用户名: 密码: 验证码:
有机聚合物体异质结太阳能电池:分子结构,表面形貌与新型器件结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机聚合物太阳能电池,具有材料来源广泛、重量轻、制备工艺简单、可大面积成膜、柔性等优点而成为人们近年来关注的热点。本论文围绕有机聚合物体异质结太阳能电池开展研究工作,主要内容及结论如下:
     1.绪论部分综述了有机聚合物体异质结太阳能电池的结构组成、工作原理、重要发展过程、表征参数与仪器、性能影响因素等,及近年来人们在有机聚合物电池材料、器件物理与工艺、新型器件结构设计等方面的研究工作。
     2.分别以一类新型给受体分子和一类新的星型齐聚噻吩作为给体,PCBM为受体,制备体异质结太阳能电池。给受体分子中,强的吸电子基元或强的给电子基元的引入能提高器件的性能;星型分子随着代数的增加,共轭程度增加,成膜能力提高,器件的性能随之提高。
     3.以MEH-PPV为给体,苝二酰亚胺衍生物为受体,通过对复合膜进行热退火处理和使用不同成膜溶剂(氯仿和氯苯)成膜,来调控复合膜的两相结构。并基于这些复合膜制备了光伏器件,结果表明,聚集态的苝二酰亚胺衍生物在低电场下能够更有效地产生光电流。
     4.以高电导率的PEDOT:PSS替代ITO作阳极,在聚酯衬底上制备了PCE达2.2%的柔性有机聚合物体异质结太阳能电池;为了增加有效地吸收入射光,以此聚合物电极、聚酯衬底的聚合物电池,构筑了较大面积的V型和W型结构的太阳能电池,当V型和W型电池的夹角为30o时,器件的PCE比平面时提高约60%。
     5.以高电导率的PEDOT:PSS作阳极,薄层聚环氧乙烷(PEO)修饰的ITO作阴极,制备了不需真空过程的半透明电池,所制备的电池在AM1.5 100mW/cm2模拟太阳光照射下的PCE约为0.7%。
As the global energy demand continues to increase every year, the limiting supply of today’s main energy sources (i.e. oil, coal, natural gas) and their detrimental long-term effects on the natural balance on our planet, force people develop some renewable energy sources. Harvesting energy directly from the sunlight using photovoltaic (PV) technology is being widely recognized as an essential component of future global energy production. Up to now, the photovoltaic cells based on inorganic materials (mainly silicon) have been proved to convert sunlight to electricity efficiently. But the high cost for manufacture limits them to be widely used. Organic and polymer solar cells, based on organic and polymer materials as active layer, possess the advantage of light weight, plenty of choices for active layer, flexibility, low cost and easily being large-scale etc., which attracts great attention in recent years.
     Organic and polymer heterojunction solar cells compose of cathode, anode and active layer (donor and acceptor). Light is converted to electricity by the solar cells through five processes sequentially, (i) photons are absorbed by the active layer and exitons form; (ii) excitons diffuse in the active layer; (iii) charge transfer when excitons reach donor/acceptor interface and electron-hole (e-h) geminate pair forms; (iv) e-h geminate pairs dissociate with field assisted and free charge carriers are produced; (v) finally, the free carriers are transported through their respective phases to the electrodes in order to be extracted. The photovoltaic performance of devices is strongly dependent on the light harvesting, energy levels of materials, the morphology of active layers, electrodes, and so on. This thesis is mainly discussing how the above factors such as molecular structure, morphology of active layer and device structure affect photovoltaic performance of solar cells. We used a class of donor-acceptor (D-A) molecules and a class of X-shaped oligothiophene as donors and PCBM as acceptor and investigated the relation between the molecular structure and their photovoltaic performance; we investigated the photocurrent generation of active layers with different morphology which were controlled by thermal annealing and processed by different solvents; We used high-conductivity PEDOT:PSS as anode to replace typical indium tin oxide (ITO) for preparing polymer solar cells on flexible substrates. Based on the flexible and polymer-anode devices, we constructed V- and W- shaped solar cells which can trap light more efficiently than the planar devices; we fabricated inverted semitransparent vacuum-free solar cells using ITO as cathode and PEDOT as anodes. More details are now listed below,
     1. In the Introduction part, the basic concepts of organic and polymer heterojunction solar cells are described, including the device structure, work principle, important steps during the development history, characterization and related instruments, influencing factors on the performance, and reviewed the recent work focusing on materials of active layers, device physics and processing, novel device structure, and so on.
     2. A class (three molecules) of donor-acceptor molecules and a class (four molecules) of X-shaped oligothiophene were used as donors separately, PCBM as acceptor for preparing solar cells. In the donor-acceptor molecules, the donor unit is carbazole unit or phenothiazine and the acceptor unit is malononitrile derivative or 3-(1,3-dithiolan-2-yl)pentane-2,4-dione. The results of the devices based on D-A molecules shows that the open-circuit voltage (VOC) and short-circuit current (JSC) can be adjusted by changing the electron-donating ability of donor unit and electron-withdrawing ability of acceptor unit. The absorption from the internal charge transition (ICT) locates in the long-wavelength region and can contribute the photocurrent efficiently. The results of the devices based on X-shaped oligothiophenes shows that as the numbers of branched thiophene unit increase, the conjugated interaction becomes stronger resulting in absorption towards longer wavelength, film-forming ability become better, which improve both the VOC and ISC and enhance the power conversion efficiency (PCE) from 0.008% to 0.8% under 100mW/cm2 white light illumination.
     3. The morphology of blend films consisting of MEH-PPV as donor and perylenediimide derivative as acceptor was investigated by atomic force microscocy (AFM). The blend films were thermally annealed and processed from chloroform and chlorobenzene solution. AFM measurement shows in the blend films large crystal-like perylenediimide derivative aggregates appear during the thermal annealing and when processed from chlorobenzene solution. The aggregates exhibit as more efficient sensitizer for photocurrent generation under low electric field because the e-h pairs are more loosely bound in the aggregates.
     4. We fabricated polymer heterojunction solar cells on flexible substrate using bilayer PEDOT as anode with the power conversion efficiency (PCE) reaching about 2.2% in small area under AM 1.5 100mW/cm2 illumination. Based on the flexible polymer-anode solar cells, we constructed relatively large-area V- and W- shaped solar cells. The PCE can be enhanced by about 60% with the folded opening angle of 30°comparing to the unfolding one.
     5. We demonstrated vacuum-free polymer solar cells where PEO-coated ITO as cathode and bilayer PEDOT:PSS as anode. The work function of ITO was measured to be 4.4eV and decreased to be 3.9eV when PEO coated on it. The device ITO/PEO/active layer/bilayer PEDOT was fabricated by sequentially spin-coating from fluids without vacuum processing. Its PCE reaches 0.54% and can be enhanced to 0.7%, by using a white paper as reflector on the backside of devices. The property of the photocurrent is sensitive to the light reflector backside makes the cells potentially used for image detection.
引文
[1]. United Nations Environment Programme (UNEP), Global environment outlook (GEO year book 2006). http://www.unep.org/geo/yearbook/yb2006/
    [2]. Intergovernmental Panel on Climate Changes (IPCC), Third assessment report - cli-mate changes 2001. http://www.meto.gov.uk
    [3]. Chapin, D. M.; Fuller, C. S.; Pearson, G. L., A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics 1954, 25, 676-677.
    [4]. Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W., Solar cell efficiency tables (version 31). Progress in Photovoltaics 2008, 16, (1), 61-67.
    [5]. Shockley, W.; Queisser, H. J., Detailed Balance Limit of Efficiency of p-n Junction Solar Cells. Journal of Applied Physics 1961, 32, (3), 510-519.
    [6]. M. A. Green, Solar cells - Operating principles, technology and system applications, University of New South Wales, Sydney, (1992).
