal of Materials Chemistry, 2007, 17(11): 1055-1062.
    [31] KOPPE M. SCHARBER M. BRABEC C. DUFFY W. HEENEY M. MCCULLOCH I. Adv. Polyterthiophenes as donors for polymer solar cells[J]. Functional Materials, 2007, 17(9): 1371-1376.
    [32] WU Z Q. SHAO X B. LI C. HOU J L. WANG K. JIANG X K. LI Z T. Hydrogen-bonding-driven preorganized zinc porphyrin receptors for efficient complexation of C60, C70, and C60 derivatives[J]. Journal of the American Chemical Society, 2005, 127(49): 17460-17468.
    [33] LEHTIVUORI H. LEMMETYINEN H. TKACHENKO N V. Exciplex-exciplex energy transfer and annihilation in solid films of porphyrin-fullerene dyads[J]. Journal of the American Chemical Society, 2006, 128(50): 16036-16037.
    [34] BASKARAN D. MAYS J W. ZHANG X P. BRATCHER M S. Carbon Nanotubes with Covalently Linked Porphyrin Antennae Photoinduced Electron Transfer[J]. Journal of the American Chemical Society, 2005, 127(19): 6916-6917.
    [35] LIDDELL P A. KODIS G. ANDRE′ASSON J. GARZA L.BANDYOPADHYAY S. MITCHELL R H. MOORE T A. MOORE A L. GUST D. Photonic switching of photoinduced electron transfer in a dihydropyrene- porphyrin-fullerene molecular triad[J]. Journal of the American Chemical Society, 2004, 126(15): 4803-4811.
    [36] ILAN G. FROMER N A. GEIER M L. ALIVISATOS A P. Air-stable all-inorganic nanocrystal solar cells processed from solution[J]. Science, 2005, 310(5747): 462-465.
    [37] ROBERTSON N. Catching the rainbow light harvesting in dye-sensitized solar cells[J]. Angewandte Chemie International Edition, 2008, 47(6): 1012-1014.
    [38] CONIBEER G. Third-generation photovoltaics[J]. Materialstoday, 2007, 10(11): 42-50.
    [39] DENNLER G. SCHARBER M C. AMERI T. DENK P. FORBERICH K. WALDAUF C. BRABEC C J. Design rules for donors in bulk-heterojunction tandem solar cells? Towards 15% energy conversion efficiency[J]. Advancesd Materials, 2008, 20(3): 579-583.
    [40] WANG X. ZHI L J. TSAO N. TOMOVI? ?. LI J. MüLLEN K. Transparent carbon films as electrodes in organic solar cells[J]. Angewandte Chemie International Edition, 2008, 47(16): 2990-2992.
    [41] BOUCLéJ. CHYLA S. SHAFFER M S P. DURRANT J R. BRADLEY D D C. NELSON J. Hybrid solar cells from a blend of poly(3-hexylthiophene) and ligand-capped TiO2 nanorods[J]. Advanced Functional Materials, 2008, 18(4): 622-633.
    [42] YANG S C. YANG D J. KIM J. HONG J M. KIM H G. KIM I D. LEE H. Hollow TiO2 hemispheres obtained by colloidal templating for application in dye-sensitized solar cells[J]. Advanced Materials, 2008, 20(5): 1059-1064.
    [43] KANG S H. CHOI SA H. KANG M S. KIM J Y. KIM H S. HYEON T. SUNG Y E. Nanorod-based dye-sensitized solar cells with improved charge collection efficiency[J]. Advanced Materials, 2008, 20(1): 54-58.
    [44] KOO H J. KIM Y J. LEE Y H. LEE W I. KIM K. PARK N G. Hollow spherical TiO2 as bifunctional material for high-efficiency dye-sensitized solar cells[J]. Advanced Materials, 2008, 20(1): 195-199.
    [45] KELZENBERG M D. TURNER-EVANS D B. KAYES B M. FILLER M A. PUTNAM M C. LEWIS N S. ATWATER H A. Photovoltaic measurements in single-nanowire silicon solar cells[J]. Nano Letters, 2008, 8(2): 710-714.
    [46] HOYER P. WELLER H. Potential-dependent electron injection in nanoporouscolloidal ZnO films[J]. The Journal of Physical Chemistry. 1995, 99(38): 14096-14100.
    [47] RENSMO H. KEIS K. LINDSTROM H. SODERGREN S. SOLBRAND A. HAGFELDT A. LINDQUIST S E. High Light-to-Energy Conversion Efficiencies for Solar Cells Based on Nanostructured ZnO Electrodes[J]. The Journal of Physical Chemistry B, 1997, 101(14): 2598-2601.
    [48] P. V. KAMAT, I. BEDJA, S. HOTCHANDANI, L. K. PATTERSON, Photosensitization of Nanocrystalline Semiconductor Films. Modulation of Electron Transfer between Excited Ruthenium Complex and SnO2 Nanocrystallites with an Externally Applied Bias[J]. Journal of the Physical Chemistry, 1996, 100 (12): 4900-4908.
    [49] CHAPPEL S. ZABAN A. Nanoporous SnO2 electrodes for dye-sensitized solar cells: improved cell performance by the synthesis of 18 nm SnO2 colloids[J]. Solar Energy Materials and Solar Cells, 2002, 71(2): 141-152.
    [50] SAYAMA K. SUGIHARA H. ARAKAWA H. Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye[J]. Chemistry of Materials, 1998, 10(32): 3825-3832.
    [51] LENZMANN F. KRUEGER J. S BURNSIDE. BROOKS K. GR?TZEL M. GAL D. S RUHLE. CAHEN D. Surface photovoltage spectroscopy of dye-sensitized solar cells with TiO2, Nb2O5, and SrTiO3 nanocrystalline photoanodes: indication for electron injection from higher excited dye states[J]. Journal of the Physical Chemistry B, 2001, 105(27): 6347-6352.
    [52] PAPAGEORGIOU N. MAIER W F. Gr?tzel M. An iodine/triiodide reduction electrocatalyst for aqueous and organic media [J]. Journal of the Electrochem Society, 1997(144): 876-882.
    [53] DESILVESTRO J. GR?TZEL M. KAVEN L. MOSER J. Highly efficient sensitization of titanium dioxide[J]. Journal of the American Chenmical Society, 1985, 107(10): 2988-2990.
    [54] GR?TZEL M. Mesoporous oxide junctions and nanostructured solar cells[J]. Current Opinion in Colloid and Interface Science, 1999, 4(4): 314-321.
    [55] ITO S. LISKA P. COMTE P. CHARVET R. PECHY P. BACH U. SCHMIDT-MENDE L. ZAKEERUDDIN S M. KAY A. NAZEERUDDIN M K. GR?TZEL M. Control of dark current in photoelectrochenmical (TiO2/I—I3-) and dye-sensitized solar cells[J]. Chemical Communications, 2005, 4351-4353.
    [56] KONG F T. DAI S Y. WANG K J. Review of recent progress in dye-sensitizedsolar cells[J]. Advances in OptoElectronics, 2007, 75384-76397.
    [57] LINDSTROM H. HOLMBERG A. MAGNUSSON E. MALMQVIST L. HAGFELDT A. A new method to make dye-sensitized nanocrystalline solar cells at room temperature[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 145(1/2): 107-112.
    [58] MIYASAKA T. KIJITORI Y. MURAKAMI T. N. KIMURA M. UEGUSA S. Efficient nonsintering type dye-sensitized photocells based on electrophoretically deposited TiO2 layers[J]. Chemical Letters, 2002, 31(12):1250-1255.
    [59] ZHANG D S. YOSHIDA T. MINOURA H. Low temperature synthesis of porous nanocrystalline TiO2 thick film for dye-sensitized solar cells by hydrothermal crystallization[J]. Chemical Letter, 2002, 31 (12): 874-877.
    [60] YOSHIDA T. OEKERMANN T. OKABE K. SCHLETTWEIN D. FUNABIKI K. MONOURA H. Cathodic electrodeposition of ZnO/Eosiny hybrid thin films from dye added zinc nitrate bath and their photoelectrochemical characterizations[J]. Electrochemistry, 2002, 70(6): 470-487.
