用户名: 密码: 验证码:
电催化水蒸汽重整生物油及乙醇制氢的基础应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质是一种资源丰富、环境友好的可再生资源,生物质制氢是最具发展潜力的新的制氢途径之一,生物质制氢尚处于研发阶段,提高氢气产率和能量效率、降低制氢成本以及减少催化剂失活等是生物质制氢研发过程中尚待解决的关键问题。本论文提出了一种有效的制氢新方法:电催化水蒸气重整制氢方法(即催化剂中通入一定电流),主要研究内容和创新性结果包括:(1)发明了电催化水蒸汽重整生物油制取氢气的装置及方法,实现了在450-550℃中温条件下即可获得很高的氢产率(75%-96%)和生物油转化率(73%-98%);(2)研究了催化剂的微观结构与生物油转化率间的关系,并研究了生物油水蒸汽电催化重整制氢反应机理;(3)研究了电催化方法在乙醇重整制氢中的应用;(4)研究了适合生物油水蒸汽重整制氢催化剂Ni-Cu-Ce-Mg-Al。具体结果如下:
     一、生物油电催化水蒸气重整制氢过程和机理
     采用浸渍法制备了生物油重整制氢催化剂NiO-Al_2O_3,研究了重整温度、电流、S/C、以及空速等对生物油转化率、氢产率以及产物分布的影响,结果发现,电流明显地影响了氢产率、碳转化率以及产物分布。电流的通入使生物油转化率和氢气产率都大大提高了,并且增大了H_2和CO的百分含量,而降低了CH_4和CO_2的百分含量,例如在T=400℃,S/C=5.8,GHSV=6048h~(-1)和P=1 atm.的条件下,I=OA时,氢产率和碳转化率分别为13.1%和14.7%,H_2,CO,CH_4,CO_2的百分含量分别为57.2%、5.8%、3.4%和26.3%,而当通入电流为3.SA,其它条件不变时时,氢产率和碳转化率分别增大到60.7%和72.7%;H_2和CO的百分含量增大到67.9%和8.3%,而CH_4和CO_2的百分含量降低到0.4%和22.6%。
     为了弄清生物油电催化水蒸气重整制氢机理,我们研究了在低压条件下模型化合物(如乙醇)的解离反应和重整反应,用时间飞行质谱检测到电催化条件下热电子脱附,发现电流增强的分子解离反应和重整反应与催化剂表面热电子相关:此外,应用XRD、XPS、BET、SEM、FT-IR等一系列表征手段,分析了电催化重整生物油制氢的过程中催化剂的结构和特性变化。通过上述研究,热电子在重整或均相裂解过程中起到了促进或诱导反应物分子解离的作用,从而导致了氢产率和碳转化率的提高。
     二、乙醇电催化水蒸气重整制氢过程和机理
     采用Ni-Al_2O_3催化剂,研究了电催化水蒸气重整乙醇制氢的过程,研究了重整温度和电流等对乙醇转化率、氢产率以及产物选择性的影响。结果发现,电流很大程度上影响了氢产率、碳转化率以及产物分布。电流的通入使氢气产率和乙醇转化率都大大提高了,电流的通入增大了H_2和.CO的选择性,而降低了CH_4和CO_2的选择性,例如在T=400℃,水/L醇=2:1(体积比),LHSV=1.8h~(-1)和P=1 atm.的条件下,没有电流时,氢产率和碳转化率分别为1.66mol和98.2%,H_2,CO,CH_4,CO_2选择性分别为48.9%、0.63%、45.7%和60.3%,而当通入电流为3.2A,其它条件不变时,氢产率和碳转化率分别增大到3.45mol和99.9%:H_2和CO的选择性增大到72.7%和7.65%,而CH_4和CO_2的选择性降低到33.3%和59.3%。
     另外还研究了石英砂床内乙醇的均相裂解实验。结果表明,电流的加入明显提高了氢产率和乙醇转化率,并导致产物选择性有很大的变化,电流增大了H_2,CO,CH_4的选择性,而降低了C_2H_4O,H_2O,C_2H_4的选择性。通过对对催化剂反应前后,以及有无电流的情况下的表征结果,包括XRD、XPS、BET、TEM等,结合常压裂解和低压裂解实验,分析了电催化重整乙醇制氢的过程机理。
     三、生物油重整制氢催化剂Ni-Cu-Ce-Mg-Al的研究
     研发了适合生物油重整制氢的催化剂,该催化剂具有较高的催化活性和较高的比表面。在S/C为6.9,GHSV为10500 h~(-1),温度为400℃,电流为3.1A的条件下,氢产率达到92.4%,碳转化率达到93.6%,催化剂连续工作20小时后,氢气产率和生物油转化率几乎没有变化。通过BET、XRD、XPS等表征手段对催化剂的结构性能以及在反应前后和有无电流的情况下的变化进行了初步分析。
Biomass is rich and friendly environmentally renewable resource,hydrogen production from biomass is one of the most promising options and it is in the development process.Enhancing hydrogen yield and energy efficiency,decreasing hydrogen production cost and the deactivation of the catalyst,etc.,these key problems are needed to settle.Focused on these problems,this present thesis proposed an efficient reforming approach for production of hydrogen by using the electrochemical catalytic reforming(i.e.,current passing through the catalyst) method.The main and innovation results are:(1) developed an electrochemical catalytic steam reforming method and equipment to produce hydrogen from bio-oil,realized high hydrogen yield(75%-96%) and high carbon conversion(73%-98%) at middle temperature (450-550℃);(2) study on the relationships between the microcosmic structure of the catalyst and conversion of bio-oil,and the mechanism of the electrochemical catalytic steam reforming;(3) study on the electrochemical catalytic steam reforming of ethanol to produce hydrogen;(4) study on the bio-oil reforming catalyst of Ni-Cu-Ce-Mg-Al.Details of the research is as follows:
     (1).Efficient electrochemical catalytic reforming of bio-oil to produce hydrogen The reforming catalyst of NiO/Al_2O_3 was prepared by the impregnation.We studied the effects of the reforming experiments,including temperatures,current,S/C, GHSV etc.,on the carbon conversion,hydrogen yield and products distribution.In this work,it was observed interestingly that the behavior of the reforming was very sensitive to the current through the catalyst.The carbon conversion and hydrogen yield were both remarkably enhanced by the current.The concentrations of H_2 and CO increased with increasing the current,accompanied by the content decrease of CO_2 and CH_4,e.g.,The carbon conversion significantly increased from 14.7%to 72.7%and hydrogen yield increased from 13.1%to 60.7%at 400℃(other conditions:S/C=5.8,GHSV=6048h~(-1),P=1 atom ) with increasing the current from 0 to 3.8 A.Without the current,the content of H_2,CO,CH_4,CO_2was 57.2%、5.8%、3.4%and 26.3%respectively,and the content of H_2 and CO increased to 67.9%和8.3%, accompanied by the content decrease of CH_4 and CO_2 to 0.4%and 22.6%respectively with increasing the current from 0 to 3.8 A.
