用户名: 密码: 验证码:
用于乙醇水蒸气重整Ni/Ce-M-O(M=Zr,Ti,La)催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙醇水蒸气重整制氢的技术核心是催化剂。目前报道的催化剂需要克服的主要问题是提高乙醇水蒸气重整反应(SRE)的低温活性以及催化剂的稳定性。镍系催化剂由于活性高、成本低的特点而备受关注,但抗烧结和抗积碳能力有待进一步提高。铈基氧化物具有储-释氧能力并可与活性组分产生相互作用,调节活性组分的化学状态和有利于积炭的氧化消除,从而提高催化剂的稳定性。本文探索并研究了一系列Ce-M-O负载的镍催化剂用于乙醇水蒸气重整反应中,表现了高活性、高选择性以及较高的稳定性。分析了不同的载体上镍活性组分的状态、与载体的相互作用及其和乙醇水蒸气重整反应催化性能的关系。
     采用了柠檬酸络合法制备Ni/Ce_(0.5)Zr_(0.5)O_2催化剂用于SRE反应,考察了制备条件(制备方法、焙烧温度、镍含量)和反应条件(反应空速)对催化性能的影响。Ni/Ce_(0.5)Zr_(0.5)O_2催化剂中与载体有强相互作用的NiO还原出来的NiO是乙醇重整反应的关键活性组分,这部分镍物种晶粒小,且与载体相互作用强,改善了催化剂的低温活性、选择性和抗烧结性能。铈锆固溶体的形成,大大提高了体相氧的活动能力,提高了催化剂的抗积碳性能。TG-DTA和XRD结果也表明催化剂具有很好的抗烧结和抗积碳性能,是一种很有应用前景的催化剂。
     浸渍法制备的Ni/CeO_2-TiO_2催化剂在SRE中呈现出良好的催化性能。制备条件中NiO含量、铈钛比、焙烧温度影响催化剂的物相组成、活性组分与载体间的相互作用。10%Ni/Ce_(0.5)Ti_(0.5)O_2-700催化剂在SRE中表现了最佳的催化性能。该催化剂中NiTiO3还原出来的Ni0是SRE反应的关键活性组分,NiTiO_3还原出来的Ni0晶粒小,高分散且不易聚集;固溶体Ce-O-Ti的形成大大提高了载体的氧活动能力,这两个因素使得10%Ni/Ce_(0.5)Ti_(0.5)O_2-700催化剂在SRE反应中呈现出高活性和高稳定性。
     采用了不同方法制备了新型Ni/La-Ce-O催化剂,结果表明不同方法制备的Ni/La-Ce-O催化剂各组分之间的相互作用不同,对催化剂的性能有很大影响。柠檬酸法制备的催化剂中形成更多的镧铈固溶体,同时镍与La-Ce-O载体相互作用较强,在SRE反应中表现了更高的抗积碳能力。初步分析了该催化剂上可能进行的SRE反应途径。
     比较了Ni/Ce-M-O催化剂的结构和性能,结果表明Zr、Ti或La的添加均有效地提高了NiO的分散度、与载体的相互作用以及载体的氧化还原能力,但作用机理不尽相同。
The crucial issue for hydrogen production by steam reforming of ethanol (SRE) is to develop efficient catalysts. The critical challenge for SRE catalysts is to improve stability and low temperature activity. CeO_2-based oxides are characterized with good oxygen-storage capacity and tend to interact with active component, which is beneficial for eliminating carbon and adjusting chemical nature of active component. In this work, a series of Ni/Ce-M-O (M=Zr, Ti or La) catalysts for SRE were studied, which exhibited high low temperature activity and good stability for SRE. The relation between catalyst structure and catalyst performance was also investigated.
     The Ni/Ce_(0.5)Zr_(0.5)O_2 catalysts were prepared by citric complexing method. The effects of preparation conditions and reaction conditions on catalytic performance were investigated. The results indicated that 20%Ni/Ce_(0.5)Zr_(0.5)O_2-700 catalyst was very active and selective at low reaction temperature under the space velocity of 160,000ml·h~(-1)·gcat~(-1) and the metal nickel reduced from NiO in strong interaction with support is the key active species. TG-DTA and XRD results show that 20%Ni/Ce_(0.5)Zr_(0.5)O_2-700 catalyst exhibits high anti-sintering and good carbon-resistance quality.
     Ni/CeO_2-TiO_2 catalysts prepared with impregnation method showed good catalytic performance for SRE. Experimental results indicate that the content of nickel, the molar ratio of Ce/Ti and calcination temperature have influence on catalysts phase structure and the interaction between Ni species and support, and thus affect catalytic performance obviously. The high activity of Ni/CeO_2-TiO_2 catalysts is ascribed to the metal nickel reduced from NiTiO3, which is highly dispersed with good anti-sintering ability. The good stability for carbon deposition resistance of this catalyst is mainly attributed to the formation of Ce-O-Ti solution which can improve oxygen mobility in the support. Among the catalysts tested in this series, 10%Ni/Ce_(0.5)Ti_(0.5)O_2-700 exhibits the best catalytic performance.