    [61] HAGFELDT A. GR?TZEL M. Molecular Photovoltaics[J]. Accounts of Chemical Reseach, 2000, 33: 269-277.
    [62] NAZEERUDDIN M K. HUMPHY-BAKER R. GR?TZEL M. W?HRLE D. SCHNURPFEIL G. SCHNEIDER G. HIRTH A. TROMBACH N. Efficient near-IR sensitization of nanocrystalline TiO2 films by zinc and aluminum phthalocyanines[J]. Journal of Porphyrins Phthalocyanines, 1999, 3(3): 230-237.
    [63] HE J J. BENK? G. KORODI F. POLIVKA T. LOMOTH R. ?KERMARK B. SUN L. HAGFELDT A. SUNDSTR?M V. Modified Phthalocyanines for Efficient Near-IR Sensitization of Nanostructured TiO2 Electrode[J]. Journal of the American Society, 2002, 124: 4922-4932.
    [64]潘凯.刘兆阅.徐金杰.于苗.王德军.白玉白.李铁津.不同取代基卟啉衍生物敏化纳米TiO2多孔膜电极的光电性质研究[J].高等学校化学学报,2004(25): 934-937.
    [65] SAYAMA K. SUGINO M. SUGIHARA H. ABE Y. ARAKAWA H. Photosensitization of Porous TiO2 Semiconductor Electrode with Xanthene Dyes[J]. Chem. Lett., 1998, 8: 753-754.
    [66] HARA K. HORIGUCHI T. KINOSHITA T. SAYAMA K. SUGIHARA H. ARAKAWA H. Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells[J]. Solar Energy Materials & Solar Cells, 2000, 64(2): 115-134.
    [67] SAYAMA K. HARA K. MORI N. SATSUKI M. SUGA S. TSUKAGOSHI S. ABE Y. SUGIHARA H. ARAKAWA H. Photosensitization of a porous TiO2 electrode with merocyanine dyes containing a carboxyl group and a long alkylchain[J]. Chemical Communications, 2000, 13: 1173-1174.
    [68] WANG Z S. LI F Y. Huang C H. Highly efficient sensitization of nanocrystalline TiO2 films with styryl benzothiazolium propylsulfonate[J]. Chem. Commun, 2000, 20: 2063-2064.
    [69] EHRET A. STUHL L. SPITLER M. T. Spectral Sensitization of TiO2 Nanocrystalline Electrodes with Aggregated Cyanine Dyes[J]. The Journal of Physical Chemistry B, 2001, 105(41): 9960-9965.
    [70] HARA K. KURASHIGE M. DAN-OH Y. KASADA C. SHINPO A. SUGA S. SAYAMAA K. ARAKAWA H. Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells[J]. New Journal of Chemistry, 2003, 279: 783-785.
    [71] VOGEL R. HOYER P. WELLER H. Quantum-Sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 Particles as Sensitizers for Various Nanoporous Wide-Bandgap Semiconductors[J]. Journal of the Physical Chemistry, 1994, 98(12): 3183-3188.
    [72] YANG S M. HUANG C H. ZHAI J. WANG Z S. JIANG L. High photostability and quantum yield of nanoporous TiO2 thin film electrodes co-sensitized with capped sulfides[J]. Journal of Material Chemistry, 2002, 12(5): 1459-1464.
    [73] QIAN X M. QIN D Q. SONG Q. BAI Y B. LI T J. TANG X Y. WANG E K. DONG S J. Surface photovoltage spectra and photoelectrochemical properties of semiconductor-sensitized nanostructured TiO2 electrodes[J]. Thin Solid Film, 2001, 385: 152-161.
    [74] PETER L M. RILEY D J. TULL E J. WIJAYANTHA K G U. Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots[J]. Chemical Communications, 2002, 10: 1030-1031.
    [75]康志敏,郝彦忠,王庆飞,童汝亭,戴松元,固态TiO2纳米太阳能电池研究进展[J].化学应用与研究,2003, 15:31-36.
    [76] BACH U. LUPO D. COMTE P. MOSER J E. WEISS?RTEL F. SALBECK J. SPREITZER H. GR?TZEL M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies[J]. Nature, 1998, 395: 583-585.
    [77] TENNAKONE K. KUMARA G R R A. KUMARASINGHE A R. WIJAYANTHA K G U. SIRIMANNE P M. A dye-sensitized nano-porous solid-state photovoltaic cell[J]. Semiconductor Science and Technology, 1995, 10: 1689-1693.
    [78] TENNAKONE K. KUMARA G R R A. KOTTEGODA I R M. WIJAYANTHA K G U. PERERA V P S. A solid-state photovoltaic cell sensitized with a ruthenium bipyridyl complex[J]. Journal of Physics D: Applied Physics, 1998, 31: 1492-1496.
    [79] KUMARA G R A. KANEKO S. OKUYA M. TENNAKONE K. Fabrication of Dye-Sensitized Solar Cells Using Triethylamine Hydrothiocyanate as a CuICrystal Growth Inhibitor[J]. Langmuir, 2002, 18(26): 10493-10495
    [80] MENG Q B. TAKAHASHI K. ZHANG X T. SUTANTO I. RAO T N. SATO O. FUJISHIMA A. Structural Variations and Ordering Conditions for the Self-Assembled Monolayers of HS(CH2CH2O)3-6CH3[J]. Langmuir, 2003, 19(9): 3752-3756.
    [81] TAGUCHI T. ZHANG X T. SUTANTO I. TOKUHIRO K. RAO T N. WATANABE H. NAKAMORI T. URAGAMI M. FUJISHIMA A. Improving the performance of solid-state dye-sensitized solar cell using MgO-coated TiO2 nanoporous film[J]. Chemical Communications, 2003, 19: 2480-2481.
    [82] ZHANG X T. SUTANTO I. TAGUCHI T. TOKUHIRO K. MENG Q B. RAO T N. FUJISHIMA A. WATANABE H. NAKAMORI T. URAGAMI. M. Al2O3-coated nanoporous TiO2 electrode for solid-state dye-sensitized solar cell[J]. Solar Energy Materials and Solar Cells, 2003, 80(3): 315-326.
    [83] CAO F. OSKAM G. SEARSON P C. A Solid State, Dye Sensitized Photoelectrochemical Cell[J]. The Journal of Physical Chemistry, 1995, 99(47): 17071-17073.
    [84] WANG P. ZAKEERUDDIN S M. MOSER J E. NAZEERUDDIN M K. SEKIGUCHI A. GR?TZEL M. A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte[J]. Nature Materials, 2003, 21: 402-407.
    [85] KAZMERSKI L L. Photovoltaics: a review of cell and module technologies[J]. Renewable Sustainable Energy Revews. 1997, 1: 71-170.
    [86] SCHWARZBURG K. WILLIG F. Origin of Photovoltage and Photocurrent in the Nanoporous Dye-Sensitized Electrochemical Solar Cell[J]. The Journal of Physical Chemistry B, 1999, 103(28): 5743-5746.
    [87] HODES G. THOMPSON L. DUBOW J. RAJESHWAR K. Heterojunction silicon/indium tin oxide photoelectrodes: development of stable systems in aqueous electrolytes and their applicability to solar energy conversion and storage[J] Journal of the American Chemical Society, 1983, 105(3): 324-330.
    [88] This argument for the absence of a space charge layer assumes the nanoparticles are independent of each other. As pointed out in a collectiVe space charge can exist in a sufficiently thick nanoparticulate film, if it behaves as an ensemble. While this could be so for a completely dry system, the all-pervasive contact with the electrolyte, due to the mesoporous nature of the films, will effectively decouple the particles, via screening and make any such effect negligible when the film is immersed in a liquid.
    [89] KRONIK L. BACHRACH-ASHKENASY N. LEIBOVICH M. FEFER E. SHAPIRA Y. GORER S. HODES G. Journal of the Electrochemical Society, 1998, 145: 1748-1755.