    [7]. Mihailetchi, V. D., Device Physics of Organic Bulk Heterojunction Solar Cells, University of Groningen. PhD Thesis 2005.
    [8]. Gunes, S.; Neugebauer, H.; Sariciftci, N. S., Conjugated polymer-based organic solar cells. Chemical Reviews 2007, 107, (4), 1324-1338.
    [9]. Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C., Plastic solar cells. Advanced Functional Materials 2001, 11, (1), 15-26.
    [10]. Hoppe, H.; Sariciftci, N. S., Organic solar cells: An overview. Journal of Materials Research 2004, 19, (7), 1924-1945.
    [11]. Thompson, B. C.; Frechet, J. M. J., Organic photovoltaics - Polymer-fullerene composite solar cells. Angewandte Chemie-International Edition 2008, 47, (1), 58-77.
    [12]. Jorgensen, M.; Norrman, K.; Krebs, F. C., Stability/degradation of polymer solar cells. Solar Energy Materials and Solar Cells 2008, 92, (7), 686-714.
    [13]. Winder, C.; Sariciftci, N. S., Low bandgap polymers for photon harvesting in bulk heterojunction solar cells. Journal of Materials Chemistry 2004, 14, (7), 1077-1086.
    [14]. Coakley, K. M.; McGehee, M. D., Conjugated polymer photovoltaic cells. Chemistry of Materials 2004, 16, (23), 4533-4542.
    [15]. Bundgaard, E.; Krebs, F. C., Low band gap polymers for organic photovoltaics. Solar Energy Materials and Solar Cells 2007, 91, (11), 954-985.
    [16]. Ma, W. L.; Yang, C. Y.; Gong, X.; Lee, K.; Heeger, A. J., Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Advanced Functional Materials 2005, 15, (10), 1617-1622.
    [17]. Peet, J.; Kim, J. Y.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. C., Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nature Materials 2007, 6, (7), 497-500.
    [18]. Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T. Q.; Dante, M.; Heeger, A. J., Efficient tandem polymer solar cells fabricated by all-solution processing. Science 2007, 317, (5835), 222-225.
    [19]. Li, G.; Shrotriya, V.; Huang, J. S.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y., High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials 2005, 4, (11), 864-868.
    [20]. Xue, J. G.; Uchida, S.; Rand, B. P.; Forrest, S. R., 4.2% efficient organic photovoltaic cells with low series resistances. Applied Physics Letters 2004, 84, (16), 3013-3015.
    [21]. Xue, J. G.; Rand, B. P.; Uchida, S.; Forrest, S. R., A hybrid planar-mixed molecular heterojunction photovoltaic cell. Advanced Materials 2005, 17, (1), 66-71.
    [22]. Wang, E. G.; Wang, L.; Lan, L. F.; Luo, C.; Zhuang, W. L.; Peng, J. B.; Cao, Y., High-performance polymer heterojunction solar cells of a polysilafluorene derivative. Applied Physics Letters 2008, 92, (3), 033307.
    [23]. Marks, R. N.; Halls, J. J. M.; Bradley, D. D. C.; Friend, R. H.; Holmes, A. B., The Photovoltaic Response in Poly(P-Phenylene Vinylene) Thin-Film Devices. Journal of Physics-Condensed Matter 1994, 6, (7), 1379-1394.
    [24]. Yu, G.; Zhang, C.; Heeger, A. J., Dual-Function Semiconducting Polymer Devices - Light-Emitting and Photodetecting Diodes. Applied Physics Letters 1994, 64, (12), 1540-1542.
    [25]. Antoniadis, H.; Hsieh, B. R.; Abkowitz, M. A.; Jenekhe, S. A.; Stolka, M., Photovoltaic and Photoconductive Properties of Aluminum Poly(P-Phenylene Vinylene) Interfaces. Synthetic Metals 1994, 62, (3), 265-271.
    [26]. Tang, C. W., Two-Layer Organic Photovoltaic Cell. Applied Physics Letters 1986, 48, (2), 183-185.
    [27]. Pettersson, L. A. A.; Roman, L. S.; Inganas, O., Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. Journal of Applied Physics 1999, 86, (1), 487-496.
    [28]. Halls, J. J. M.; Pichler, K.; Friend, R. H.; Moratti, S. C.; Holmes, A. B., Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C-60 heterojunction photovoltaic cell. Applied Physics Letters 1996, 68, (22), 3120-3122.
    [29]. Kietzke, T.; Egbe, D. A. M.; Horhold, H. H.; Neher, D., Comparative study of M3EH-PPV-based bilayer photovoltaic devices. Macromolecules 2006, 39, (12), 4018-4022.
    [30]. Alam, M. M.; Jenekhe, S. A., Efficient solar cells from layered nanostructures of donor and acceptor conjugated polymers. Chemistry of Materials 2004, 16, (23), 4647-4656.
    [31]. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J., Polymer Photovoltaic Cells -Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions. Science 1995, 270, (5243), 1789-1791.
    [32].Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend, R. H.; Moratti, S. C.; Holmes, A. B., Efficient Photodiodes from Interpenetrating Polymer Networks. Nature 1995, 376, (6540), 498-500.
    [33]. Halls, J. J. M.; Friend, R. H., The photovoltaic effect in a poly(p-phenylenevinylene)/perylene heterojunction. Synthetic Metals 1997, 85, (1-3), 1307-1308.
    [34]. Kietzke, T.; Horhold, H. H.; Neher, D., Efficient polymer solar cells based on M3EH-PPV. Chemistry of Materials 2005, 17, (26), 6532-6537.
    [35]. Dittmer, J. J.; Marseglia, E. A.; Friend, R. H., Electron trapping in dye/polymer blend photovoltaic cells. Advanced Materials 2000, 12, (17), 1270-1274.
    [36]. Granstrom, M.; Petritsch, K.; Arias, A. C.; Lux, A.; Andersson, M. R.; Friend, R. H., Laminated fabrication of polymeric photovoltaic diodes. Nature 1998, 395, (6699), 257-260.
    [37]. Chen, L. C.; Godovsky, D.; Inganas, O.; Hummelen, J. C.; Janssens, R. A. J.; Svensson, M.; Andersson, M. R., Polymer photovoltaic devices from stratified multilayers of donor-acceptor blends. Advanced Materials 2000, 12, (18), 1367-1370.
    [38]. Gregg, B. A.; Hanna, M. C., Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation. Journal of Applied Physics 2003, 93, (6), 3605-3614.
    [39]. Gregg, B. A., Excitonic solar cells. Journal of Physical Chemistry B 2003, 107, (20), 4688-4698.
    [40]. Schweitzer, B.; Bassler, H., Excitons in conjugated polymers. Synthetic Metals 2000, 109, (1-3), 1-6.
    [41]. Barth, S.; Bassler, H., Intrinsic photoconduction in PPV-type conjugated polymers. Physical Review Letters 1997, 79, (22), 4445-4448.
    [42]. Haugeneder, A.; Neges, M.; Kallinger, C.; Spirkl, W.; Lemmer, U.; Feldmann, J.; Scherf, U.; Harth, E.; Gugel, A.; Mullen, K., Exciton diffusion and dissociation in conjugated polymer fullerene blends and heterostructures. Physical Review B 1999, 59, (23), 15346-15351.
    [43]. Stubinger, T.; Brutting, W., Exciton diffusion and optical interference in organic donor-acceptor photovoltaic cells. Journal of Applied Physics 2001, 90, (7), 3632-3641.
    [44]. Theander, M.; Yartsev, A.; Zigmantas, D.; Sundstrom, V.; Mammo, W.; Andersson, M. R.; Inganas, O., Photoluminescence quenching at a polythiophene/C-60 heterojunction. Physical Review B 2000, 61, (19), 12957-12963.
    [45]. Maniloff, E. S.; Klimov, V. I.; McBranch, D. W., Intensity-dependent relaxation dynamics and the nature of the excited-state species in solid-state conducting polymers. Physical Review B 1997, 56, (4), 1876-1881.