     To make clear the mechanism of the electrochemical catalytic steam reforming, we studied the decomposition of model compounds(e.g.,ethanol) experiments at low-pressure,the electrons desorption were observed from time of flight(TOF) measurements.And we discovered that current enhanced molecule decomposition and reforming have the relationship with the thermal electrons on the surface of the catalyst.The alteration of the catalyst in the bio-oil reforming process were investigated via XRD、XPS、BET、SEM and FT-IR measurements.Based on the above investigation we discussed the thermal electrons in the reforming and decomposition processes significantly promoted the dissociation of the oxygenated organic compounds in the bio-oil,and enhanced the hydrogen yield and carbon conversion.
     (2).Electrochemical catalytic steam reforming of ethanol to produce hydrogen
     We studied the effects of the reforming temperatures and current on the ethanol conversion,hydrogen yield and products selectivity over the Ni-Al_2O_3 catalyst.It was observed that the ethanol conversion and hydrogen yield were remarkably enhanced by the current.And the products were effects by the current.The selectivity of H_2 and CO increased with increasing the current,accompanied by the decrease of the selectivity of CO_2 and CH_4,e.g.,The hydrogen yield and ethanol conversion were 1.66 mol and 98.2%,respevtively,when the current was zero at 400℃(other conditions:water/ethanol=2:1(mol ratio),LHSV=1.8h~(-1) P=1 atm),and the selectivity of H_2,CO,CH_4,CO_2 were 48.9%、0.63%、45.7%and 60.3%,respectively.However,the hydrogen yield and ethanol conversion increased to 3.45mol and 99.9%with increasing the current from 0 to 3.2 A,and the selectivity of H_2 and CO increased to 72.7%和7.65%accompanied by the decrease of the selectivity of CH_4 and CO_2 to 33.3%and 59.3%,respectively.
     The homogeneous decomposition of ethanol experiments were also studied at atmospheric pressure,the results showed that the current evidently enhanced the hydrogen yield and ethanol conversion,and effects the distribution of the products. The current increased the selectivity of H_2、CO and CH_4,and decreased the selectivity of C_2H_4O、H_2O and C_2H_4.The alteration of the catalyst after the ECR processes or the CSR process were investigated via XRD、XPS、BET and TEM measurements.The mechanism of the electrochemical catalytic reforming of ethanol was discussed based on the above investigation and the decomposition of ethanol at low-pressure and atmospheric pressure.
     (3) Study on the bio-oil reforming catalyst of Ni-Cu-Ce-Mg-Al
     We developed bio-oil reforming catalyst of Ni-Cu-Ce-Mg-Al,the catalyst showed good reforming activity and high BET surface area.The hydrogen yield and the carbon conversion reached 92.4%and 93.6%respectively,under the conditions: T=400℃,I=3.1A,S/C=6.9,GHSV=10500h~(-1),P=1atm.The hydrogen yield and the carbon conversion have no obvious change and the carbon deposition is very slight after 20h.The alteration of the catalyst after the ECR processes or the CSR process were investigated via XRD,XPS and BET measurements.
引文
[1] 张无敌,宋江川and韦小岿,中国能源,5(2001)35.
    