    [90] SCHLICHTHO¨RL G. HUANG S Y. SPRAGUE J. FRANK A. J. Band EdgeMovement and Recombination Kinetics in Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Intensity Modulated Photovoltage Spectroscopy[J] Journal of the Physical Chemistry B 1997, 101(41): 8141-8155.
    [91] ZABAN A. FERRERE S. GREGG B. Relative Energetics at the Semiconductor/Sensitizing Dye/Electrolyte Interface[J]. Journal of the Physical Chemistry B, 1998, 102(2): 452-460.
    [92] ZABAN A. MEIER A. GREGG B. Electric Potential Distribution and Short-Range Screening in Nanoporous TiO2 Electrodes[J]. Journal of the Physical ChemistryB, 1997, 101(40): 7985-7990.
    [93] For anatase and the Ru bipyridyl dye, this is experimentally found to be 0.2-0.3 eV (Huang et al., loc. cit.); even if this is not the case, vibrationally excited (“hot”) electrons can be injected, as was shown for Nb2O5 (Moser et al., loc. cit.) and SrTiO3-based DSSC’s (Lenzmann, Gal, Kru¨ger, et al., to be published).
    [94] HUANG S Y. SCHLICHTHORL G. NOZIK A J. GR?TZEL M. FRANK A. J. Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells[J]. Journal of the Physical Chemistry B, 1997, 101(14): 2576-2582.
    [95] MOSER J. GR?TZEL M. Excitation-Wavelength Dependence of Photoinduced Charge Injection at the Semiconductor-Dye Interface: Evidence for Electron Transfer from Vibrationally Hot Exciated States[J]. Chimia, 1998, 52:160-162.
    [96] HAGFELDT A. GR?TZEL M. Light-Induced Redox Reactions in Nanocrystalline Systems[J]. Chemical Reviews., 1995, 95(1): 49-68.
    [97] CAHEN D. HODES G. GR?TZEL M. RIESS I. Nature of Photovoltaic Action in Dye-Sensitized Solar Cells[J]. The Journal of Physical Chemistry B, 2000, 104(9): 2053-2059.
    [98] LAX M. Journal of Physical and Chemistry of Solids, 1959(8): 66-73.
    [99] GR?TZEL M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 163: 3-14.
    [100] BAILES M. CAMERON P J. LOBATO K. PETER L M. Determination of the Density and Energetic Distribution of Electron Traps in Dye-Sensitized Nanocrystalline Solar Cells[J]. The Journal of Physical Chemistry B, 2005, 109(32): 15429-15435.
    [101] CAMERON P J. PETER L M. How Does Back-Reaction at the Conducting Glass Substrate Influence the Dynamic Photovoltage Response of Nanocrystalline Dye-Sensitized Solar Cells?[J]. The Journal of Physical ChemistryB, 2005, 109(15): 7392-7398.
    [102] CAMERON P J. PETER L M. How Important is the Back Reaction of Electrons via the Substrate in Dye-Sensitized Nanocrystalline Solar Cells?[J]. The Journal of Physical Chemistry B, 2005, 109(2): 930-936.
    [103] PICHOT F. GREGG B A. The Photovoltage-Determining Mechanism inDye-Sensitized Solar Cells[J]. The Journal of Physical ChemistryB, 2000, 104(1): 6-10.
    [104] DE JONGH P E. VANMAEKELBERGH D. Trap-Limited Electronic Transport in Assemblies of Nanometer-Size TiO2 Particles[J]. Physical Review Letters, 1996, 77: 3427-3430.
    [105] ZABAN A. ZHANG J. DIAMANT Y. MELEMED O. BISQUERT J. Internal Reference Electrode in Dye Sensitized Solar Cells for Three-Electrode Electrochemical Characterizations[J]. The Journal of Physical Chemistry B, 2003, 107(25): 6022-6025.
    [106] BISQUERT J. ZABAN A. SALVADOR P. Analysis of the Mechanisms of Electron Recombination in Nanoporous TiO2 Dye-Sensitized Solar Cells. Nonequilibrium Steady-State Statistics and Interfacial Electron Transfer via Surface States[J]. The Journal of Physical Chemistry B, 2002, 106(34): 8774-8782.
    [107] JAKOB M. LEVANON H. Fermi Level of Surface States in TiO2 Nanoparticles[J]. Nano Letters, 2003, 3(7): 945-949.
    [108] SCHWARZBURG K. WILLIG F. Origin of Photovoltage and Photocurrent in the Nanoporous Dye-Sensitized Electrochemical Solar Cell[J] The Journal of Physical Chemistry B, 1999, 103(28): 5743-5746.
    [109] VAN DE LAGEMAAT J. PARK N-G. FRANK A J. Influence of Electrical Potential Distribution, Charge Transport, and Recombination on the Photopotential and Photocurrent Conversion Efficiency of Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Electrical Impedance and Optical Modulation Techniques[J]. The Journal of Physical Chemistry B, 2000, 104(9): 2044-2052.
    [110] PICHOT F. GREGG B A. The Photovoltage-Determining Mechanism in Dye-Sensitized Solar Cells[J]. The Journal of Physical Chemistry B, 2000, 104(1): 6-10.
    [111] GOOSENS A. VAN DER ZANDEN B. SCHOONMAN J. Single-electron migration in nanostructured TiO2[J]. Chemical Physics Letters, 2000, 331: 1-6.
    [112] SHAH A. TORRES P. TSCHARNER R. WYRECH N. KEPPNER H. Photovoltaic Technology: The Case for Thin-Film Solar Cells[J]. Science, 1999, 285: 692-698.
    [1] HERMANN A M. Polycrystalline thin-film solar cells-A review[J], Solar Energy Materials and Solar Cell, 1998, 55(7): 75-81.
    [2] HOYER P. WELLER H. Potential-dependent electron injection in nanoporous colloidal ZnO films[J], The Journal of Physical Chemistry, 1995, 99(38): 14096-14100.
    [3] RENSMO H. KEIS K. LINDSTROM H. SODERGREN S. SOLBRAND A. HAGFELDT A. LINDQUIST S E. High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes[J], The Journal of Physical Chemistry B, 1997, 101(14): 2598-2601
    [4] KAMAT P V. BEDJA I. HOTCHANDANI S. PATTERSON L K. Photosensitization of nanocrystalline semiconductor films[J], The Journal of Physical Chemistry, 1996, 100(12): 4900-4908.
    [5] CHAPPEL S. ZABAN A. Nanoporous SnO2 electrodes for dye-sensitized solar cells[J], Solar Energy Materials and Solar Cells, 2002, 71: 141-152
    [6] SAYAMA K. SUGIHARA H. ARAKAWA H. Photoelectrochemical Properties of a Porous Nb2O5 Electrode Sensitized by a Ruthenium Dye[J], Chemistry ofMaterials, 1998, 10(18): 3825-3832.
    [7] LENZMANN F. KRUEGER J. BURNSIDE S. BROOKS K. GR?TZEL M. GAL D. RUHLE S. CAHEN D. Surface Photovoltage Spectroscopy of Dye-Sensitized Solar Cells with TiO2, Nb2O5, and SrTiO3 Nanocrystalline Photoanodes: Indication for Electron Injection from Higher Excited Dye States[J], The Journal of Physical Chemistry B, 2001, 105(27): 6347-6352.
    [8] GR?TZEL M. Mesoporous oxide junctions and nanostructured solar cells[J], Current Opinion in Colloid & Interface Science, 1999, 4(4): 314-321.
    [9] O’REGAN. GR?TZEL M. A low-cost high-efficiency solar cell based on dye- sensitized colloidal TiO2 films[J], Nature, 1991, 335(24): 737-740.
    [10]刘杨,吉林大学博士论文,2000, P37.
    [11] ZHANG X. T. SUTANTO I. TAGUCHI T. TOKUHIRO K. MENG Q. B. RAO T. N. FUJISHIMA A. WATANABE H. NAKAMORI T. URAGAMI. M. Al2O3-coated nanoporous TiO2 electrode for solid-sated dye-sensitized solar cell[J], Solar Energy Materials and Solar Cells, 2003, 80(3): 315-326.