    [46]. Vacar, D.; Maniloff, E. S.; McBranch, D. W.; Heeger, A. J., Charge-transfer range for photoexcitations in conjugated polymer/fullerene bilayers and blends. Physical Review B 1997, 56,(8), 4573-4577.
    [47]. Drees, M.; Premaratne, K.; Graupner, W.; Heflin, J. R.; Davis, R. M.; Marciu, D.; Miller, M., Creation of a gradient polymer-fullerene interface in photovoltaic devices by thermally controlled interdiffusion. Applied Physics Letters 2002, 81, (24), 4607-4609.
    [48]. Crispin, X.; Marciniak, S.; Osikowicz, W.; Zotti, G.; Van der Gon, A. W. D.; Louwet, F.; Fahlman, M.; Groenendaal, L.; De Schryver, F.; Salaneck, W. R., Conductivity, morphology, interfacial chemistry, and stability of poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate): A photoelectron spectroscopy study. Journal of Polymer Science Part B-Polymer Physics 2003, 41, (21), 2561-2583.
    [49]. Zhang, F. L.; Gadisa, A.; Inganas, O.; Svensson, M.; Andersson, M. R., Influence of buffer layers on the performance of polymer solar cells. Applied Physics Letters 2004, 84, (19), 3906-3908.
    [50]. Brabec, C. J.; Shaheen, S. E.; Winder, C.; Sariciftci, N. S.; Denk, P., Effect of LiF/metal electrodes on the performance of plastic solar cells. Applied Physics Letters 2002, 80, (7), 1288-1290.
    [51]. Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S.; Padinger, F.; Fromherz, T.; Hummelen, J. C., 2.5% efficient organic plastic solar cells. Applied Physics Letters 2001, 78, (6), 841-843.
    [52]. Padinger, F.; Rittberger, R. S.; Sariciftci, N. S., Effects of postproduction treatment on plastic solar cells. Advanced Functional Materials 2003, 13, (1), 85-88.
    [53]. Andersson, L. M.; Zhang, F. L.; Inganas, O., Stoichiometry, mobility, and performance in bulk heterojunction solar cells. Applied Physics Letters 2007, 91, (7), 071108.
    [54]. Zhou, Q. M.; Hou, Q.; Zheng, L. P.; Deng, X. Y.; Yu, G.; Cao, Y., Fluorene-based low band-gap copolymers for high performance photovoltaic devices. Applied Physics Letters 2004, 84, (10), 1653-1655.
    [55]. Standard test conditions. http://ecotec-energy.com/gekuehlte_photovoltaik/bedingungen_e.htm
    [56]. Zhang, F. L.; Perzon, E.; Wang, X. J.; Mammo, W.; Andersson, M. R.; Inganas, O., Polymer solar cells based on a low-bandgap fluorene copolymer and a fullerene derivative with photocurrent extended to 850 nm. Advanced Functional Materials 2005, 15, (5), 745-750.
    [57]. Wang, X. J.; Perzon, E.; Oswald, F.; Langa, F.; Admassie, S.; Andersson, M. R.; Inganas, O., Enhanced photocurrent spectral response in low-bandgap polyfluorene and C-70-derivative-based solar cells. Advanced Functional Materials 2005, 15, (10), 1665-1670.
    [58]. Wang, X. J.; Perzon, E.; Delgado, J. L.; de la Cruz, P.; Zhang, F. L.; Langa, F.; Andersson, M.; Inganas, O., Infrared photocurrent spectral response from plastic solar cell with low-band-gap polyfluorene and fullerene derivative. Applied Physics Letters 2004, 85, (21), 5081-5083.
    [59]. Wang, X. J.; Perzon, E.; Mammo, W.; Oswald, F.; Admassie, S.; Persson, N. K.; Langa, F.; Andersson, M. R.; Inganas, O., Polymer solar cells with low-bandgap polymers blended withC-70-derivative give photocurrent at 1 mu m. Thin Solid Films 2006, 511, 576-580.
    [60]. Mihailetchi, V. D.; Xie, H. X.; de Boer, B.; Koster, L. J. A.; Blom, P. W. M., Charge transport and photocurrent generation in poly (3-hexylthiophene): Methanofullerene bulk-heterojunction solar cells. Advanced Functional Materials 2006, 16, (5), 699-708.
    [61]. Hoppe, H.; Niggemann, M.; Winder, C.; Kraut, J.; Hiesgen, R.; Hinsch, A.; Meissner, D.; Sariciftci, N. S., Nanoscale morphology of conjugated polymer/fullerene-based bulk-heterojunction solar cells. Advanced Functional Materials 2004, 14, (10), 1005-1011.
    [62]. Hoppe, H.; Sariciftci, N. S., Morphology of polymer/fullerene bulk heterojunction solar cells. Journal of Materials Chemistry 2006, 16, (1), 45-61.
    [63]. Lacic, S.; Inganas, O., Modeling electrical transport in blend heterojunction organic solar cells. Journal of Applied Physics 2005, 97, (12), 124901.
    [64]. Sievers, D. W.; Shrotriya, V.; Yang, Y., Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells. Journal of Applied Physics 2006, 100, (11), 114509.
    [65]. Zhang, F. L.; Johansson, M.; Andersson, M. R.; Hummelen, J. C.; Inganas, O., Polymer solar cells based on MEH-PPV and PCBM. Synthetic Metals 2003, 137, (1-3), 1401-1402.
    [66]. Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L.; Hummelen, J. C., Origin of the open circuit voltage of plastic solar cells. Advanced Functional Materials 2001, 11, (5), 374-380.
    [67]. Gadisa, A.; Svensson, M.; Andersson, M. R.; Inganas, O., Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/fullerene derivative. Applied Physics Letters 2004, 84, (9), 1609-1611.
    [68]. Scharber, M. C.; Wuhlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. L., Design rules for donors in bulk-heterojunction solar cells - Towards 10 % energy-conversion efficiency. Advanced Materials 2006, 18, (6), 789-794.
    [69]. Liu, J.; Shi, Y. J.; Yang, Y., Solvation-induced morphology effects on the performance of polymer-based photovoltaic devices. Advanced Functional Materials 2001, 11, (6), 420-424.
    [70]. Scharber, M. C.; Schultz, N. A.; Sariciftci, N. S.; Brabec, C. J., Optical- and photocurrent-detected magnetic resonance studies on conjugated polymer/fullerene composites. Physical Review B 2003, 67, (8), 085202.
    [71]. van Duren, J. K. J.; Yang, X. N.; Loos, J.; Bulle-Lieuwma, C. W. T.; Sieval, A. B.; Hummelen, J. C.; Janssen, R. A. J., Relating the morphology of poly(p-phenylene vinylene)/methanofullerene blends to solar-cell performance. Advanced Functional Materials 2004, 14, (5), 425-434.
    [72]. Mihailetchi, V. D.; Blom, P. W. M.; Hummelen, J. C.; Rispens, M. T., Cathode dependence of the open-circuit voltage of polymer : fullerene bulk heterojunction solar cells. Journal of Applied Physics 2003, 94, (10), 6849-6854.
    [73]. Schilinsky, P.; Waldauf, C.; Hauch, J.; Brabec, C. J., Simulation of light intensity dependent current characteristics of polymer solar cells. Journal of Applied Physics 2004, 95, (5), 2816-2819.
    [74]. Riedel, I.; Dyakonov, V., Influence of electronic transport properties of polymer-fullerene blends on the performance of bulk heterojunction photovoltaic devices. Physica Status Solidi a-Applied Research 2004, 201, (6), 1332-1341.
    [75]. Waldauf, C.; Scharber, M. C.; Schilinsky, P.; Hauch, J. A.; Brabec, C. J., Physics of organic bulk heterojunction devices for photovoltaic applications. Journal of Applied Physics 2006, 99, (10), 104503.