    [2] 蒋剑春,林产化学与工业,22(2) (2002) 75.
    
    [3] D. Wang, S. Czernik, D. Montane, M. Mann and E. Chornet, Industrial &Engineering Chemistry Research, 36 (1997) 1507.
    
    [4] D.N. Wang, S. Czernik and E. Chornet, Energy & Fuels, 12 (1998) 19.
    [5] L. Garcia, M.L. Salvador, J. Arauzo and R. Bilbao, Energy & Fuels, 13 (1999) 851.
    [6] L. Garcia, R. French, S. Czernik and E. Chornet, Applied Catalysis a-General,201(2000) 225.
    [7] S. Czernik, R. French, C. Feik and E. Chornet, Industrial & Engineering Chemistry Research, 41 (2002) 4209.
    
    [8] A. Demibas., Energy conversion and management, 42 (2001) 1357.
    [9] L.E. D and e.a. Wu Z, Energy Policy, 31 (2003) 1189.
    [10] J. Ramage, J. Scurlock and B. G, Oxford university Press ( 1996.).
    [11]X. Zhu, J. Zheng, Q. Guo and Q. Zhu, Journal of Environment Sciences-China,18(2) (2006) 392.
    [12]C. Rioche, S. Kulkarni, F.C. Meunier, J.P. Breen and R. Burch, Applied Catalysis B-Environmental, 61 (2005) 130.
    
    [13]M. Marquevich, S. Czernik, E. Chornet and D. Montane, Energy & Fuels, 13(1999)1160.
    [14]P.N. Kechagiopoulos, S.S. Voutetakis, A.A. Lemonidou and I.A. Vasalos, Energy& Fuels,20 (2006) 2155.
    
    [15]P.J. Dauenhauer, J.R. Salge and L.D. Schmidt, Journal of Catalysis, 244 (2006) 238.
    
    [16]E.C. Vagia and A.A. Lemonidou, International Journal of Hydrogen Energy, 32(2007) 212.
    [17]X.Z. Wang, T. Dong, L.X. Yuan, T. Kan, X.F. Zhu, Y. Torimoto, M. Sadakata and Q.X. Li, Energy & Fuels, 21 (2007) 2421.
    [18]Z. Wang, Y. Pan, T. Dong, X. Zhu, T. Kan, L. Yuan, Y. Torimoto, M. Sadakata and Q. Li, Applied Catalysis A: General 320 (2007) 24.
    [19]P.J. Wild and M.J. Verhaak, Catal. Today, 60 (2000) 3.
    [20]F. Marino, M. Boveri, G. Baronetti and M. Laborde, Int. J. Hydrogen Energy, 29 (2004) 67-71.
    