     The 10%Ni/La-Ce-O catalyst prepared by citric acid method shows comparatively good carbon-resistance ability at 450℃due to its high redox capability, which was originated from the formation of La-Ce-O solid solution and the interaction between nickel species and carrier. The possible reaction pathways over 10%Ni/La-Ce-O are proposed.
     By comparison, the addition of Zr, Ti or La has effectively improved the dispersion of NiO, the interaction between active species and support and the redox capability of CeO_2, which results in the improvement of catalytic performance of Ni/CeO_2 catalyst for SRE. The forms of nickel species in Ni/Ce_(0.5)Zr_(0.5)O_2 and Ni/Ce_(0.55)La_(0.45)O_x catalysts are similar, but the different proportion of various nickel species in two catalysts leads to a big change of products selectivity in SRE. The high activity for SRE of Ni/Ce_(0.5)Ti_(0.5)O_2 catalyst originated from metal nickel reduced from small particle NiTiO3. In addition, experimental results indicate that Ni/Ce_(0.5)Zr_(0.5)O_2 and Ni/Ce_(0.5)Ti_(0.5)O_2 catalysts are fit for high temperature reaction and that Ni/Ce_(0.55)La_(0.45)O_x catalyst prefers to be applied in low temperature.
引文
[1] Flavin C, Dunn S, Reinventing the energy system. In State of the World, Worldwatch Institute.Washington, DC, 1999, 22~35
    [2] Das D, Veziroglu T N, Hydrogen production by biological processes: a survey of literature, International Journal of Hydrogen Energy, 2001, 26, 13~28
    [3]徐超,氢能将是主宰未来世界的主要能源,东方经济, 2004, 6, 20~28
    [4] Available via the Internet at http://www.lnpower.com/
    [5] Christopher K D,科学(中译本), 1999, 10, 45~49
    [6]王艳辉,王树东,吴迪镛, PEMFC制氢技术现状,环境科学进展, 1999, 7(1), 73~77
    [7] Sorensen B, Hydrogen and fuel cells-emerging technologies and application, Elsevier Academic Press, 2004, 398~402
    [8] Ashley S, Scientific American, March 2005: 50 (或《科学美国人》的中文版, 2005(5), 46,以及该文应用的文献
    [9] Lemons R A, Fuel cell for transportation, Journal of Power Sources, 1990, 29(1), 251~264
    [10] Chalk S G, Pati1 P G, Venkateswaran S R, The new generation of vehicles: market opportunities for fuel cells, Journal of Power Sources, 1996, 61(1), 7~13
    [11] Keith B P, Solid polymer fuel cell for transport and stationary applications, Journal of Power Sources, 1996, 61(1), 105~109
    [12] Thomas C E, Kuhn I F, James B D, et al., Affordable hydrogen supply pathways for fuel cell vehicles, International Journal of Hydrogen Energy, 1998, 23(6), 507~516
    [13] Thomas C E, James B D, Lomax F D, Market penetration scenarios for fuel cell vehicles, International Journal of Hydrogen Energy, 1998, 23(10), 949~966
    [14] Donitz W, Fuell cells for mobile applications, status, requirements and future application potential, International Journal of Hydrogen Energy, 1998, 23(7), 611~615
    [15]中华人民共和国国务院,国家中长期科学和技术发展规划纲要(2006~2020年)
    [16]衣宝廉,燃料电池现状与未来,电源技术, 1998, 22(5), 216~221
    [17]李乃朝,衣宝廉,离子交换膜燃料电池汽车,电化学, 1997, 3(2), 125~131
    [18] Carrette L, Feiedrich K A, Stimming U, Fuel cells-fundamentals andapplications, Fuel Cells, 2001 (1), 5~39
    [19] Prater K B, Solid polymer fuel cell development at Ballard, Journal of Power Sources, 1992, 37 (1-2), 181~188
    [20]宋文生,李磊,王宇新,燃料电池汽车氢源,汽车工程, 2003,25(4), 415~417
    [21] Hohlein B, Andrian S V, Grube T, et al., Critical assessment of power trains with fuel cell system and different fuels, Journal of Power Sources, 2000, 86 (1), 243~249
    [22] Fishtik I, Alexander A, Datta R, A thermodynamic analysis of hydrogen production by steam reforming of ethanol via response reactions, International Journal of Hydrogen Energy, 2000, 25 (1), 31~45
    [23] Haryanto A, Fernando S, Murali N, et al., Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol: A Review, Energy & Fuels, 2005, 19(5), 2098~2106
    [24] Yee A, Morrisons J, Idrissh, A Study of Ethanol Reactions over Pt/CeO2 by Temperature-Programmed Desorption and in Situ FT-IR Spectroscopy: Evidence of Benzene Formation, Journal of Catalysis, 2000, 191(1), 30~45