    [76]. Nelson, J.; THE PHYSICS OF SOLAR CELLS, World Scientific, 2003.
    [77]. Peumans, P.; Forrest, S. R., Very-high-efficiency double-heterostructure copper phthalocyanine/C-60 photovoltaic cells. Applied Physics Letters 2001, 79, (1), 126-128.
    [78]. Xue, J. G.; Uchida, S.; Rand, B. P.; Forrest, S. R., Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions. Applied Physics Letters 2004, 85, (23), 5757-5759.
    [79]. Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F., Photoinduced Electron-Transfer from a Conducting Polymer to Buckminsterfullerene. Science 1992, 258, (5087), 1474-1476.
    [80]. Zerza, G.; Brabec, C. J.; Cerullo, G.; De Silvestri, S.; Sariciftci, N. S., Ultrafast charge transfer in conjugated polymer-fullerene composites. Synthetic Metals 2001, 119, (1-3), 637-638.
    [81]. Mihailetchi, V. D.; van Duren, J. K. J.; Blom, P. W. M.; Hummelen, J. C.; Janssen, R. A. J.; Kroon, J. M.; Rispens, M. T.; Verhees, W. J. H.; Wienk, M. M., Electron transport in a methanofullerene. Advanced Functional Materials 2003, 13, (1), 43-46.
    [82]. Wienk, M. M.; Kroon, J. M.; Verhees, W. J. H.; Knol, J.; Hummelen, J. C.; van Hal, P. A.; Janssen, R. A. J., Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angewandte Chemie-International Edition 2003, 42, (29), 3371-3375.
    [83]. Yao, Y.; Shi, C. J.; Li, G.; Shrotriya, V.; Pei, Q. B.; Yang, Y., Effects of C-70 derivative in low band gap polymer photovoltaic devices: Spectral complementation and morphology optimization. Applied Physics Letters 2006, 89, (15), 153507.
    [84]. Lenes, M.; Wetzelaer, G. A. H.; Kooistra, F. B.; Veenstra, S. C.; Hummelen, J. C.; Blom, P. W. M., Fullerene Bisadducts for Enhanced Open-Circuit Voltages and Efficiencies in Polymer Solar Cells. Advanced Materials 2008, 20, (11), 2116-2119.
    [85]. Kooistra, F. B.; Mihailetchi, V. D.; Popescu, L. M.; Kronholm, D.; Blom, P. W. M.; Hummelen, J. C., New C-84 derivative and its application in a bulk heterojunction solar cell. Chemistry of Materials 2006, 18, (13), 3068-3073.
    [86]. Fullerene derivatives. http://www.solennebv.com/content/section/2/15/
    [87]. Dittmer, J. J.; Lazzaroni, R.; Leclere, P.; Moretti, P.; Granstrom, M.; Petritsch, K.; Marseglia, E. A.; Friend, R. H.; Bredas, J. L.; Rost, H.; Holmes, A. B., Crystal network formation in organic solar cells. Solar Energy Materials and Solar Cells 2000, 61, (1), 53-61.
    [88]. Li, J. L.; Dierschke, F.; Wu, J. S.; Grimsdale, A. C.; Mullen, K., Poly(2,7-carbazole) and perylene tetracarboxydiimide: a promising donor/acceptor pair for polymer solar cells. Journal of Materials Chemistry 2006, 16, (1), 96-100.
    [89]. Reference Solar Spectral Irradiance: Air Mass 1.5. http://rredc.nrel.gov/solar/spectra/am1.5/
    [90]. Wienk, M. M.; Turbiez, M.; Gilot, J.; Janssen, R. A. J., Narrow-Bandgap Diketo-Pyrrolo-Pyrrole Polymer Solar Cells: The Effect of Processing on the Performance. Advanced Materials 2008, 20, (13), 2556-2560.
    [91]. Perzon, E.; Zhang, F. L.; Andersson, M.; Mammo, W.; Inganas, O.; Andersson, M. R., A conjugated polymer for near infrared optoelectronic applications. Advanced Materials 2007, 19, (20), 3308-3311.
    [92]. Inganas, O.; Svensson, M.; Zhang, F.; Gadisa, A.; Persson, N. K.; Wang, X.; Andersson, M. R., Low bandgap alternating polyfluorene copolymers in plastic photodiodes and solar cells. Applied Physics a-Materials Science & Processing 2004, 79, (1), 31-35.
    [93]. Soci, C.; Hwang, I. W.; Moses, D.; Zhu, Z.; Waller, D.; Gaudiana, R.; Brabec, C. J.; Heeger, A. J., Photoconductivity of a low-bandgap conjugated polymer. Advanced Functional Materials 2007, 17, (4), 632-636.
    [94]. Muhlbacher, D.; Scharber, M.; Morana, M.; Zhu, Z. G.; Waller, D.; Gaudiana, R.; Brabec, C., High photovoltaic performance of a low-bandgap polymer. Advanced Materials 2006, 18, (21), 2884-2889.
    [95]. Camaioni, N.; Ridolfi, G.; Fattori, V.; Favaretto, L.; Barbarella, G., Branched thiophene-based oligomers as electron acceptors for organic photovoltaics. Journal of Materials Chemistry 2005, 15, (22), 2220-2225.
    [96]. de Bettignies, R.; Nicolas, Y.; Blanchard, P.; Levillain, E.; Nunzi, J. M.; Roncali, J., Planarized star-shaped oligothiophenes as a new class of organic semiconductors for heterojunction solar cells. Advanced Materials 2003, 15, (22), 1939-1943.
    [97]. Roquet, S.; Cravino, A.; Leriche, P.; Aleveque, O.; Frere, P.; Roncali, J., Triphenylamine-thienylenevinylene hybrid systems with internal charge transfer as donor materials for heterojunction solar cells. Journal of the American Chemical Society 2006, 128, (10), 3459-3466.
    [98]. http://www.clevios.com/index.php?page_id=995&prod_service_id=443
    [99]. Zhang, F. L..; Ceder, M.; Inganas, O., Enhancing the photovoltage of polymer solar cells by using a modified cathode. Advanced Materials 2007, 19, (14), 1835-1838.
    [100]. Kim, J. Y.; Kim, S. H.; Lee, H. H.; Lee, K.; Ma, W. L.; Gong, X.; Heeger, A. J., New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Advanced Materials 2006, 18, (5), 572-576.
    [101]. Bjorstrom, C. M.; Magnusson, K. O.; Moons, E., Control of phase separation in blends of polyfluorene (co)polymers and the C-60-derivative PCBM. Synthetic Metals 2005, 152, (1-3),109-112.
    [102].Zhang, F. L.; Jespersen, K. G.; Bjorstrom, C.; Svensson, M.; Andersson, M. R.; Sundstrom, V.; Magnusson, K.; Moons, E.; Yartsev, A.; Inganas, O., Influence of solvent mixing on the morphology and performance of solar cells based on polyfluorene copolymer/fullerene blends. Advanced Functional Materials 2006, 16, (5), 667-674.
    [103].Yang, X. N.; van Duren, J. K. J.; Janssen, R. A. J.; Michels, M. A. J.; Loos, J., Morphology and thermal stability of the active layer in poly(p-phenylenevinylene)/methanofullerene plastic photovoltaic devices. Macromolecules 2004, 37, (6), 2151-2158.
    [104].Yang, X. N.; Loos, J.; Veenstra, S. C.; Verhees, W. J. H.; Wienk, M. M.; Kroon, J. M.; Michels, M. A. J.; Janssen, R. A. J., Nanoscale morphology of high-performance polymer solar cells. Nano Letters 2005, 5, (4), 579-583.
    [105].Chirvase, D.; Parisi, J.; Hummelen, J. C.; Dyakonov, V., Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites. Nanotechnology 2004, 15, (9), 1317-1323.