    [12] NAZEERUDDIN M. K. KAY A. RODICICIO I. HUMPHRY-BAKER R. MULLER E. LISKA P. VLACHOPOULOS N. GR?TZEL M. Conversion of light to electricity by cis-X 2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes[J], Journal of the American Chemical Society, 1993, 115(14): 6382-6390.
    [13] PAPAGEORGIOU N. MAIER W. F. GR?TZEL M.An iodine/triiodide reduction electrocatalyst for aqueous and organic media[J], Journal of the Electrochemical Society, 1997, 144(3): 876-884.
    [14] CHEN S. G. CHAPPEL S. DIAMANT Y. ZABAN A. Preparation of Nb2O5 coated TiO2 nanoporous electrodes and their application in dye-sensitized solar cells[J], Chemistry of Materials, 2001, 13(12): 4629-4634.
    [15] ZABAN A. CHEN S. CHAPPEL G.. GREGG S. Bilayer nanoporous electrodes for dye sensitized solar cells[J], Chemical Communications, 2000,(6), 2231-2232.
    [16] TENNAKONE K. BANDARA J. BANDARANAYAKE P K M. KUMARA G.. KONNO R A. Enhanced efficiency of a dye-sensitized solar cell made from MgO-coated nanocrystalline SnO2[J], A. Japanese Journal of Applied Physics, 2001, 40(7B): L732-L734.
    [17] PALOMARES E. CLIFFORD J. N. HAQUE S. A. LUTZ T. DURRANT J. R. Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers[J], Journal of the American Chemical Society, 2003, 125(2): 475-482.
    [18] DIAMANT Y. CHAPPEL S. CHEN S G. MELAMED O. ZABAN A. Core-shell nanoporous electrode for dye sensitized solar cells: the effect of shell characteristics on the electronic properties of the electrode[J], CoordinationChemistry Reviews, 2004, 248(13/14): 1271-1276.
    [19] DIAMANT Y. CHEN S. G.. MELAMED O. ZABAN A. Core-shell nanoporous electrode for dye sensitized solar cells: the effect of the SrTiO3 shell on the electronic properties of the TiO2 core[J], The Journal of Physical Chemistry B, 2003, 107(9): 1977-1981.
    [20] BANDARANAYAKE K M P. SENEVIRATHNA M K I. WELIGAMUWA P M. TENNAKONE K. Dye-sensitized solar cells made from nanocrystalline TiO2 films coated with outer layers of different oxide materials[J], Coordination Chemistry Reviews, 2004, 248(13/14): 1277-1281.
    [21] DUZHKO V. TIMOSHENKO V Y. KOCH F. DITTRICH T. photovoltage in nanocrystalline porous TiO2[J], Physical Review B, 2001, 64(7): 075204.
    [22] DUZHKO V. KOCH F. DITTRICH T H. ransient. photovoltage and dielectric relaxation time in. porous silicon[J], Journal of Applied Physics, 2002, 91(11): 9432-9434.
    [23] DUZHKO V. DITTRICH TH. Diffusion photovoltage in poly (p -phenylenevinylene)[J], Journal of Applied Physics, 2001, 89(8): 4410-4412
    [24] TIMOSHENKO V YU. DUZHUKO V. DITTRICH TH. Diffusion photovoltage in porous semiconductors and dielectrics[J], Physica Status Solidi A, 2000, 182(1): 227-232.
    [25] PANG S. XIE T F. ZHANG Y. WEI X. YANG M. WANG D J. Research on the effect of different sizes of ZnO nanorods on the efficiency of TiO2-based dye-sensitized solar cells[J], The Journal of Physical Chemistry C, 2007, 111(49):18417-18422.
    [26]庞山.谢腾峰.张宇.魏萧.杜祖亮.王德军. TiO2/ZnO薄膜中光生电子的传输及其在太阳电池中的应用[J].高等学校化学学报, 2007, 28(11): 1-3.
    [27] BAILES M. CAMERON P J. LOBATO K. PETER L M. Determination of the density and energetic distribution of electron traps in dye-sensitized nanocrystalline solar cells[J], Journal of Physical Chemistry B, 2005, 109(32): 15429-15435.
    [28] CAMERON P J. PETER L M. HORE S. How does back-reaction at the conducting glass substrate influence the dynamic photovoltage response of nanocrystalline dye-sensitized solar cells?[J], Journal of Physical Chemistry B, 2005, 109(15): 7392-7398.
    [29] PETRA J. C.LAURENCE M. P. How Important is the back reaction of electrons via the substrate in dye-sensitizednanocrystalline solar cells?[J], The Journal of Physical Chemistry B, 2005, 109(2): 930-936.
    [30] XIA J. MASAKI N. JIANG K. YANAGIDA S.Sputtered Nb2O5 as an effective blocking layer at conducting glass and TiO2 interfaces in ionic liquid-based dye-sensitized solar cells[J], Chemical communications, 2007:138-140.
    [31] CAHEN D. HODES G. GR?TZEL M. RIESS I. Nature of photovoltaic action indye-sensitized solar cells[J], The Journal of Physical Chemistry B, 2000, 104(22): 2053-2059.
    [32] OFIR A. GRINIS L. ZABAN A. Direct measurement of the recombination losses via the transparent conductive substrate in dye sensitized solar cells[J], Journal of Physical Chemistry C, 2008, 112(7): 2779-2783.
    [33] HUANG S Y. SCHLICHTHORL G. NOZIK A J. GR?TZEL M. FRANK A J. Charge recombination in dye-sensitized nanocrystalline TiO2 solar cells[J], The Journal of Physical Chemistry B, 1997, 101(14): 2576-2582.
    [34] BISQUERT J. ZABAN A. SALVADOR P. Analysis of the mechanisms of electron recombination in nanoporous TiO2 dye-sensitized solar cells. nonequilibrium steady-state statistics and interfacial electron transfer via surface states[J],The Journal of Physical Chemistry B, 2002, 106(34): 8774-8782.
    [35] BISQUERT J. VIKHRENKO V S. Interpretation of the time constants measured by kinetic techniques in nanostructured semiconductor electrodes and dye-sensitized solar cells[J], The Journal of Physical Chemistry B, 2004, 108(7): 2313-2322.
    [36] NIINOBE D. MAKARI Y. KITAMURA T. WADA Y. YANAGIDA S. Origin of enhancement in open-circuit voltage by adding ZnO to nanocrystalline SnO2 in dye-sensitized solar cells[J], The Journal of Physical Chemistry B, 2005, 109(38): 17892-17900.
    [1] GR?TZEL M. Photoelectrochemical cells[J]. Nature, 2001, 414: 338-334.
    [2] Hagfeldt A. Gr?tzel M. Molecular photovoltaics[J]. Accounts of Chemical, 2000, 33(5): 269-277.
    [3] NANDA J. NARAYAN K S. KURUVILLA B A. MURTHY G L. SARMA D D. Sizable photocurrent and emission from solid state devices based on CdS nanoparticles[J]. Applied Physics Letters, 1998, 72(11): 1335-1337.
    [4] KALYANASUNDARAM K. GR?TZEL M. Applications of functionalized transition metal complexes in photonic and optoelectronic devices[J]. Coordination Chemistry Reviews, 1998, 177(1): 347-414.
    [5] NELSON J. Continuous-time random-walk model of electron transport in nanocrystalline TiO2 electrodes[J]. Physical Review B, 1999, 59(23): 15374-15380.
    [6] PENG T Y. HASEGAWA A. QIU J R. HIRAO K. Fabrication of Titania Tubules with High Surface Area and Well-Developed Mesostructural Walls by Surfactant-Mediated Templating Method[J]. Chemistry of Materials, 2003, 15(11): 2011-2016.
    [7] MATT L. LORI E G. ALEKSANDRA R. TEVYE K. JAN L. YANG P D. ZnO-Al2O3 and ZnO-TiO2 Core-Shell Nanowire Dye-Sensitized Solar Cells[J]. The Journal of Physical Chemistry B, 2006, 110(45): 22652-22663.