    [21]G.A. Deluga, J.R. Salge, L.D. Schmidt and X.E. Verykios, Scince, 303 (2004)993-997
    
    [22]A.N. Fatsikostas, D.I. Kondarides, X.E. Verykios and Catal.Today, 75 (2002) 145-155.
    
    [23]S. Cavallaro, Energy Fuels, 14 (2000) 1195-1199.
    [24]J. Llorca, N. Horns, J. Sales, J.G. Fierro and P.R. Piscina, J. Catal., 222 (2004) 470-480.
    
    [25] A.N. Fatsikostas and X.E. Verykios, J. Catal., 225 (2004) 439-452.
    
    [26]A. Therdthianwong, T. Sakulkoakiet and S. Therdthianwong, Science Asia, 27(2001)193-198
    
    [27] G.A. Deluga, J.R. Salge, L.D. Schmidt and X.E. Verykios, Scince, 303 (2004) 993-997.
    
    [28] J. Llorca, P.R. Piscina, J. Sales and N. Homs, Chem. Commun., (2001) 641 -642.
    
    [29]M.A. Goula, S.K. Kontou and P.E. Tsiakaras, Appl.Catal. B, (2004) 135-144.
    [30] A.N. Fatsikostas, D.I. Kondarides and X.E. Verykios, Chem. Commun., 2001 851-852.
    
    [31]P.Y. Sheng and H. Idriss, J. Vac. Sci. Technol. A, 22 (2004) 1652-1658.
    [32]J.C. Vargas, F. Sternenberg, A.C. Roger and A. Kiennemann, Presented in the Technical Program, Pisa, Italy, May (2004) 16.
    [33]F. Frusteri, S. Freni, V. Chiodo, G. Bonura, S. Donato and S. Cavallaro, Presented in the Technical Program, Pisa, Italy, May, (2004) 16.
    [34]M. Toth, M. Domok, J. Rasko, A.H. x and A. Erdohelyi, Presented in the Technical Program, Pisa, Italy, May (2004) 16.
    
    [35]E.Y. Garcia and M.A. Laborde, Int. J. Hydrogen Energy, 16 (1991) 307-312.
    [36]N. Iwasa and N. Takezawa, Bull. Chem. Soc. Jpn, 64 (1991) 2619-2623.
    [37]J.C. Amphlett, S. Leclerc, R.F. Mann, B.A. Peppley and P.R. Roberge,Proceedings of the 33rd Intersociety Energy Conversion Engineering Conference,Colorado Sprongs, CO, August (1998) 98.
    [38]K. Vasudeva, N. Mitra, P. Umasankar and S.C. Dhingra, International Journal of Hydrogen Energy, 21 (1996) 13.
    [39]F. Frusteri, S. Freni, V. Chiodo, L. Spadaro, O.D. Blasi, S. G. Bonura and Cavallaro, Appl. Catal., A 270 (2004) 30-38.
    [40]D. Srinivas, C. V, V. Satyanarayana, H.S. Potdar and P. Ratnasamy, Appl. Catal.,A,246 (2003) 323-334.
    [41]A.A. I. Fishtika, R. Dattaa,*, D. Geanab, International Journal of Hydrogen Energy, 25 (2000) 31.
    [42]V. Mas, R. Kipreos, N. Amadeo and M. Laborde, Int. J. Hydrogen Energy 31(2006)21-28.
    
    [43]I. Fishtik, A. Alexander, R. Datta and D. Geana, 25 (2000) 31 -45.
    [44]S. Freni, G. Maggio and S. Cavallaro, J. Power Sources, 62 (1996) 67—73.
    [45]G. Maggio, S. Freni and S. Cavallaro, J. Power Sources, 74 (1998) 17-23.
    [46]S. Cavallaro and S. Freni, Int. J. Hydrogen Energy, 21 (1996) 465-469.
    [47]J. Sun, X.-P. Qiu, FengWu and W.T. Zhu, Int. J. Hydrogen Energy, 30 (2005) 437-445.
    [48]孙杰,吴锋,邱新平,王芳,郝少军 and 刘媛,催化学报, 25 (2005) 551-555.
    