    [106].Li, G.; Shrotriya, V.; Yao, Y.; Huang, J. S.; Yang, Y., Manipulating regioregular poly(3-hexylthiophene): [6,6]-phenyl-C-61-butyric acid methyl ester blends - route towards high efficiency polymer solar cells. Journal of Materials Chemistry 2007, 17, (30), 3126-3140.
    [107].Li, G.; Yao, Y.; Yang, H.; Shrotriya, V.; Yang, G.; Yang, Y., "Solvent annealing" effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes. Advanced Functional Materials 2007, 17, (10), 1636-1644.
    [108].McNeill, C. R.; Frohne, H.; Holdsworth, J. L.; Furst, J. E.; King, B. V.; Dastoor, P. C., Direct photocurrent mapping of organic solar cells using a near-field scanning optical microscope. Nano Letters 2004, 4, (2), 219-223.
    [109].McNeill, C. R.; Frohne, H.; Holdsworth, J. L.; Dastoor, P. C., Direct influence of morphology on current generation in conjugated polymer : methanofullerene solar cells measured by near-field scanning photocurrent microscopy. Synthetic Metals 2004, 147, (1-3), 101-104.
    [110].McNeill, C. R.; Frohne, H.; Holdsworth, J. L.; Dastoor, P. C., Near-field scanning photocurrent measurements of polyfluorene blend devices: Directly correlating morphology with current generation. Nano Letters 2004, 4, (12), 2503-2507.
    [111].Zhang, F. L.; Johansson, M.; Andersson, M. R.; Hummelen, J. C.; Inganas, O., Polymer photovoltaic cells with conducting polymer anodes. Advanced Materials 2002, 14, (9), 662-665.
    [112].Huang, J.; Wang, X.; Kim, Y.; deMello, A. J.; Bradley, D. D. C.; Demello, J. C., High efficiency flexible ITO-free polymer/fullerene photodiodes. Physical Chemistry Chemical Physics 2006, 8, (33), 3904-3908.
    [113].Kushto, G. P.; Kim, W. H.; Kafafi, Z. H., Flexible organic photovoltaics using conducting polymer electrodes. Applied Physics Letters 2005, 86, (9), 093502.
    [114].Huang, J. S.; Li, G.; Yang, Y., A semi-transparent plastic solar cell fabricated by alamination process. Advanced Materials 2008, 20, (3), 415-419.
    [115].de Boer, B.; Hadipour, A.; Blom, P. W. M., Organic Tandem and Multi-Junction Solar Cells. Advanced Functional Materials 2008, 18, 169-181.
    [116].Hadipour, A.; de Boer, B.; Wildeman, J.; Kooistra, F. B.; Hummelen, J. C.; Turbiez, M. G. R.; Wienk, M. M.; Janssen, R. A. J.; Blom, P. W. M., Solution-processed organic tandem solar cells. Advanced Functional Materials 2006, 16, (14), 1897-1903.
    [117].Kawano, K.; Ito, N.; Nishimori, T.; Sakai, J., Open circuit voltage of stacked bulk heterojunction organic solar cells. Applied Physics Letters 2006, 88, (7), 073514.
    [118].Tvingstedt, K.; Andersson, V.; Zhang, F.; Inganas, O., Folded reflective tandem polymer solar cell doubles efficiency. Applied Physics Letters 2007, 91, (12), 123514.
    [119].Andersson, V.; Tvingstedt, K.; Inganas, O., Optical modelling of a folded organic solar cell. Journal of Applied Physics 2008, 103, (9), 094520.
    [120].Rim, S. B.; Zhao, S.; Scully, S. R.; McGehee, M. D.; Peumans, P., An effective light trapping configuration for thin-film solar cells. Applied Physics Letters 2007, 91, (24), 243501.
    [121].Niggemann, M.; Glatthaar, M.; Lewer, P.; Muller, C.; Wagner, J.; Gombert, A., Functional microprism substrate for organic solar cells. Thin Solid Films 2006, 511, 628-633.
    [122].Zhou, Y. H.; Peng, P.; Han, L.; Tian, W. J., Novel donor-acceptor molecules as donors for bulk heterojunction solar cells. Synthetic Metals 2007, 157, (13-15), 502-507.
    [123].Sun, X. B.; Zhou, Y. H.; Wu, W. C.; Liu, Y. Q.; Tian, W. J.; Yu, G.; Qiu, W. F.; Chen, S. Y.; Zhu, D. B., X-shaped oligothiophenes as a new class of electron donors for bulk-heterojunction solar cells. Journal of Physical Chemistry B 2006, 110, (15), 7702-7707.
    [124].Zhou, Y. H.; Wang, Y. N.; Wu, W. C.; Wang, H.; Han, L.; Tian, W. J.; Bassler, H., Spectrally dependent photocurrent generation in aggregated MEH-PPV : PPDI donor-acceptor blends. Solar Energy Materials and Solar Cells 2007, 91, (19), 1842-1848.
    [125].Zhou, Y. H.; Yang, Z. F.; Wu, W. C.; Xia, H. J.; Wen, S. P.; Tian, W. J., Solvent and electric field dependence of the photocurrent generation in donor : acceptor blend system. Chinese Physics 2007, 16, (7), 2136-2141.
    [126].Zhou, Y. H.; Zhang, F. L.; Tvingstedt, K.; Barrau, S.; Li, F. H.; Tian, W. J.; Inganas, O., Investigation on polymer anode design for flexible polymer solar cells. Applied Physics Letters 2008, 92, (23), 233308.
    [127].Zhou, Y. H.; Zhang, F. L.; Tvingstedt, K.; Tian, W. J.; Ingan?s, O., Multifolded polymer solar cells on flexible substrates. Applied Physics Letters 2008, 93, (3), 033302.
    [1]. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J., Polymer Photovoltaic Cells - Enhanced Efficiencies Via a Network of Internal Donor-Acceptor Heterojunctions. Science 1995, 270, (5243), 1789-1791.
    [2]. Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend, R. H.; Moratti, S. C.; Holmes, A. B., Efficient Photodiodes from Interpenetrating Polymer Networks. Nature 1995, 376, (6540), 498-500.
    [3]. Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T. Q.; Dante, M.; Heeger, A. J., Efficient tandem polymer solar cells fabricated by all-solution processing. Science 2007, 317, (5835), 222-225.
    [4]. Wang, E. G.; Wang, L.; Lan, L. F.; Luo, C.; Zhuang, W. L.; Peng, J. B.; Cao, Y., High-performance polymer heterojunction solar cells of a polysilafluorene derivative. Applied Physics Letters 2008, 92, (3), 033307.
    [5]. Ma, W. L.; Yang, C. Y.; Gong, X.; Lee, K.; Heeger, A. J., Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Advanced Functional Materials 2005, 15, (10), 1617-1622.
    [6]. Inganas, O.; Svensson, M.; Zhang, F.; Gadisa, A.; Persson, N. K.; Wang, X.; Andersson, M. R., Low bandgap alternating polyfluorene copolymers in plastic photodiodes and solar cells. Applied Physics a-Materials Science & Processing 2004, 79, (1), 31-35.
    [7]. Winder, C.; Sariciftci, N. S., Low bandgap polymers for photon harvesting in bulk heterojunction solar cells. Journal of Materials Chemistry 2004, 14, (7), 1077-1086.
    [8]. Bundgaard, E.; Krebs, F. C., Low band gap polymers for organic photovoltaics. Solar Energy Materials and Solar Cells 2007, 91, (11), 954-985.
    [9]. Roquet, S.; Cravino, A.; Leriche, P.; Aleveque, O.; Frere, P.; Roncali, J., Triphenylamine-thienylenevinylene hybrid systems with internal charge transfer as donor materials for heterojunction solar cells. Journal of the American Chemical Society 2006, 128, (10), 3459-3466.