    [8] SCHMIDT M L. BACH U. HUMPHRY B R. HORIUCHI T. MIURA H. ITO S. UCHIDA S. GR?TZEL M. Organic Dye for Highly Efficient Solid-StateDye-Sensitized Solar Cells[J]. Advanced Materials, 2005, 17(3): 813-815.
    [9] ROBERTSON N. Optimising dyes for dye-sensitized solar cells[J]. Angewandte Chemie International Edition, 2006, 45(15): 2338-2445.
    [10] MAGGIE P. KARTHIK S. OOMMAN K V. GOPAL K M. BRIAN H. CRAIG A G. Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes[J]. Nanotechnology, 2006, 17(5): 1446-1448.
    [11] GOPAL K M. KARTHIK S. MAGGIE P. VARGHESE O K. GRIMES C A. Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells[J]. Nano Letters, 2006, 6(2): 215-218.
    [12] MAGGIE P. KARTHIK S. SORACHON Y. HARIPRIYA E P. OOMMAN K V. GOPAL K M. THOMAS, A. L. ADRIANA, F. GRIMES, C. A. Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 m in Length[J]. The Journal of Physical Chemistry B 2006, 110(33): 16179-16184.
    [13] BAXTER J B. WALKER A M. OMMERING K V. AYDIL E S. Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells[J]. Nanotechnology, 2006, 17(11): 304-312.
    [14] GOPAL K M. KARTHIK S. MAGGIE P. VARGHESE O K. GRIMES C A. Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells[J]. Nano Letters, 2006, 6(2): 215-218.
    [15] ALEX B F M. JAMES E M. MOHAMMED O K P. JOSEPH T H. Dynamics of charge transport and recombination in ZnO nanorod array dye-sensitized solar cells[J]. Physical Chemistry Chemical Physics, 2006, 8(40): 4655-4659.
    [16] RAJARAM S M. WON J L. HABIB M P. SUNG H H. Nanocrystalline TiO2/ZnO Thin Films: Fabrication and Application to Dye-Sensitized Solar Cells[J]. The Journal of Physical Chemistry B, 2005, 109(51): 24254-24259.
    [17] HOSONO E. FUJIHARA S. HONNA I. ZHOU H S. The Fabrication of an Upright-Standing Zinc Oxide Nanosheet for Use in Dye-Sensitized Solar Cells[J]. Advanced Materials, 2005, 17(17): 2091-2094.
    [18] KAKIUCHI K. HOSONO E. FUIIHARA S. Enhanced photoelectrochemical performance of ZnO electrodes sensitized with N-719[J]. Journal of Photochemistry and Photobiology A , 2006, 179(1-2): 81-86.
    [19] MOSES D. Transient photoconductivity of a-Se measured by the time-of-flight and stripline-switch techniques[J]. Philosophical Magazine B, 1992, 66(1): 1-14.
    [20] DUZHKO V. TIMOSHENKO V Y. KOCH F. Dittrich T. Photovoltage in nanocrystalline porous TiO2[J]. Physical Review B 2001, 64(7): 075204-075211.
    [21] DITTRICH T. DUZHKO V. KOCH F. KYTIN V. RAPPICH. Trap-limited photovoltage in ultrathin metal oxide layers[J]. Physical Review B 2002, 65(15): 155319-155324.
    [22] LUNGENSCHMIED C. DENNLER G. NEUGEBAUER H. SARICIFTCI N S. Internal electric field in organic-semiconductor-based photovoltaic devices[J].Applied Physics Letters, 2006, 89(22): 223519.
    [23] LUO J. DING X Z. CHENG L F. MA X M. DONG Y D. Prog. Mater Sci. 1993, 2, 52.
    [24] LIN Y H. WANG D J. ZHAO Q D. YANG M. ZHANG Q L. A Study of Quantum Confinement Properties of Photogenerated Charges in ZnO Nanoparticles by Surface Photovoltage Spectroscopy[J]. The Journal of Physical Chemistry B, 2004, 108(10): 3202-3206.
    [25] LIN Y H. WANG D J. ZHANG Q L. LI. Z H. MA Y D. YANG M. Influence of adsorbed oxygen on the surface photovoltage and photoluminescence of ZnO nanorods[J]. Nanotechnology, 2006, 17(8): 2110-2115.
    [26] PAPAGEORGIOU N. MAIER W F. GR?TZEL M. An Iodine/Triiodide Reduction Electrocatalyst for Aqueous and Organic Media[J]. Journal of the Electrochemical Society 1997, 144(3): 876-884.
    [27] KLEIN C. NAZEERUDDIN M K. DI C D. LISKA P. GR?TZEL M. Amphiphilic Ruthenium Sensitizers and Their Applications in Dye-Sensitized Solar Cells[J]. Inorganic Chemistry, 2004, 43(14): 4216-4226.
    [28] ZHANG Q L. WANG D J. WEI X. ZHAO Q D. LIN Y H. YANG M. A study of the interface and the related electronic properties in n-Al0.35Ga0.65N/GaN heterostructure[J]. Thin Solid Films, 2005, 491: 242-248.
    [29] SVEN R. DAVID C. Electron Tunneling at the TiO2/Substrate Interface Can Determine Dye-Sensitized Solar Cell Performance[J]. The Journal of Physical Chemistry B, 2004, 108(46): 17946-17951.
    [30] FRANCüOIS P. BRIAN A G. The Photovoltage-Determining Mechanism in Dye-Sensitized Solar Cells[J]. The Journal of Physical Chemistry B, 2000, 104(1): 6-10.
    [31] LAGEMAATVANDE J. PARK N G. FRANK A J. Influence of Electrical Potential Distribution, Charge Transport, and Recombination on the Photopotential and Photocurrent Conversion Efficiency of Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Electrical Impedance and Optical Modulation Techniques[J]. The Journal of Physical Chemistry B, 2000, 104(9): 2044-2052.
    [32] HOTCHANDANI S. KAMAT P V. Photoelectrochemistry of Semiconductor ZnO Particulate Films Journal of The Electrochemical Society 1992, 139(6), 1630-1634.
    [33] HOYER, P. WELLER, H. Potential-Dependent Electron Injection in Nanoporous Colloidal ZnO Films[J]. The Journal of Chemical Physics, 1995, 99(38): 14096-14100.
    [34] JONGH P E. VANMAEKELBERGH D. Trap-Limited Electronic Transport in Assemblies of Nanometer-Size TiO2 Particles[J]. Physical Review Letters, 1996, 77(16): 3427-3430.
    [35] SODERGREN S. HAGFELDT A. OLSSON J. LINDQUIST S E. Theoretical Models for the Action Spectrum and the Current-Voltage Characteristics of Microporous Semiconductor Films in Photoelectrochemical Cells[J]. The Journal of Chemical Physics 1994, 98(21): 5552-5556.
    [36] ANDERS H. GR?TZEL M. Light-Induced Redox Reactions in Nanocrystalline Systems[J]. Chemical Reviews, 1995, 95(1): 49-68.
    [37] CAHEN D. HODES G. GR?TZEL M. GUILLEMOLES J F. RIESS I. Nature of Photovoltaic Action in Dye-Sensitized Solar Cells[J]. The Journal of Physical Chemistry B, 2000, 104(9): 2053-2059.
    [38] NIINOBE D. MAKARI Y. KITAMURA T. WADA Y. YANAGIDA S. Origin of Enhancement in Open-Circuit Voltage by Adding ZnO to Nanocrystalline SnO2 in Dye-Sensitized Solar Cells[J]. The Journal of Physical Chemistry B 2005, 109(38):17892-17900.
    [39] FABREGAT S F. MORA S I. GARCIA B G. BISQUERT J. Cyclic Voltammetry Studies of Nanoporous Semiconductors. Capacitive and Reactive Properties of Nanocrystalline TiO2 Electrodes in Aqueous Electrolyte[J]. The Journal of Physical Chemistry B, 2003, 107(3): 758-768.