    [25] Yee A, Morrisons J, Idrissh, A Study of the Reactions of Ethanol on CeO2 and Pd/CeO2 by Steady State Reactions, Temperature Programmed Desorption, and In Situ FT-IR, Journal of Catalysis, 1999, 186(2), 279~295
    [26] Yee A, Morrisons J, Idrissh, The reactions of ethanol over M/CeO2 catalysts: Evidence of carbon–carbon bond dissociation at low temperatures over Rh/CeO2, Catalysis Today, 2000, 63(2-4), 327~335
    [27] Llorca J, Homs N, Sales J, et al., Effect of sodium addition on the performance of Co-ZnO-based catalysts for hydrogen production from bioethanol, Journal of Catalysis, 2004, 222(1), 470~480
    [28] Llorca J, Homs N, Piscina P R, In situ DRIFT-mass spectrometry study of the ethanol steam-reforming reaction over carbonyl-derived Co/ZnO catalysts, Journal of Catalysis, 2004, 227(1), 556~560
    [29] Luenga C A, Ciampi G, Cencig M O, et al., A novel catalyst system for ethanol gasification, International Journal of Hydrogen Energy, 1992, 17 (9), 677~681
    [30] Cavallaro S, Freni S, Ethanol steam reforming in a molten carbonate fuel cell a preliminary kinetic investigation, International Journal of Hydrogen Energy, 1996, 21(6), 465~469
    [31] Garcia E Y, Laborde M A, Hydrogen production by the steam reforming of ethanol: Thermodynamic analysis, International Journal of Hydrogen Energy, 1991, 16(5), 307~312
    [32] Freni S, Maggio G, Cavallaro S, Ethanol steam reforming in a molten carbonate fuel cell: a thermodynamic approach, Journal of power sources, 1996, 62(1),67~73
    [33] Vasudeva K, Mitra N, Umasankar P, et al., Steam reforming of ethanol for hydrogen production: Thermodynamic analysis, International Journal of Hydrogen Energy, 1996, 21(1), 13~18
    [34] Freni S, Maggio G, Energy Balance Of Different Internal Reforming MCFC Configurations, International Journal of Energy Research, 1997, 21(3), 253~264
    [35] Maggio G, Freni S, Cavallaro S, Light alcohols/methane fuelled molten carbonate fuel cells: a comparative study, Journal of Power Sources, 1998, 74(1), 17~23
    [36] Ioannides T, Thermodynamic analysis of ethanol processors for fuel cell applications, Journal of Power Sources, 2001, 92 (1), 17~25
    [37] Deluga G A, Salge J R, Schmidt L D, et al., Renewable Hydrogen from Ethanol by Autothermal Reforming, Science, 2004, 303, 993~997
    [38] Llorca J, Piscina P R, Sales J, et al., Production of Hydrogen from Ethanolic Aqueous Solutions over Oxide Catalysts, Chemical Communications, 2001, 7(3), 641~642
    [39] Fatsikostas A N, Verykios X E, Reaction network of steam reforming of ethanol over Ni-based catalysts, Journal of Catalysis, 2004, 225, 439~452.
    [40] Breen J P, Burch R, Coleman H M, Metal-catalysed steam reforming of ethanol in the production of hydrogen for fuel cell applications, Applied Catalysis B: Environmental, 2002, 39(1), 65~74
    [41] Goula M A, Kontou S K, Tsiakaras P E, Hydrogen production by ethanol steam reforming over a commercial Pd/γ-Al2O3 catalyst, Applied Catalysis B: Environmental, 2004, 49, 135-144
    [42] Frusteri F, Freni S, Spadaro L, Chido V, et al., H2 production for MC furl cell by steam reforming of ethanol over MgO supported Pd, Rh, Ni and Co catalysts, Catalysis Communications, 2004, 5, 611~615.
    [43] Dimitris K, Liguras, Dimitris I, et al., Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts, Applied Catalysis B: Environmental, 2003, 43(1), 345~354
    [44] Cavallaro S, Chiodo V, Freni S, et al., Performance of Rh/Al2O3 catalyst in the steam reforming of ethanol: H2 production for MCFC, Applied Catalysis A: General, 2003, 249(1), 119~128
    [45] Cavallaro S, Chiodo V, Vita V, et al., Hydrogen production by auto-thermal reforming of ethanol on Rh/Al2O3 catalyst, Journal of Power Sources, 2003, 123(1), 10~16
    [46] Cavallaro S, Ethanol Steam Reforming on Rh/Al2O3 Catalysts, Energy & Fuels,2000, 14(2), 1195~1199
    [47] Diagne C, Idriss H, Kiennemann A, Hydrogen production by ethanol reforming over Rh/CeO2-ZrO2 catalysts, Catalysis Communications, 2002, 3(12), 565~571