    [10].Roncali, J.; Leriche, P.; Cravino, A., From one- to three-dimensional organic semiconductors: In search of the organic silicon? Advanced Materials 2007, 19, (16), 2045-2060.
    [11]. Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S.; Padinger, F.; Fromherz, T.; Hummelen, J. C., 2.5% efficient organic plastic solar cells. Applied Physics Letters 2001, 78, (6), 841-843.
    [12]. Padinger, F.; Rittberger, R. S.; Sariciftci, N. S., Effects of postproduction treatment on plasticsolar cells. Advanced Functional Materials 2003, 13, (1), 85-88.
    [13]. Li, G.; Yao, Y.; Yang, H.; Shrotriya, V.; Yang, G.; Yang, Y., "Solvent annealing" effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes. Advanced Functional Materials 2007, 17, (10), 1636-1644.
    [14]. Blom, P. W. M.; Mihailetchi, V. D.; Koster, L. J. A.; Markov, D. E., Device physics of polymer : fullerene bulk heterojunction solar cells. Advanced Materials 2007, 19, (12), 1551-1566.
    [15]. Hoppe, H.; Sariciftci, N. S., Morphology of polymer/fullerene bulk heterojunction solar cells. Journal of Materials Chemistry 2006, 16, (1), 45-61.
    [16]. Sun, M. L.; Wang, L.; Zhu, X. H.; Du, B.; Liu, R.; Yang, W.; Cao, Y., Near-infrared response photovoltaic device based on novel narrow band gap small molecule and PCBM fabricated by solution processing. Solar Energy Materials and Solar Cells 2007, 91, (18), 1681-1687.
    [17]. Xia, Y. J.; Wang, L.; Deng, X. Y.; Li, D. Y.; Zhu, X. H.; Cao, Y., Photocurrent response wavelength up to 1.1 mu m from photovoltaic cells based on narrow-band-gap conjugated polymer and fullerene derivative. Applied Physics Letters 2006, 89, (8), -.
    [18]. Zhang, F. L.; Perzon, E.; Wang, X. J.; Mammo, W.; Andersson, M. R.; Inganas, O., Polymer solar cells based on a low-bandgap fluorene copolymer and a fullerene derivative with photocurrent extended to 850 nm. Advanced Functional Materials 2005, 15, (5), 745-750.
    [19]. Zhou, Y. H.; Peng, P.; Han, L.; Tian, W. J., Novel donor-acceptor molecules as donors for bulk heterojunction solar cells. Synthetic Metals 2007, 157, (13-15), 502-507.
    [20]. Kulkarni, A. P.; Wu, P. T.; Kwon, T. W.; Jenekhe, S. A., Phenothiazine-phenylquinoline donor-acceptor molecules: Effects of structural isomerism on charge transfer photophysics and electroluminescence. Journal of Physical Chemistry B 2005, 109, (42), 19584-19594.
    [21]. Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L.; Hummelen, J. C., Origin of the open circuit voltage of plastic solar cells. Advanced Functional Materials 2001, 11, (5), 374-380.
    [22]. Scharber, M. C.; Wuhlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. L., Design rules for donors in bulk-heterojunction solar cells - Towards 10 % energy-conversion efficiency. Advanced Materials 2006, 18, (6), 789-794.
    [23]. de Bettignies, R.; Nicolas, Y.; Blanchard, P.; Levillain, E.; Nunzi, J. M.; Roncali, J., Planarized star-shaped oligothiophenes as a new class of organic semiconductors for heterojunction solar cells. Advanced Materials 2003, 15, (22), 1939-1943.
    [24]. Mazzeo, M.; Vitale, V.; Sala, F. D.; Pisignano, D.; Anni, M.; Barbarella, G.; Favaretto, L.; Zanelli, A.; Cingolani, R.; Gigli, G., New branched thiophene-based oligomers for bright organiclight-emitting devices. Advanced Materials 2003, 15, (24), 2060-2063.
    [25]. Camaioni, N.; Ridolfi, G.; Fattori, V.; Favaretto, L.; Barbarella, G., Branched thiophene-based oligomers as electron acceptors for organic photovoltaics. Journal of Materials Chemistry 2005, 15, (22), 2220-2225.
    [26]. Sun, X. B.; Zhou, Y. H.; Wu, W. C.; Liu, Y. Q.; Tian, W. J.; Yu, G.; Qiu, W. F.; Chen, S. Y.; Zhu, D. B., X-shaped oligothiophenes as a new class of electron donors for bulk-heterojunction solar cells. Journal of Physical Chemistry B 2006, 110, (15), 7702-7707.
    [27]. Sun, X. B.; Liu, Y. Q.; Chen, S. Y.; Qiu, W. F.; Yu, G.; Ma, Y. Q.; Qi, T.; Zhang, H. J.; Xu, X. J.; Zhu, D. B., X-shaped electroactive molecular materials based on oligothiophene architectures: Facile synthesis and photophysical and electrochemical properties. Advanced Functional Materials 2006, 16, (7), 917-925.
    [28]. Pommerehne, J.; Vestweber, H.; Guss, W.; Mahrt, R. F.; Bassler, H.; Porsch, M.; Daub, J., Efficient 2-Layer Leds on a Polymer Blend Basis. Advanced Materials 1995, 7, (6), 551-554.
    [29]. Liu, J.; Shi, Y. J.; Yang, Y., Solvation-induced morphology effects on the performance of polymer-based photovoltaic devices. Advanced Functional Materials 2001, 11, (6), 420-424.
    [1]. Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F., Photoinduced Electron-Transfer from a Conducting Polymer to Buckminsterfullerene. Science 1992, 258, (5087), 1474-1476.
    [2]. Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T. Q.; Dante, M.; Heeger, A. J., Efficient tandem polymer solar cells fabricated by all-solution processing. Science 2007, 317, (5835), 222-225.
    [3]. Inganas, O.; Svensson, M.; Zhang, F.; Gadisa, A.; Persson, N. K.; Wang, X.; Andersson, M. R., Low bandgap alternating polyfluorene copolymers in plastic photodiodes and solar cells. Applied Physics a-Materials Science & Processing 2004, 79, (1), 31-35.
    [4]. Winder, C.; Sariciftci, N. S., Low bandgap polymers for photon harvesting in bulk heterojunction solar cells. Journal of Materials Chemistry 2004, 14, (7), 1077-1086.
    [5]. Brabec, C. J.; Winder, C.; Sariciftci, N. S.; Hummelen, J. C.; Dhanabalan, A.; van Hal, P. A.; Janssen, R. A. J., A low-bandgap semiconducting polymer for photovoltaic devices and infrared emitting diodes. Advanced Functional Materials 2002, 12, (10), 709-712.
    [6]. Bundgaard, E.; Krebs, F. C., Low band gap polymers for organic photovoltaics. Solar Energy Materials and Solar Cells 2007, 91, (11), 954-985.
    [7]. Roquet, S.; Cravino, A.; Leriche, P.; Aleveque, O.; Frere, P.; Roncali, J., Triphenylamine-thienylenevinylene hybrid systems with internal charge transfer as donor materials for heterojunction solar cells. Journal of the American Chemical Society 2006, 128, (10), 3459-3466.
    [8]. Padinger, F.; Rittberger, R. S.; Sariciftci, N. S., Effects of postproduction treatment on plastic solar cells. Advanced Functional Materials 2003, 13, (1), 85-88.
    [9]. Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S.; Padinger, F.; Fromherz, T.; Hummelen, J. C., 2.5% efficient organic plastic solar cells. Applied Physics Letters 2001, 78, (6), 841-843.
    [10]. Ma, W. L.; Yang, C. Y.; Gong, X.; Lee, K.; Heeger, A. J., Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Advanced Functional Materials 2005, 15, (10), 1617-1622.
    [11]. Li, G.; Yao, Y.; Yang, H.; Shrotriya, V.; Yang, G.; Yang, Y., "Solvent annealing" effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes. Advanced Functional Materials 2007, 17, (10), 1636-1644.