    [40] BISQUERT J. Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells[J]. Physical Chemistry Chemical Physics, 2003, 5(24): 5360-5364.
    [1] HAMILTON E J. DOLAN S E. MANN C M. Preparation of Amorphous Boron Nitride and Its Conversion to a Turbostratic, Tubular Form[J]. Science, 1993, 260(5180): 659-661.
    [2] CHOPRA N G. LUKEN R J. CHERREY K . Boron Nitride Nanotubes[J]. Science, 1995, 269(5226): 966-970.
    [3] MUHR H J. KRUMEICH F. SCHONHOLZER U P. Vanadium Oxide Nanotubes - A New Flexible Vanadate Nanophase[J]. Advanced Materials, 2000, 12(3): 231-234.
    [4] IIJIMA S. ICHIHASHI T. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature, 1993, 363: 603-605.
    [5] LEE W J. SMYRL W H. Zirconium Oxide Nanotubes Synthesized via Direct Electrochemical Anodization[J]. Electrochemical and Solid-State Letters, 2005, 8(3): B7-B9.
    [6] SUPACHAI N. SINGTO S. SUSUMU Y. Highly efficient dye-sensitized solar cell using nanocrystalline titania containing nanotube structure[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164(1-3): 145-151.
    [7] UCHIDA S. CHIBA R. TOMIHA M. MASAKI N. SHIRAI M. Application of titania nanotubes to a dye-sensitized solar cell[J]. Electrochemistry, 2002, 70(6): 418-420.
    [8] ADACHI M. MURATA Y. OKADA I. YOSHIKAWA Y J. Formation of Titania Nanotubes and Applications for Dye-Sensitized Solar Cells[J]. Journal of the Electrochemical Society, 2003, 150(8): G488-G493.
    [9] MOR G K. SHANKAR K. PAULOSE M. VARGHESE O K. GRIMES C A. Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells[J]. Nano Letters, 2006, 6(2): 215-218.
    [10] PAULOSE M. SHANKAR K. VARGHESE O K. MOR G K. HARDIN B. GRIMES C A. Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes[J]. Nanotechnology, 2006, 17(1): 1446-1448.
    [11] VARGHESE O K. GONG D. PAULOSE M. ONG K G. DICKEY E C. GRIMESC A. Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure[J]. Advanced Materials, 2003, 15(7-8): 624-627.
    [12] MOR G K. CARVALHO M A. VARGHESE O K. PISHKO M V. GRIMES C A. A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination[J]. Journal of Materials Research, 2004, 19(2): 628-634.
    [13] VARGHESE O K. MOR G K. GRIMES C A. PAULOSE M. MUKHERJEE N. A Titania Nanotube-Array Room-Temperature Sensor for Selective Detection of Hydrogen at Low Concentrations[J]. Journal of Nanoscience and Nanotechnology, 2004, 4(7): 733-737.
    [14] PAULOSE M. VARGHESE O K. MOR G K. GRIMES C A. ONG K G. Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes[J]. Nanotechnology, 2006, 17: 398-402.
    [15] ADACHI M. MURATA Y. HARADA M. YOSHIKAWA Y. Formation of Titania Nanotubes with High Photo-Catalytic Activity[J]. Chemistry Letters, 2000, 29(8): 942-943.
    [16] CHU S Z. INOUE S. WADA K. LI D. HANEDA H. AWATSU S. Highly Porous (TiO2-SiO2-TeO2)/Al2O3/TiO2 Composite Nanostructures on Glass with Enhanced Photocatalysis Fabricated by Anodization and Sol-Gel Process[J]. The Journal of Physical Chemistry B, 2003, 107(27): 6586-6589.
    [17] HOYER P. Formation of a Titanium Dioxide Nanotube Array[J]. Langmuir, 1996, 12(6): 1411-1413.
    [18] LAKSHMI B.B. DORHOUT P.K. MARTIN C.R. Sol-Gel Template Synthesis of Semiconductor Nanostructures[J]. Chemistry of Materials, 1997, 9(11): 857-862.
    [19] IMAI H. TAKEI Y. SHIMIZU K. MATSUDA M. HIRASHIMA H. Direct preparation of anatase TiO2 nanotubes in porous alumina membranes[J]. Journal of Materials Chemistry, 1999, 9(12): 2971-2972.
    [20] MICHAILOWSKI A. ALMAWLWAI D. CHENG G S. MOSKOVITS M. Highly regular anatase nanotubule arrays fabricated in porous anodic templates[J]. Chemical Physics Letters, 2001, 349(1-2): 1-5.
    [21] TIAN Z R R. VOIGT J A. LIU J. MCKENZIE B. XU H F. Large Oriented Arrays and Continuous Films of TiO2-Based Nanotubes[J]. Journal of the American Chemical Society, 2003, 125(41): 12384-12385.
    [22] KASUGA T. HIRAMATSU M. HOSON A. SEKINO T. NIIHARA K. Formation of Titanium Oxide Nanotube[J]. Langmuir, 1998, 14(12): 3160-3163.
    [23] CHEN Q. ZHOU W Z. DU G H. PENG L H. Trititanate Nanotubes Made via a Single Alkali Treatment[J]. Advanced Materials, 2002, 14(17): 1208-1211.
    [24] YAO B D. CHAN Y F. ZHANG X Y. ZHANG W F. YANG Z Y. WANG N. Formation mechanism of TiO nanotubes[J]. Applied Physics Letters, 2003, 82(2): 281-283.
    [25] GONG D. GRIMES C A. VARGHESE O K. HU W. SINGH R S. CHEN Z. DICKEY E C. Titanium oxide nanotube arrays prepared by anodic oxidation[J]. Journal of Materials Research, 2001, 16(12): 3331-3334.
    [26] MOR G K. VARGHESE O K. PAULOSE M. MUKHERJEE N. GRIMES C A. Fabrication of tapered, conical-shaped titania nanotubes[J]. Journal of Materials Research, 2003, 18(11): 2588-2593.
    [27] CAI Q. PAULOSE M. VARGHESE O K. GRIMES C A. The effect of ctrolyte composition on the fabrication of self-organized titanium oxide nanotube ays by anodic oxidation[J]. Journal of Materials Research, 2005, 20(1): -236. elearr230
    [28] RUAN C. PAULOSE M. VARGHESE O K. MOR G K. GRIMES C A. Fabrication of Highly Ordered TiO2 Nanotube Arrays Using an Organic Electrolyte[J]. The Journal of Physical Chemistry B, 2005, 109(33): 15754-15759.
    [29] MACAK J M. TSUCHIYA H. SCHMUKI P. High-aspect-ratio TiO2 nanotubes by anodization of titanium[J]. Angewandte Chemie International Edition in English, 2005, 44(14): 2100-2102.
    [30] MACAK M. TSUCHIYA H. TAVEIRA L. ALDABERGEROVA S. SCHMUKI P. Smooth Anodic TiO2 Nanotubes[J]. Angewandte Chemie International Edition in English, 2005, 44(45): 7463-7465.
    [31] SUN W T. YU Y. PAN H Y. GAO X F. CHEN Q. PENG L M. Journal of the JAmerican Chemical Society. 2008, 130: 1124-1125
    [32] PAULOSE M. SHANKAR K. YORIYA S. PRAKASAM H E. VARGHESE O K. MOR G K. LATEMPA T A. FITZGERALD A. GRIMES C A. Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134μm in Length[J]. The Journal of Physical Chemistry B, 2006, 110(33): 16179-16184.
    [33] SERGIU P. ALBU. ANDREI GHICOV. JAN M. MACAK. PATRIK SCHMUKI. 250μm long anodic TiO2 nanotubes with hexagonal self-ordering[J]. Physica Status Solidi (RRL) - Rapid Research Letters, 2007, 1(2): R65-R67.
    [34] PRAKASAM H E. SHANKAR K. PAULOSE M. VARGHESE O K. GRIMES C A. A New Benchmark for TiO2 Nanotube Array Growth by Anodization[J]. TheJournal of Physical Chemistry C, 2007, 111(20): 7235-7241.