    [48] Wanat E C, Venkataraman K, Schmidt L D, Steam reforming and water–gas shift of ethanol on Rh and Rh–Ce catalysts in a catalytic wall reactor, Applied Catalysis A: General, 2004, 276(1-2), 155~162
    [49] Fierro V, Akdim O, Provendier H, et al., Ethanol oxidative steam reforming over Ni-based catalysts, Journal of Power Sources, 2005,145(2), 659~666
    [50] Aupretre F, Descorme C, Duprez D, et al., Ethanol steam reforming over MgxNi1-xAl2O3 spinel oxide-supported Rh catalysts, Journal of Catalysis, 2005, 233(2), 464~477
    [51] Jiang C J, Trimm D L, Wainwright M S, Kinetic mechanism for the reaction between methanol and water over a Cu-ZnO-Al2O3 catalyst, Applied Catalysis A: General, 1993, 97(2), 145~158
    [52] Huang T J, Wang S W, Hydrogen production via partial oxidation of methanol over copper-zinc catalysts, Applied Catalysis, 1986, 24(1-2), 287~297
    [53] Lejo A L, Lago R, Pena M A, et al., Partial oxidation of methanol to produce hydrogen over Cu-Zn-based catalysts, Applied Catalysis A: General, 1997, 162(1), 281~297
    [54]席靖宇(Xi J Y),王志飞(Wang Z F),吕功煊(Lu G X), Cu/Zn, Cu/Zn/Ni催化剂甲醇部分氧化制氢,物理化学学报(Acta Physico-Chimica Sinica) , 2001, 17 (7), 655~658
    [55] Velu S, Satoh N, Gopinath C S, et al., Oxidative Reforming of Bio-Ethanol Over CuNiZnAl Mixed Oxide Catalysts for Hydrogen Production, Catalysis Letters, 2002, 82 (1-2), 145~152
    [56] Marino F, Boveri M, Baronetti G, et al., Hydrogen production from steam reforming of bioethanol using Cu/Ni/K/γ-Al2O3 catalysts Effect of Ni, International Journal of Hydrogen Energy, 2001, 26(7), 665~668
    [57] Marino F J, Cerrella E G, Duhalde S, et al., Hydrogen from steam reforming of ethanol Characterization and performance of copper-nickel supported catalysts, International Journal of Hydrogen Energy, 1998, 23 (12), 1095~1101
    [58] Haga F, Nakajima, Yamashita, et al., Catalytic Properties of Supported Transition Metal Catalysts for Conversion of Ethanol in the Presence of Water Vapor, Nippon Kagaku Kaishi, 1997, 1, 33~36
    [59] Haga F, Nakajima, Miyah, et al., Catalytic atalytic properties of supported cobalt catalysts for steam reforming of ethanol, Catalysis Letters, 1997, 48(3-4), 223~227
    [60] Haga F, Nakajima, Yamashita, et al., Effect of Particle Size on Steam Reformingof Ethanol over Alumina-Supported Cobalt Catalyst, Nippon Kagaku Kaishi, 1997, 11, 758~762
    [61] Haga F, Nakajima T, Yamashita K, et al., Effect of crystallite size on the catalysis of alumina-supported cobalt catalyst for steam reforming of ethanol, Reaction Kinetics and Catalysis Letters, 1998, 63(2), 253~259
    [62] Ngamcharussrivichai C, Liu X H, Li X H, An active and selective production of gasoline-range hydrocarbons over bifunctional Co-based catalysts, available online at www.sciencedirect.com, fuel , 2006, 1~10
    [63] Marcelo S B, R, Santos R K S, et al., Characterization of the activity and stability of supported cobalt catalysts for the steam reforming of ethanol, Journal of Power Sources, 2003, 124(1), 99~103
    [64] Marcelo S B, Santos R K S, Elisabete M A, High efficiency steam reforming of ethanol by cobalt-based catalysts, Journal of Power Sources, 2004, 134 (1), 27~32
    [65] Llorca J, Homs N, Sales J, et al., Efficient Production of Hydrogen over Supported Cobalt Catalysts from Ethanol Steam Reforming, Journal of Catalysis, 2002, 209(1), 306~317
    [66] Guil J M, Homs N, Llorca J, et al., Microcalorimetric and Infrared Studies of Ethanol and Acetaldehyde Adsorption to Investigate the Ethanol Steam Reforming on Supported Cobalt Catalysts, Journal of Physical Chemistry B, 2005,109(21), 10813~10819
    [67] Comas J, Mari?o F, Laborde M, et al., Bio-ethanol steam reforming on Ni/Al2O3 catalyst, Chemical Engineering Journal, 2004, 98(1), 61~68
    [68] Freni S, Cavallaro S, Mondello N, et al., Steam reforming of ethanol on Ni/MgO catalysts: H2 production for MCFC, Journal of Power Sources, 2002, 108(1), 53~57