    [12]. Blom, P. W. M.; Mihailetchi, V. D.; Koster, L. J. A.; Markov, D. E., Device physics of polymer : fullerene bulk heterojunction solar cells. Advanced Materials 2007, 19, (12), 1551-1566.
    [13]. Yang, C. Y.; Heeger, A. J., Morphology of composites of semiconducting polymers mixed with C-60. Synthetic Metals 1996, 83, (2), 85-88.
    [14]. Li, J. L.; Dierschke, F.; Wu, J. S.; Grimsdale, A. C.; Mullen, K., Poly(2,7-carbazole) and perylene tetracarboxydiimide: a promising donor/acceptor pair for polymer solar cells. Journal of Materials Chemistry 2006, 16, (1), 96-100.
    [15]. Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons, E.; Friend, R. H.; MacKenzie, J. D., Self-organized discotic liquid crystals for high-efficiency organic photovoltaics. Science 2001, 293, (5532), 1119-1122.
    [16]. Lu, S. L.; Niu, J. F.; Li, W.; Mao, J. W.; Jiang, J. X., Photophysics and morphology investigation based on perylenetetracarboxylate/polymer photovoltaic devices. Solar Energy Materials and Solar Cells 2007, 91, (4), 261-265.
    [17]. Shin, W. S.; Jung, H. H.; Kim, M. K.; Kim, M. R.; Kim, M. K.; Naidu, B. V. K.; Jin, S. H.; Lee, J. K.; Lee, J. W.; Gal, Y. S., Photovoltaic properties of N-pyrrolidinyl substituted perylenebis(dicarboximide) derivatives. Molecular Crystals and Liquid Crystals 2007, 462, 59-66.
    [18]. Shin, W. S.; Jeong, H. H.; Kim, M. K.; Jin, S. H.; Kim, M. R.; Lee, J. K.; Lee, J. W.; Gal, Y. S., Effects of functional groups at perylene diimide derivatives on organic photovoltaic device application. Journal of Materials Chemistry 2006, 16, (4), 384-390.
    [19]. Wu, W. C.; Zhou, Y. H.; Wen, S. P.; Han, L.; Tian, W. J., Effect of solvent on the performance of poly (2-methoxy-5-(2-ethyl-hexyloxy)-p-phenylene vinylene): N,N '-bis(1-ethylpropyl)-3,4,9,10-perylene bis(tetracarboxyl diimide) solar cells. Acta Physica Sinica 2007, 56, (8), 5003-5008.
    [20]. Dittmer, J. J.; Marseglia, E. A.; Friend, R. H., Electron trapping in dye/polymer blend photovoltaic cells. Advanced Materials 2000, 12, (17), 1270-1274.
    [21]. Dittmer, J. J.; Lazzaroni, R.; Leclere, P.; Moretti, P.; Granstrom, M.; Petritsch, K.; Marseglia, E. A.; Friend, R. H.; Bredas, J. L.; Rost, H.; Holmes, A. B., Crystal network formation in organic solar cells. Solar Energy Materials and Solar Cells 2000, 61, (1), 53-61.
    [22]. Neef, C. J.; Ferraris, J. P., MEH-PPV: Improved synthetic procedure and molecular weight control. Macromolecules 2000, 33, (7), 2311-2314.
    [23]. Del Cano, T.; Duff, J.; Aroca, R., Molecular spectra and molecular organization in thin solid films of bis(neopentylimido) perylene. Applied Spectroscopy 2002, 56, (6), 744-750.
    [24]. Barth, S.; Bassler, H., Intrinsic photoconduction in PPV-type conjugated polymers. Physical Review Letters 1997, 79, (22), 4445-4448.
    [25]. Arkhipov, V. I.; Emelianova, E. V.; Bassler, H., Hot exciton dissociation in a conjugated polymer. Physical Review Letters 1999, 82, (6), 1321-1324.
    [26]. Onsager, L., Initial recombination of ions. Physical Review Letters 1938, 54, (8), 554 - 557.
    [27]. Braun, C. L., Electric-field assisted dissociation of charge-transfer states as a mechanism of photocarrier production. Journal of Chemical Physics 1984, 80, (9), 4157-4161.
    [28]. Im, C.; Tian, W.; Bassler, H.; Fechtenkotter, A.; Watson, M. D.; Mullen, K., Photoconduction in organic donor-acceptor systems. Journal of Chemical Physics 2003, 119, (7), 3952-3957.
    [1]. Gunes, S.; Neugebauer, H.; Sariciftci, N. S., Conjugated polymer-based organic solar cells. Chemical Reviews 2007, 107, (4), 1324-1338.
    [2]. Al-Ibrahim, M.; Roth, H. K.; Sensfuss, S., Efficient large-area polymer solar cells on flexible substrates. Applied Physics Letters 2004, 85, (9), 1481-1483.
    [3]. Huang, J.; Wang, X.; Kim, Y.; deMello, A. J.; Bradley, D. D. C.; Demello, J. C., High efficiency flexible ITO-free polymer/fullerene photodiodes. Physical Chemistry Chemical Physics 2006, 8, (33), 3904-3908.
    [4]. Indium price. http://geology.com/articles/indium.shtml
    [5]. Zhang, F. L.; Johansson, M.; Andersson, M. R.; Hummelen, J. C.; Inganas, O., Polymer photovoltaic cells with conducting polymer anodes. Advanced Materials 2002, 14, (9), 662-665.
    [6]. Admassie, S.; Zhang, F. L.; Manoj, A. G.; Svensson, M.; Andersson, M. R.; Inganas, O., A polymer photodiode using vapour-phase polymerized PEDOT as an anode. Solar Energy Materials and Solar Cells 2006, 90, (2), 133-141.
    [7]. Kushto, G. P.; Kim, W. H.; Kafafi, Z. H., Flexible organic photovoltaics using conducting polymer electrodes. Applied Physics Letters 2005, 86, (9), 093502.
    [8]. Tvingstedt, K.; Inganas, O., Electrode grids for ITO-free organic photovoltaic devices. Advanced Materials 2007, 19, (19), 2893.
    [9]. CLEVIOS PH 500 - Product Information. http://www.clevios.com/index.php?page_id=995&prod_service_id=440
    [10]. Fehse, K.; Walzer, K.; Leo, K.; Lovenich, W.; Elschner, A., Highly conductive polymer anodes as replacements for inorganic materials in high-efficiency organic light-emitting diodes. Advanced Materials 2007, 19, (3), 441-444.
    [11]. Ahlswede, E.; Muhleisen, W.; Wahi, M. W. M.; Hanisch, J.; Powalla, M., Highly efficient organic solar cells with printable low-cost transparent contacts. Applied Physics Letters 2008, 92, (14), 143307.
    [12]. Zhou, Y. H.; Zhang, F.; Tvingstedt, K.; Barrau, S.; Li, F. H.; Tian, W. J.; Inganas, O., Investigation on polymer anodes for flexible polymer solar cells. Applied Physics Letters 2008, 92, (23), 233308.
    [13]. Lacic, S.; Inganas, O., Modeling electrical transport in blend heterojunction organic solar cells. Journal of Applied Physics 2005, 97, (12), 124901.
    [14]. Sievers, D. W.; Shrotriya, V.; Yang, Y., Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells. Journal of Applied Physics 2006, 100, (11), 114509
    [15]. de Boer, B.; Hadipour, A.; Blom, P. W. M., Organic Tandem and Multi-Junction Solar Cells. Advanced Functional Materials 2008, 18, 169-181.
    [16]. Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T. Q.; Dante, M.; Heeger, A. J., Efficient tandem polymer solar cells fabricated by all-solution processing. Science 2007, 317, (5835), 222-225.