    [35] QUAN X. YANG S. RUAN X. ZHAO H. Preparation of Titania Nanotubes and Their Environmental Applications as Electrode[J]. Environmental Science & Technology, 2005, 39(10): 3770-3775.
    [36] VARGHESE O K. MOR G K. GRIMES C A. A Titania nanotube-array room-temperature sensor for selective detection of low hydrogen concentrations[J]. Materials Research Society Symposium Proceedings, 2005, 828: 117-125.
    [37] VARGHESE O K. PAULOSE M. GRIMES C A. Water-Photolysis Properties of Micron-Length Highly-Ordered Titania Nanotube-Arrays[J]. Journal of Nanoscience and Nanotechnology , 2005, 5(7): 1158-1165.
    [38] MOR G K. SHANKAR K. PAULOSE M. VARGHESE O K. GRIMES C A. Enhanced Photocleavage of Water Using Titania Nanotube Arrays[J]. Nano Letters, 2005, 5(1): 191-195.
    [39] PARK J H. KIM S. BARD A J. Novel Carbon-Doped TiO2 Nanotube Arrays with High Aspect Ratios for Efficient Solar Water Splitting[J]. Nano Letters, 2006, 6(1): 24-28.
    [40] PAULOSE M. SHANKAR K. VARGHESE O K. MOR G K. HARDIN B. GRIMES C A. Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes[J]. Nanotechnology, 2006, 17(1): 1446-1448.
    [41] MOR G K. SHANKAR K. PAULOSE M. VARGHESE O K. GRIMES C A. Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells[J]. Nano Letters, 2006, 6(2): 215-218.
    [42] KAI Z. NATHAN R N. MIEDANER A. FRANK A J. Enhanced Charge-Collection Efficiencies and Light Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2 Nanotubes Arrays[J]. Nano Letters, 2007,7(1): 69-74.
    [43] ZHAO J. WANG X. CHEN R. Synthesis of thin films of barium titanate and barium strontium titanate nanotubes on titanium substrates[J]. Materials Letters, 2005, 59(18): 2329-2332.
    [44] CANKO O. ALBAYRAK E. KESKIN M. The quantum transverse spin-2 Ising model with a bimodalrandom-field in the pair approximation[J]. Journal of Magnetism and Magnetic Materials. 2005, 294(1): 63-71.
    [45] MOR G K., VARGHESE O K. PAULOSE M. SHANKAR K. GRIMES G A. A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications[J].Solar Energy Materials and Solar Cells, 2006, 90(14): 2011-2075.
    [46] SVEN R. DAVID C J. Electron Tunneling at the TiO2/Substrate Interface Can Determine Dye-Sensitized Solar Cell Performance[J]. The Journal of Physical Chemistry B, 2004, 108(46): 17946-17951.
    [47] PICHOT F. GREGG B A. The Photovoltage-Determining Mechanism in Dye-Sensitized Solar Cells[J]. The Journal of Physical Chemistry B, 2000, 104(1): 6-10.
    [48] LAGEMAATVANDE J. PARK N G. FRANK A J. Influence of Electrical Potential Distribution, Charge Transport, and Recombination on the Photopotential and Photocurrent Conversion Efficiency of Dye-Sensitized Nanocrystalline TiO2 Solar Cells: A Study by Electrical Impedance and Optical Modulation Techniques[J]. The Journal of Physical Chemistry B, 2000, 104(9): 2044-2052.
    [49] PANG S. XIE T F. ZHANG Y. WEI X. YANG M. WANG D J. Research on the Effect of Different Sizes of ZnO Nanorods on the Efficiency of TiO2-Based Dye-Sensitized Solar Cells[J]. The Journal of Physical Chemistry C, 2007, 111(49): 18417-18422.
    [50] WEI X. XIE T. F. XU D. ZHAO Q D. PANG S. WANG D J. A study of the dynamic properties of photo-induced charge carriers at nanoporous TiO2/conductive substrate interfaces by the transient photovoltage technique[J]. Nanotechnology, 2008, 19: 275707-275012.
    [51] BAXTER J B. WALKER A M. OMMERING K V. AYDIL E S. Controlled repeated chemical growth of ZnO films for dye-sensitized solar cells[J]. Nanotechnology, 2006, 17: 304.
    [52] KOPIDAKIS N. SCHIFF E A. PARK N G.. VAN DE LAGEMAAT J. FRANK A F. Chemical bath deposition of ZnO nanowire-nanoparticle composite electrodes for use in dye-sensitized solar cells[J]. The Journal of Physical Chemistry B, 2000, 104(16): 3930-3936.
    [53] CAO F. OSKAM G. MEYER G J. SEARSON P C. Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays[J]. The Journal of Physical Chemistry, 1996, 100(42): 17021-17027.
    [54] DE JONGH P E. VANMAEKELBERGH D. Trap-limited electronic transport in assemblies of nanometer-size TiO2 particles[J]. Physical Review Letters, 1996, 77(16): 3427-3430.
    [55] NELSONe J, HAQUE S A, KLUG D R, DURRANT J R. Trap-limited recombination in dye-sensitized nanocrystalline metal oxide electrodes[J].Physical Reviews B, 2001, 63(20): 205321-205329.
    [56] DLOCZIK L. ILEPERUMA O. LAUERMANN I. PETER L M. PONOMAREV E A. REDMOND G. SHAW N J. UHLENDORF L. Co-sensitization effect of CdS/CdSe on the quantum-dots sensitized solar cells[J]. The Journal of Physical Chemistry B, 1997, 101(49): 10281-10289.
    [57] SCHLICHTHORL G. PARK N G. FRANK A J. Evaluation of the charge-collection efficiency of dye-sensitized nanocrystalline TiO2 solar cells[J]. The Journal of Physical Chemistry B, 1999, 103(5): 782-791.
    [58] VAN DE LAGEMAAT J. FRANK A J. Nonthermalized electron transport in dye-sensitized nanocrystalline TiO2 films: transient photocurrent and random-walk modeling studies[J]. The Journal of Physical Chemistry B, 2001, 105(45): 11194-11205.
    [59] BENKSTEIN K D. KOPIDAKIS N. VAN DE Lagemaat J. FRANK A J. Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells [J]. The Journal of Physical Chemistry B, 2003, 107(31): 7759-7767.
    [60] KOPIDAKIS N. BENKSTEIN K D. VAN DE LAGEMAAT J. FRANK A J. YUAN O. SCHIFF E A. Temperature dependence of the electron diffusion coefficient in electrolyte-filled TiO2 nanoparticle films: Evidence against multiple trapping in exponential conduction-band tails[J]. Physical Reviews B, 2006, 73: 045326-1-045326-7.
    [61] MOR G K. VARGHESE O K. PAULOSE M. SHANKAR K. GRIMES G A. A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications[J]. Solar Energy Materials and Solar Cells, 2006, 90: 2011-2075.
    [62] SZCEPANKIEWICZ S H. MOSS J A. HOFFMANN M R. Slow surface charge trapping kinetics on irradiated TiO2[J]. The Journal of Physical Chemistry B, 2002, 106(11): 2922-2927.
    [63] WANG Z L. Zinc oxide nanostructures: growth, properties and applications[J]. Journal of Physics: Condensed Matter, 2004, 16(25): R829-R858.
    [64] FAN Z Y. LU J G. Zinc oxide nanostructures: Synthesis and properties[J]. Jouranl Nanoscience and Nanotechnology 2005, 5(10): 1561-1573.
    [65] LUBOMIR SPANHEL. Colloidal ZnO nanostructures and functional coatings: A survey[J]. Journal of Sol-Gel Science Technology, 2006, 39(1): 7-24.
    [66] ALEKSANDRA B. DJURISIC. YU H L. Optical properties of ZnOnanostructures[J]. Small, 2006, 2(8/9): 944-961.
    [67] XU DONG W. JIN HUI S. ZHONG LIN W. Nanowire and nanobelt arrays of zinc oxide from synthesis to properties and to novel devices[J]. Journal of Materials Chemistry, 2007, 17: 711-720.