    [49]A.J. Akande, R.O. Idem and A.K. Dalai, Appl. Catal., A, 287 (2005) 159-175.
    [50] J. Comas, F. Mari, M. Laborde and N. Amadeo, Chem. Eng. J., 98 (2004) 61 -68.
    [51]F. Frusteri, S. Freni, L. Spadaro, V. Chiodo, G. Bonura, S. Donato and S.Cavallaro, Catalysis Communications, 5 (2004) 611.
    [52]F. Frusteri, S. Freni, V. Chiodo, L. Spadaro, O. Di Blasi, G. Bonura and S.Cavallaro, Applied Catalysis a-General, 270 (2004) 1.
    
    [53]A.N. Fatsikostas, D.I. Kondarides and X.E. Verykios, Catalysis Today, 75 (2002) 145.
    
    [54] A.N. Fatsikostas and X.E. Verykios, Journal of Catalysis, 225 (2004) 439.
    [55]杨.宇,吴.绯 and 马建新,催化学报,26(2005) 131-137.
    [56] Y. Yang, J. Ma and FeiWu, Int. J. Hydrogen Energy, (In Press).
    [57]S. Freni, N. Mondello, S. Cavallaro, G. Cacciola, V.N. Parmon and V.A. Sobyanin,React. Kinet. Catal. Lett.,, 71 (2000) 143-152.
    [58]S. Freni, S. Cavallaro, N. Mondello, L. Spadaro and F. Frusteri, J.Power Sources,108(2002)53-57.
    [59]S. Freni, S. Cavallaro, N. Mondello, L. Spadaro and F. Frusteri, Catalysis Communications, 4 (2003) 259.
    
    [60]V. Fierro, O. Akdim and C. Mirodatos, Green Chem., 5 (2003) 20-27.
    [61]V. Fierro, V. Klouz, O. Akdim and C. Mirodatos, Catal. Today 75 ( 2002) 141 —144.
    [62]V. Klouz, V. Fierro, P. Denton, H. Katz, J.P. Lisse and S. Bouvot-Mauduit, J.Power Sources, 105 (2002) 26-34.
    [63]F. Marino, E.G. Cerrella, S. Duhalde, M. Jobbagy and M.A. Laborde, Int. J.Hydrogen Energy,, 23 (1998) 1095-1101.
    [64]M.B. F. Mari~no, G. Baronetti,M. Laborde, International Journal of Hydrogen Energy, 26 (2001) 665.
    [65]F. Marino, G. Baronetti, M. Jobbagy and M. Laborde, Appl.Catal. A: Gen., 238(2003)41-54.
    
    [66]S. Velu, N. Satoh, C.S. Gopinath and K. Suzuki, Catalysis Letters, 82 (2002) 145.
    [67]S. Velu, K. Suzuki, M. Vijayaraj, S. Barman and C.S. Gopinath, Applied Catalysis B: Environmental, 55 (2005) 287.
    [68]C.A. Luengo, G. Ciampi, M.O. Cencig, C. Steckelberg and M.A. Laborde, Int. J.Hydrogen Energy, 17 (1992) 677-681.
    
    [69]D.A. Morgenstern and J.P. Fornango, Energy and Fuels, 19 (2005) 1708.
    [70]D. Srinivas, C.V.V. Satyanarayana, H.S. Potdar and P. Ratnasamy, Applied Catalysis a-General, 246 (2003) 323.
    [71] J. Llorca, N. Horns, J. Sales and P. Ram?irez de la Piscina, Journal of Catalysis,209(2002)306.
    [72]J. Llorca, J.A. Dalmon, P.R. de la Piscina and N. Homs, Applied Catalysis a-General, 243 (2003) 261.
    [73]P.R.i.d.l.P. Jordi Llorca , Jean-Alain Dalmon, and N.1.H. Joaquim Sales Applied Catalysis B: Environmental, 43 (2003) 355.
    [74]M.S. Batista, R.K.S. Santos, E.M. Assaf, J.M. Assaf and E.A. Ticianelli, Journal of Power Sources, 124 (2003) 99.
    [75]M.S. Batista, R.K.S. Santos, E.M. Assaf, J.M. Assaf and E.A. Ticianelli, Journal of Power Sources, 134 (2004) 27.
    [76]M.S. Batistaa, E.M. Assafa, J.M. Assafb and E.A. Ticianelli, Int. J. Hydrogen Energy, (In press).
    