    [17]. Niggemann, M.; Glatthaar, M.; Lewer, P.; Muller, C.; Wagner, J.; Gombert, A., Functional microprism substrate for organic solar cells. Thin Solid Films 2006, 511, 628-633.
    [18]. Tvingstedt, K.; Tormen, M.; Businaro, L.; Inganas, O., Light confinement in thin film organic photovoltaic cells. Proc. SPIE 2006, 6197, 61970C.
    [19]. Kim, J. Y.; Kim, S. H.; Lee, H. H.; Lee, K.; Ma, W. L.; Gong, X.; Heeger, A. J., New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer. Advanced Materials 2006, 18, (5), 572-576.
    [20]. Tvingstedt, K.; Andersson, V.; Zhang, F.; Inganas, O., Folded reflective tandem polymer solar cell doubles efficiency. Applied Physics Letters 2007, 91, (12), 123514.
    [21]. Andersson, V.; Tvingstedt, K.; Inganas, O., Optical modelling of a folded organic solar cell. Journal of Applied Physics 2008, 103, (9), 094520.
    [22]. Rim, S. B.; Zhao, S.; Scully, S. R.; McGehee, M. D.; Peumans, P., An effective light trapping configuration for thin-film solar cells. Applied Physics Letters 2007, 91, (24), 243501.
    [23]. Zhou, Y. H.; Zhang, F.; Tvingstedt, K.; Tian, W. J.; Inganas, O., Multi-folded polymer solar cells on flexible substrates. Applied Physics Letters 2008, 93, (2), 033302.
    [24]. Zhang, F. L.; Jespersen, K. G.; Bjorstrom, C.; Svensson, M.; Andersson, M. R.; Sundstrom, V.; Magnusson, K.; Moons, E.; Yartsev, A.; Inganas, O., Influence of solvent mixing on the morphology and performance of solar cells based on polyfluorene copolymer/fullerene blends. Advanced Functional Materials 2006, 16, (5), 667-674.
    [25]. Measuring the conductivity and the surface resistivity of CLEVIOS. http://www.baytron.com/index.php?page_id=1178
    [26]. Inganas, O.; Svensson, M.; Zhang, F.; Gadisa, A.; Persson, N. K.; Wang, X.; Andersson, M. R., Low bandgap alternating polyfluorene copolymers in plastic photodiodes and solar cells. Applied Physics a-Materials Science & Processing 2004, 79, (1), 31-35.
    [27]. Svensson, M.; Zhang, F. L.; Veenstra, S. C.; Verhees, W. J. H.; Hummelen, J. C.; Kroon, J.M.; Inganas, O.; Andersson, M. R., High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative. Advanced Materials 2003, 15, (12), 988-991.
    [28]. Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L.; Hummelen, J. C., Origin of the open circuit voltage of plastic solar cells. Advanced Functional Materials 2001, 11, (5), 374-380.
    [29]. Zhou, Y. H.; Peng, P.; Han, L.; Tian, W. J., Novel donor-acceptor molecules as donors for bulk heterojunction solar cells. Synthetic Metals 2007, 157, (13-15), 502-507.
    [30]. Mihailetchi, V. D.; Blom, P. W. M.; Hummelen, J. C.; Rispens, M. T., Cathode dependence of the open-circuit voltage of polymer : fullerene bulk heterojunction solar cells. Journal of Applied Physics 2003, 94, (10), 6849-6854.
    [31]. Zhang, F. L.; Gadisa, A.; Inganas, O.; Svensson, M.; Andersson, M. R., Influence of buffer layers on the performance of polymer solar cells. Applied Physics Letters 2004, 84, (19), 3906-3908.
    [1]. Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T. Q.; Dante, M.; Heeger, A. J., Efficient tandem polymer solar cells fabricated by all-solution processing. Science 2007, 317, (5835), 222-225.
    [2]. Wang, E. G.; Wang, L.; Lan, L. F.; Luo, C.; Zhuang, W. L.; Peng, J. B.; Cao, Y., High-performance polymer heterojunction solar cells of a polysilafluorene derivative. Applied Physics Letters 2008, 92, (3), 033307.
    [3]. Gadisa, A.; Tvingstedt, K.; Admassie, S.; Lindell, L.; Crispin, X.; Andersson, M. R.; Salaneck, W. R.; Inganas, O., Transparent polymer cathode for organic photovoltaic devices. Synthetic Metals 2006, 156, (16-17), 1102-1107.
    [4]. Krebs, F. C., Air stable polymer photovoltaics based on a process free from vacuum steps and fullerenes. Solar Energy Materials and Solar Cells 2008, 92, (7), 715-726.
    [5]. Huang, J. S.; Li, G.; Yang, Y., A semi-transparent plastic solar cell fabricated by a lamination process. Advanced Materials 2008, 20, (3), 415-419.
    [6]. Zhang, F. L.; Ceder, M.; Inganas, O., Enhancing the photovoltage of polymer solar cells by using a modified cathode. Advanced Materials 2007, 19, (14), 1835-1838.
    [7]. Guo, T. F.; Yang, F. S.; Tsai, Z. J.; Wen, T. C.; Hsieh, S. N.; Fu, Y. S., High-performance polymer light-emitting diodes utilizing modified Al cathode. Applied Physics Letters 2005, 87, (1), 013504.
    [8]. Zhou, Y. H.; Zhang, F. L.; Tvingstedt, K.; Barrau, S.; Li, F. H.; Tian, W. J.; Inganas, O., Investigation on polymer anode design for flexible polymer solar cells. Applied Physics Letters 2008, 92, (23), 233308.
    [9]. Zhou, Y. H.; Zhang, F. L.; Tvingstedt, K.; Tian, W. J.; Ingan?s, O., Multifolded polymer solar cells on flexible substrates. Applied Physics Letters 2008, 93, (3), 033302.
    [10]. Steim, R.; Choulis, S. A.; Schilinsky, P.; Brabec, C. J., Interface modification for highly efficient organic photovoltaics. Applied Physics Letters 2008, 92, (9), 093303.
    [11]. Tanaka, H.; Yasuda, T.; Fujita, K.; Tsutsui, T., Transparent image sensors using an organic multilayer photodiode. Advanced Materials 2006, 18, (17), 2230-2233.
    [12]. Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L.; Hummelen, J. C., Origin of the open circuit voltage of plastic solar cells. Advanced Functional Materials 2001, 11, (5), 374-380.
    [13]. Gadisa, A.; Svensson, M.; Andersson, M. R.; Inganas, O., Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/fullerene derivative. Applied Physics Letters 2004, 84, (9), 1609-1611.
    [14]. Mihailetchi, V. D.; Blom, P. W. M.; Hummelen, J. C.; Rispens, M. T., Cathode dependence of the open-circuit voltage of polymer : fullerene bulk heterojunction solar cells. Journal of Applied Physics 2003, 94, (10), 6849-6854.
    [15]. Jonsson, S. K. M.; Carlegrim, E.; Zhang, F.; Salaneck, W. R.; Fahlman, M., Photoelectron spectroscopy of the contact between the cathode and the active layers in plastic solar cells: The role of LiF. Japanese Journal of Applied Physics 2005, 44, (6A), 3695-3701.
    [16]. Inganas, O.; Svensson, M.; Zhang, F.; Gadisa, A.; Persson, N. K.; Wang, X.; Andersson, M. R., Low bandgap alternating polyfluorene copolymers in plastic photodiodes and solar cells. Applied Physics a-Materials Science & Processing 2004, 79, (1), 31-35.
    [17]. Zhang, F. L.; Jespersen, K. G.; Bjorstrom, C.; Svensson, M.; Andersson, M. R.; Sundstrom, V.; Magnusson, K.; Moons, E.; Yartsev, A.; Inganas, O., Influence of solvent mixing on the morphology and performance of solar cells based on polyfluorene copolymer/fullerene blends. Advanced Functional Materials 2006, 16, (5), 667-674.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700