    [69] Frusteri F, Freni S, Chiodo V, et al., Potassium improved stability of Ni/MgO in the steam reforming of ethanol for the production of hydrogen for MCFC, Journal of Power Sources , 2004, 132(1), 139~144
    [70] Srinivas D, Satyanarayana C V V, Potdar H S, et al., Structural studies on NiO-CeO2-ZrO2 catalysts for steam reforming of ethanol, Applied Catalysis A: General , 2003 , 246(2), 323~334
    [71] Sun J, Qiu X P, Wu F, et al., H2 from steam reforming of ethanol at low temperature over Ni/Y2O3, Ni/La2O3 and Ni/Al2O3 catalysts for fuel-cell application, International Journal of Hydrogen Energy, 2005, 30 (4), 437~445
    [72] Fatsikostas A N, Kondarides D I, Verykios X E, Production of hydrogen for fuel cells by reformation of biomass-derived ethanol, Catalysis Today, 2002, 75(1), 145~155
    [73]孙杰,吴锋,邱新平等, Ni/Al2O3和Ni/La2O3催化剂上低温乙醇水蒸气重整制氢,催化学报, 2005, 25, 551~555
    [74] Therdthianwong A, Sakulkoakiet T, Therdthianwong S, Hydrogen Production by Catalytic Ethanol Steam Reforming, Science Asia, 2001, 27(3), 193~198
    [75] Fatsikostas A N, Verykios X E, Reaction network of steam reforming of ethanol over Ni-based catalysts , Journal of Catalysis, 2004, 225(2), 439~452
    [76] Fatsikostas A N, Kondarides D I, Verykios X E, Production of hydrogen for fuel cells by reformation of biomass-derived ethanol, Catalysis Today, 2002, 75(1-4), 145~155
    [77] Klouz V, Fierro V, Denton P, et al., Ethanol reforming for hydrogen production in a hybrid electric vehicle: process optimization, Journal of Power Sources, 2002, 105(1), 26~34
    [78] Frusteri F, Freni S, Chiodo V, et al., Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts: hydrogen production for MC fuel cell, Applied Catalysis A: General, 2004, 270(1-2), 1~7
    [79] Alessandro, Trovarelli Design, better cerium-based Oxidation catalysts, Chemtech, 1997, 6(1), 32~37
    [80]王建新等编著,汽车排气污染质量及催化转化器,化学工业出版社, 2000
    [81]胡玉才,冯长根等,含CexZr1-xO2固溶体三效催化剂的制备及性能研究,精细化工, 2003, 20, 72~73
    [82]赵建军,刘源,汽车尾气净化催化剂用CexZr1-xO2固溶体的研究进展,中国稀土学报, 2002, 20(6), 52~54
    [83]肖莉,林培瑛,杨志柏等, Ce-Zr固溶体的纯度及其在三效催化剂中的作用,分子催化, 2000, 14(2), 81~86.
    [84] Trovarelli, Alessandro, et al, NanoPhase Fluorite-Structured CeO2-ZrO2 Catalysts prepared by High-Energy Mechanical Milling, Journal of Catalysis, 1997, 169(2), 490~502
    [85]彭新林,龙志奇,崔梅生等,共沉淀法合成铈锆复合氧化物及表征,中国稀土学报, 2002, 20(23), 104~107
    [86]张磊,刘源,白雪等,大比表面积铈锆氧化物固溶体的制备,中国稀土学报, 2002, 20 (23), 99~103
    [87] Masanori H, Toshio M, Inagaki M, Low-Temperature Direct synthesis of NanoParticles of Fluorite-Type Ceria-Zirconia solid solutions by“Forced Cohydrolysis”at l00℃, Journal of solid state Chemistry, 2001,158(1), 112-117.
    [88]罗孟飞,林瑞,陈敏等, Ce-Zr固溶体的制备和表征,中国稀土学报, 2000, 18(1), 35~37
    [89] Alifanti M, Baps B, et.al, Characterization of CeO2-ZrO2 Mixed oxides: Comparison of the Citrate and Sol-Gel Preparation Methods, ChemistryMaterials, 2003, 15(2), 395~403
    [90]詹明军,吴介达,陆世鑫等,络合法制备CexZr1-xO2固溶体及其表征,同济大学学报:自然科学版, 2001, 029(011), 1331~1334
    [91]王丽,刘源,翟彦青,柠檬酸络合法制备铈锆氧化物固溶体及其表征,内蒙古工业大学学报(自然科学版), 200l, 20(3), 161~165
    [92]郑育英,黄慧民,邓淑华等,水热法制备高纯超细CeO2-ZrO2复合氧化物,无机化学学报, 2005, 21(8), 1227~1230
    [93] Potdar H S,Deshpande S B, Deshpande A S, et al., Preparation of Ceria-Zirconia (Ce0.75Zr0.25O2) Powders by microwave-hydrothermal(MH) route, Materials Chemistry and Physics, 2002, 74(3), 306~312
    [94] An Y A, Li L, Wang J, et al., Preparation and characterization of CeO2-ZrO2 solid solution u1trafine Particles using reversed microemulsion, Journal of rare earths, 2005, 23(4), 416~419
    [95] Teribile D, Trovarelli A, Llorca J, The Preparation of high surface area CeO2-ZrO2 mixed oxides by surfactant-assisted approach, Catalysis Today, 1998, 43(1-2), 79~88
    [96] Fornasiero P, Dimonte R, Rao G R, et al., Rh-Loaded CeO2-ZrO2 Solid-Solutions as Highly Efficient Oxygen Exchangers: Dependence of the Reduction Behavior and the Oxygen Storage Capacity on the Structural Properties, Journal of Catalysis, 1995, 151(1), 168~177.