    [68] KUCHIBHATLA SATYANARAYANA V N T. KARAKOTI A S. DDBASIS B. SEAL S. One dimensional nanostructured materials[J]. Progress in Materials Science, 2007, 52(5): 699-913.
    [69] XIA Y N. YANG P D. SUN Y G. WU Y Y. MAYERS B. GATES B. YIN Y D. KIM F. YAN HQ. One-dimensional nanostructures: synthesis, characterization, and applications[J]. Advanced Materials, 2003, 15(5): 353-389.
    [70] SIRBULY D J. LAW M. YAN H Q. YANG P D. Semiconductor nanowires for subwavelength photonics integration[J]. The Journal of Physical Chemistry B, 2005, 109(32): 15190-15213.
    [71] LU J G. CHANG P C. FAN Z Y. Quasi-one-dimensional metal oxide materials—synthesis, properties and applications[J]. Materials Science and Engineering: R: Reports, 2006, 52(1/3): 49-91.
    [72] WU Y Y. YAN H Q. YANG P D. Semiconductor nanowire array: potential substrates for photocatalysis and photovoltaics[J]. Topics in Catalysis, 2002, 19(2): 197-202.
    [73] HEO Y W. NORTON D P. TIEN L C. KWON Y. KANG B S. REN F. PEARTON S J. LAROCHE J R. ZnO nanowire growth and devices[J]. Materials Science and Engineering: R: Reports, 2004, 47(1/2): 1-47.
    [74] HUANG M H. MAO S. FEICK H. YAN H Q. WU Y Y. KIND H. WEBER E. RUSSO R. YANG P D. Room-temperature ultraviolet nanowire nanolasers[J]. Science, 2001, 292(5523): 1897-1899.
    [75] PARK W I. YI G.-C. KIM J.-W. PARK S.-M. Schottky nanocontacts on ZnO nanorod arrays[J]. Applied Physics Letters, 2003, 82(24): 4358-4360.
    [76] NG H T. HAN J. YAMADA T. NGUYEN P. CHEN Y P. MEYYAPPAN M. Single crystal nanowire vertical surround-gate field-effect transistor[J]. Nano Letters, 2004, 4(7): 1247-1252.
    [77] LIN C C. CHEN H P. CHEN S Y. Synthesis and optoelectronic properties of arrayed p-type ZnO nanorods grown on ZnO film/Si wafer in aqueous solutions[J]. Chemical Physics Letters, 2005, 404(1/3): 30-34.
    [78] PARK W I. YI G.-C. Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN[J]. Advanced Materials, 2004, 16(1): 87-90.
    [79] WANG X D. NEFF C. GRAUGNARD E. DING Y. KING J S. PRANGER L A. TANNENBAUM R. WANG Z L. SUMMERS C J. Photonic crystals fabricated using patterned nanorod arrays[J]. Advanced Materials, 2005, 17(17): 2103-2106.
    [80] LAW M. GREENE L E. JOHNSON J C. SAYKALLY R. YANG P D. Nanowire dye-sensitized solar cells[J]. Nature Materials, 2005, 4: 455-459.
    [81] LIU T Y. LIAO H C. LIN C C. HU S H. CHEN SY. Biofunctional ZnO nanorod arrays grown on flexible substrates[J]. Langmuir, 2006, 22(13): 5804-5809.
    [82] XU F. YUAN ZY. DU G H. REN T Z. BJOUVY C. HALASA M. SU B L. High-yield synthesis of single-crystalline ZnO hexagonal nanoplates and accounts of their optical and photocatalytic properties[J]. Applied Physics A: Materials Science & Processing, 2007, 86(2): 181-185.
    [83] YOON S H. YANG H. KIM Y S. Ordered growth of ZnO nanorods for fabricationof a hybrid plasma display panel[J]. Nanotechnology, 2007, 18: 205608-1-205608-5.
    [84] WANG X D. SONG J H. LIU J. Wang Z L. Direct-current nanogenerator driven by ultrasonicwaves[J]. Science, 2007, 316(5821): 102-105.
    [85] MENG X Q. ZHAO D X. ZHANG J Y. SHEN D Z. LU Y M. LIU Y C. FAN X W. Growth temperature controlled shape variety of ZnO nanowires[J]. Chemical Physics Letters, 2005, 407(1/3): 91-94.
    [86] TIAN Z R R. VOIGT J A. LIU J. MCKENZIE B. MCDERMOTT M J. RODRIGUEZ M A. KONISHI H. XU H F. Complex and oriented ZnO nanostructures[J]. Nature Materials, 2003, 2: 821-826.
    [87] KONG B H. KIM D C. CHO H K. Shape control and characterization of one-dimensional ZnO nanostructures through the synthesis procedure[J]. Physica B, 2006, 376(77): 726-730.
    [88] PAN N. WANG X. ZHANG K. HU H. XU B. LI F. HOU J G. An approach to control thetipshapesand properties of ZnO nanorods[J]. Nanotechnology, 2005, 16: 1069-1072.
    [89] ZHAO Q. ZHANG H Z. ZHU Y W. FENG S Q. SUN X C. XU J. YU D P. Morphological effects on the field emission of ZnO nanorod arrays[J]. Applied Physics Letters, 2005, 86(20): 203115-1-203115-3.
    [90] MAROTTI R E. GIORGI P. MACHADO G. DALCHIELE E A. Crystallite size dependence of band gap energy for electrodeposited ZnO grown at different temperatures[J]. Solar Energy Materials and Solar Cells, 2006, 90(15): 2356-2361.
    [91] FONOBEROV V A. ALIM K A. BALANDIN A A. XIU F. LIU J.Photoluminescence investigation of the carrier recombination processes in ZnO quantum dots and nanocrystals[J]. Physical Review B, 2006, 73(16): 165317-165325.
    [92] CHEN C W. CHEN K H. SHEN C H. GANGULY A. CHEN L C. WU J J. WEN H I. PONG W F. Anomalous blueshift in emission spectra of ZnO nanorods with sizes beyond quantum confinement regime[J]. Applied Physics Letters, 2006, 88(24): 241905-1-241905-3.
    [93] WANG R P. XU G. JIN P. Size dependence of electron-phonon coupling in ZnO nanowires[J]. Physical Reviews B, 2004, 69(11): 113303-1-113303-4.
    [94] SHALISH I. TEMKIN H. NARAYANAMURTI V. Size-dependent surface luminescence in ZnO nanowires[J]. Phys. Rev. B 2004, 69(24): 245401-1-245401-4.
    [95] CHEN C Q. SHI Y. ZHANG Y S. ZHU J.YAN Y J. Size dependence of young's modulus in ZnO nanowires[J]. Physical Review Letters, 2006, 96(7): 075505-1-075505-4.
    [96] LIAO L. LU H B. LI J C. HE H. WANG D F. FU D J. LIU C. ZHANG W F. Size dependence of gas sensitivity of ZnO nanorods[J]. The Journal of Physical Chemistry C, 2007, 111(5): 1900-1903.
    [97] JANG E S. WON J H. HWANG S J. CHOY J H. Fine tuning of the face orientation of ZnO crystals to optimize their photocatalytic activity[J]. Advanced Materials, 2006, 18: 3309-3312.
    [98] NONOMURA K. KOMATSU D. YOSHIDA T. MINOURA H. SCHLETTWEIN D. Dependence of the photoelectrochemical performance of sensitised ZnO on the crystalline orientation in electrodeposited ZnO thin films[J]. Physical Chemistry Chemical Physics, 2007, 9(15): 1843-1849.
    [99] VAYSSIERES L. KEIS K. LINDQUIST S E. HAGFELDT A. Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO[J]. The Journal of Physical Chemistry B, 2001, 105(17): 3350-3352.
    [100] GREENE L E. YUHAS B D. LAW M. ZITOUN D. YANG P D. Solution-grown zinc oxide nanowires[J]. Inorganic Chemistry, 2006, 45(19): 7535-7543.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700