    [97]阎子峰,纳米催化技术,北京:化学工业出版社, 2000, 296~299
    [98] López T, Rojas F, Alexander-Katz R, et al., Porosity, structural and fractal study of sol-gel TiO2-CeO2 mixed oxides, Journal of Solid State Chemistry, 2004, 177, 1873~1885
    [99] Amores J M G, Escribano V S, Ramis G, et al., Journal of Fuel Chemistry and Technology, 2002, 30(4), 332~335
    [100] Zhu H Q, Qin Z F, Shan W J, et al., Journal of Catalysis, 2004, 225(2), 267~277
    [101]吕光烈,周仁贤,郑小明等,中国稀土学报, 2003, 21(4), 435~440
    [102]赵辉,朱向荣,刘泷龙等, Ce1-xMxCa0.2O1.8-0.4x(M=Y, La和Gd)的水热合成及离子导电性质研究,高等学校化学学报, 2001, 22(9), 1441-1445
    [103] Bae J S, Choo W K, Lee C H, The crystal structure of ionic conductor LaxCe1-xO2-x/2, Journal of European Ceramic Society, 2004, 24, 1291~1294
    [104] Dikmen S, Shuk P, Greenblatt M, Hydrothermal synthesis and properties of Ce1-xLaxO2-δsolid solutions, Solid State Ionics, 1999, 126, 89~95
    [105]杨成,任杰,孙予罕,催化学报, CeO2和La2O3改性Pd/γ-Al2O3甲醇低温分解催化剂的研究: La2O3对Pd/CeO2/γ-Al2O3催化剂结构和性能的影响, 2001, 22(4), 339-341
    [106] Matsumura Y, Okumura M, Usami Y, et al., Low-temperature decomposition of methanol to carbon monoxide and hydrogen with low activation energy over Pd/ZrO2 catalyst, Catalysis Letters, 1997, 44(3-4),189~191
    [107]萨仁图雅,胡瑞生,白雅琴,稀土A-Ce-O催化剂的合成及性能研究,中国稀土学报, 2006, 24, 58-61
    [108]Biswas P, Kunzru D, Oxidative steam reforming of ethanol over Ni/CeO2-ZrO2 catalyst. Chemical Engineering Journal (2007) doi:10.1016/j.cej.2007.03.057.
    [109] Biswas P, Kunzru D, Steam reforming of ethanol for production of hydrogen over Ni/CeO2-ZrO2 catalyst: Effect of support and metal loading. International Journal of Hydrogen Energy (2006), doi: 10.1016/j.jihydene.2006.09.031.
    [110]Laosiripojana N, Assabumrungrat S, Methane steam reforming over Ni/Ce-ZrO2 catalyst: Influences of Ce-ZrO2 support on reactivity, resistance toward carbon formation, and intrinsic reaction kinetics, Applied Catalysis A: General, 2005, 290, 200~211
    [111] Dong W S, Roh H S, Jun K W, et al., Methane reforming over Ni/Ce-ZrO2 catalysts: Effect of nickel content, Applied Catalysis A: General, 2002, 226, 63-72
    [112] Dias J A C, Assaf J M, The advantage of air addition on the methane steam reforming over Ni/γ-Al2O3, Journal of Power Sources, 2004, 137(1/2), 264~268
    [113] Pereira D P, Miloudi A, Maurel R, Steam dealkylation of aromatic hydrocarbons: II. Role of the support and kinetic pathway of oxygenated species in toluene steam dealkylation over group VIII metal catalysts. Journal of Catalysis, 1982, 75, 151~163
    [114] Roh H S, Jun K W, Dong W S, Highly active and stable Ni/Ce-ZrO2 catalyst for H2 production from methane, Journal of Molecular Catalysis A: Chemical, 2002,181 (1-2) ,137~142
    [115] Shan X, Lai W X, Highly active and coking resistant Ni/CeO2-ZrO2 catalyst for partial oxidation of methane, Fuel ,2005, 84 (5), 563~567
    [116] Terribile D, Trovarelli A, Leitenburg C, et al., Catalytic combustion of hydrocarbons with Mn and Cu-doped ceria–zirconia solid solutions, Catalysis Today, 1999, 47(1-4), 133~140
    [117] Kaspar J, Fornasiero P, Graziani M, Use of CeO2-based oxides in the three-way catalysis, Catalysis Today, 1999, 50(2), 285~298
    [118] Ernst B, Hilaire L, Kiennemann A, Effects of highly dispersed ceria addition on reducibility, activity and hydrocarbon chain growth of a Co/SiO2 Fischer-Tropsch catalyst, Catalysis Today, 1999, 50(2), 413~427
    [119] Liotta L F, Pantaleo G, Ceria-Zirconia Nanostructured Materials for Catalytic Applications: Textural characteristics and redox properties, Journal of Sol-gelScience and Technology, 2003, 28, 119~132
    [120] Liotta L F, Macaluso A, Longo A, et al., Effects of redox treatments on the structural composition of a ceria-zirconia oxide for application in the three-way catalysis, Applied Catalysis A: General, 2003, 240, 295~307
    [121] Akande A J, Idem R O, Dalai, A K, Synthesis, Characterization and performance evaluation of Ni/Al2O3 catalysts for reforming of crude for hydrogen production, Applied Catalysis A: General, 2005, 287, 159~175.
    [122]陈诵英,孙予罕,丁云杰等,吸附与催化,河南科学技术出版社, 2001
    [123] Navarro R M, Alvarez-Galvan M C, Sanchez-Sanchez M C, et al., Production of hydrogen by oxidative reforming of ethanol over Pt catalysts supported on Al2O3 modified with Ce and La, Applied Catalysis B: Environmental, 2005, 55, 229~241
    [124] Monteiro R S, Noronha F B, Dieguez L C, et al., Characterization of Pd-CeO2 interaction on alumina support and hydrogenation of 1,3-butadiene, Applied Catalysis A: General, 1995, 131, 89~106
    [125] Bernal S, Botana F J, Garcia R, et al., Preparation of catalysts and constituted by rhodium supported on two cerium dioxides with different surface area, Materials Chemistry and Physics, 1987, 18, 119~127
    [126] Shan W J, Luo M F, Ying P L, et al., Reduction property and catalytic activity of Ce1-xNixO2 mixed oxide catalysts for CH4 oxidation, Applied Catalysis A: General, 2003, 246(1), 1~9
    [127] Benjaram M R, Ataullah K, Nanosized CeO2-SiO2, CeO2-TiO2, and CeO2-ZrO2 mixed oxides: influence of supporting oxide on thermal stability and oxygen storage properties of ceria, Catalysis Surveys from Asia, 2005, 9, 155~171
    [128] Benjaram M R, Ataullah K, Structural characterization of CeO2-MO2 (M=Si4+, Ti4+, and Zr4+) mixed oxides by Raman Spectroscopy, X-ray Photoelectron Spectroscopy, and other techniques. Journal of Physical Chemistry B, 2003, 107, 11475~11484
    [129] Baidya T, Gayen A, Hedge M S, et al., Enhanced Reducibility of Ce1-xTixO2 compared to that of CeO2 and Higher Redox Catalytic Activity of Ce1-x-yTixPty O2-δCompared to That of Ce1-xPtxO2-δ, Journal of Physical Chemistry B, 2006, 110, 5262~5272
    [130] Dutta G, Waghmare U V, Baidya T, et al., Origin of enhanced reducibility/oxygen storage capacity of Ce1-xTixO2 compared to CeO2 or TiO2, Chemistry of Materials, 2006, 18, 3249~3256
    [131] Jiang X Y, Lou L P, Chen Y X, et al., Preparation and characterization of Ce0.3Ti0.7O2 and supported CuO catalysts for NO+CO reaction, CatalysisLetters, 2004, 94, 49~55
    [132] Zhang Y, Li Z X, Wen, X B, Liu Y, Partial oxidation of methane over Ni/Ce-Ti-O catalysts, Chemical Engineering Journal, 2006, 121(2-3), 115~123
    [133] Li Y D, Chen J L, Qin Y N, The doping effect of copper on the catalytic growth of carbon fibers from methane over a Ni/Al2O3 catalyst prepared form feitknecht compound precursor, Journal of Catalysis, 1998, 178, 76~83
    [134] Mukainakano Y, Yoshida K, Kado S, et al., Catalytic performance and characterization of Pt-Ni bimetallic catalysts for oxidative steam reforming of methane, Chemical Engineering Science, 2007, doi:10.1016/j.ces.2007.06. 003.
    [135] Li J Z, Lu G X, Li K, et al., Active Nb2O5-supported nickel and nickel-copper catalysts for methane decomposition to hydrogen and filamentous carbon, Journal of Molecular Catalysis A: Chemical, 2004, 221, 105~112
    [136] Mari?o F, Jobbagy M, Baronetti G, et al., Steam reforming of ethanol using Cu-Ni supported catalysts. Stud. Surf. Sci. Catal., 2000, 130, 2147~2152
    [137] Wang H, Ye J L, Liu Y, Li Y D, Qin Y N, Steam reforming of ethanol over Co3O4/CeO2 catalysts prepared by different methods, Catalysis Today, 2007, 129, 305-312
    [138] Rasko J, Hancz A, Erdohelyi A, Surface species and gas phase products in steam reforming of ethanol on TiO2 and Rh/TiO2, Applied Catalysis A: General, 2004, 269, 13~25
    [139] Henderson M A , Perkins C L, Engelhard M H, et al., Redox properties of water on the oxidized and reduced surfaces of CeO2(111), Surface Science, 2003, 526, 1~18
    [140] Aupretre F, Descorme C, Duprez D, Bio-ethanol catalytic steam reforming over supported metal catalysts, Catalysis Communications, 2002, 3, 263~267
    [141] Aupretre F, Descorme C, Duprez D, et al., Ethanol steam reforming over MgxNi1-xAl2O3 spinal oxide-supported Rh catalysts, Journal of Catalysis, 2005, 233, 464~477
    [142] Sun J, Qiu X P, Wu F, et al., Hydrogen from steam reforming of ethanol in low and middle temperature range for fuel cell application. International Journal of Hydrogen Energy, 2004, 29, 1075~1081
    [143] Montoya J A, Romero-Pascual E, Gimon C, et al., Methane reforming with CO2 over Ni/ZrO2-CeO2 catalysts prepared by sol-gel, Catalysis Today, 2000, 63, 71~85
    [144] Wu T H, Yan Q G, Wan H L, Partial oxidation of methane to hydrogen and carbon monoxide over a Ni/TiO2 catalyst. Journal of Molecular Catalysis A: Chemical, 2005, 226, 41~48
    [145]杨宇,吴绯,马建新,载体对镍催化剂催化乙醇水蒸气重整制氢反应性能的影响,催化学报,2005, 26, 131~137
    [146] Lin X M, Li L P, Li G S, et al., Transport property and Raman spectra of nanocrystalline solid solutions Ce0.8Nd0.2O2?δwith different particle size, Materials Chemistry and Physics, 2001, 69, 236~240
    [147] Mcbride J R, Hass K C, Poindexter B D, et al., Raman and x-ray studies of Ce1-xRExO2-y, where RE=La, Pr, Nd, Eu, Gd, and Tb, Journal of Applied Physics, 1994, 76, 2435~2441
    [148] Spanier J E, Robinson R D, Zhang F,et al., Size-dependent properties of CeO2-y nanoparticles as studied by Raman scattering Physical Review B, 2001, 64, 245407~245414
    [149] Weber W H, Hass K C, McBride J R, Raman study of CeO2: Second-order scattering, lattice dynamics, and particle-size effects, Physical Review B, 1993, 48, 178~185
    [150] Bamberger C E, Haverlock T J, Shoup S S, et al., Compounds of cerium, titanium and oxygen, Journal of Alloys and Compounds, 1994, 204, 101~107
    [151] Preuss A, Gruehn R, Preparation and Structure of Cerium Titanium Ce2TiO5, Ce2TiO7, and Ce4Ti9O24, Journal of Solid State Chemistry, 1994, 110, 363~369
    [152] Park P W, Ledford J S, Effect of Crystallinity on the Photoreduction of Cerium Oxide: A Study of CeO2 and Ce/Al2O3 Catalysts, Langmuir, 1996, 12, 1794~1799
    [153] Paparazzo E, Ingo G M, Zacchetti N, X-ray induced reduction effects at CeO2 surface: An x-ray photoelectron spectroscopy study, Journal of Vacuum Science and Technology A, 1991, 9, 1416~1420
    [154] Pfau A, Schierbaum K D, The electronic structure of stoichiometric and reduced CeO2 surfaces: an XPS, UPS and HREELS study, Surface Science, 1994, 321, 71~80
    [155] Biener J, Baumer M, Wang J, et al., Electronic structure and growth of vanadium on TiO2(110), Surface Science, 2000, 450, 12~26
    [156] Larachi F, Pierre J, Adnot A, et al., Ce 3d XPS study of composite CexMn1-xO2-y wet oxidation catalysts, Applied Surface Science, 2002, 195, 236~250
    [157] Abid M, Paul-Boncour V, Touroude R, Pt/CeO2 catalysts in crotonaldehyde hydrogenation: selectivity, metal particle size and SMSI states, Applied Catalysis A: General, 2006, 297, 48~57
    [158] Chen H Y, Sayari A, Adnot A, et al., Composition–activity effects of Mn-Ce-O composites on phenol catalytic wet oxidation, Applied Catalysis B: Environmental, 2001, 32, 195~204
    [159] Kumar P M, Badrinarayanan S, Sastry M, Nanocrystalline TiO2 studied byoptical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states, Thin Solid Films, 2000, 358, 122~130
    [160] Moulder J F, Stickle W F, Sobol P E, et al., Handbook of X-ray Photoelectron Spectroscopy, Physcial Electronics Inc. Press, Minnesoda, 1995.
    [161] Fatsikoatas A N, Kondarides D I, Verykios X E. Steam reforming of biomass-derived ethanol for the production of hydrogen for fuel cell applications. Chemical Communications, 2001, 851~852.
    [162] Lima S M, Assaf J M, Pena M A, et al., Structural features of La1-xCexNiO3 mixed oxides and performance for the dry reforming of methane, Applied Catalysis A: General, 2006, 311, 94~104
    [163] Fatsikostas A N, Kondarides D I, Verykios X E, Production of hydrogen for fuel cells by reformation of biomass-derived ethanol, Catalysis Today, 2002, 75, 145~155
    [164]杨春巍,王殿龙,戴长松等,稀土元素在直接甲醇燃料电池阳极催化剂中的应用,化学通报, 2006, 69,1~5
    [165] Kuras M, Roucou R, Petit C, Studies of LaNiO3 used as a precursor for catalytic carbon nanotubes growth, Journal of Molecular Catalysis A: Chemical, 2007, 265 (1-2), 209~217
    [166] Gallego G S, Mondragon F, Barrault J, et al., CO2 reforming of CH4 over La-Ni based perovskite precursors. Applied Catalysis A: General, 2006, 311, 164~171
    [167] Kugai J, Velu S, Song C S, Low-temperature reforming of ethanol over CeO2 supported Ni-Rh bimetallic catalysts for hydrogen production, 2005, 101, 256~264

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700