    [77]S. Cavallaro, N. Mondello and S. Freni, J. Power Sources, 102 (2001) 198-204.
    [78]F. Haga, T. Nakajima, H. Miya and S. Mishima, Catalysis Letters, 48 (1997) 223.
    [79]S. Freni, Journal of Power Sources, 94 (2001) 14.
    [80]S. Cavallaro, V. Chiodo, A. Vita and S. Freni, Journal of Power Sources, 123(2003) 10.
    [81]S. Cavallaro, V. Chiodo, S. Freni, N. Mondello and F. Frusteri, Appl. Catal. A,249(2003)119-128.
    
    [82]F. Aupretre, C. Descorme and D. Duprez, Catalysis Communications, 3 (2002) 263.
    [83]F. Aupretre, C. Descorme, D. Duprez, D. Casanave and D. Uzio, Journal of Catalysis, 233 (2005) 464.
    [84]J. Kugai, V. Subramani, C. Song, M.H. Engelhard and Y.H. Chin, Journal of Catalysis, 238 (2006) 430.
    
    [85]J.P. Breen, R. Burch and H.M. Coleman, Applied Catalysis B-Environmental, 39(2002) 65.
    [86]M.A. Goula, S.K. Kontou and P.E. Tsiakaras, Applied Catalysis B: Environmental,49(2004) 135.
    [87]D.K. Liguras, D.I. Kondarides and X.E. Verykios, Applied Catalysis B:Environmental, 43 (2003) 345.
    [1]X.Zhu,J.Zheng,Q.Guo and Q.Zhu,Journal of Environment Sciences-China,18(2)(2006) 392.
    [2]X.F.Zhu and V.R,Fuel,84(2005) 1007.
    [3]刘荣厚and张春梅,可再生能源,(2)(2004)9~12.
    [4]廖艳芬,王树荣and洪军等,能源工程,3(2003)1~3.
    [5]M.Marquevich,S.Czemik,E.Chornet and D.Montane,Energy & Fuels,13(1999) 1160.
    [1]王卫平and吕功煊,化学进展,15(2003)74.
    [2]D.K.Liguras,D.I.Kondarides and X.E.Verykios,Appl.Catal.B 43(2003)) 345.
    [3]衣保廉,燃料电池-高效、环境友好的发电方式,化学工业出版社,,(2000).
    [4]A.N.Fatsikostas,D.I.Kondarides and X.E.Verykios,Catalysis Today,75(2002) 145.
    [5]A.Demirbas,Energy Sources,27(2005) 1409.
    [6]J.R.Galdamez,L.Garcia and R.Bilbao,Energy & Fuels,19(2005) 1133.
    [7]M.F.Demirbas,Energy Sources Part a-Recovery Utilization and Environmental Effects,28(2006) 245.
    [8]M.Marquevich,S.Czernik,E.Chornet and D.Montane,Energy & Fuels,13(1999) 1160.
    [9]L.Garcia,R.French,S.Czernik and E.Chornet,Applied Catalysis a-General,201(2000)225.
    [10]J.Comas,F.Marino,M.Laborde and N.Amadeo,Chemical Engineering Journal,98(2004)61.
    [11]J.Sehested,J.A.P.Gelten,I.N.Remediakis,H.Bengaard and J.K.Norskov,Journal of Catalysis,223(2004) 432.
    [12]D.Wang,S.Czernik,D.Montane,M.Mann and E.Chornet,Industrial & Engineering Chemistry Research,36(1997) 1507.
    [13]D.N.Wang,S.Czernik and E.Chornet,Energy & Fuels,12(1998) 19.
    [14]L.Garcia,M.L.Salvador,J.Arauzo and R.Bilbao,Energy & Fuels,13(1999) 851.
    [15]P.J.Dauenhauer,J.R.Salge and L.D.Schmidt,Journal of Catalysis,244(2006) 238.
    [16]T.Yamazaki and K.Matsuki,Journal of the Japan Petroleum Institute,49(2006) 246.
    [17]K.Takanabe,K.Aika,K.Seshan and L.Lefferts,Chemical Engineering Journal,120(2006)133.
    [18]Y.Pan,Z.X.Wang,T.Kan,X.F.Zhu and Q.X.Li,Chinese Journal of Chemical Physics,19(2006) 190.
    [19]H.Xian,Y.Pan,S.B.Qiu,J.Tu,X.F.Zhu and Q.X.Li,Chinese Journal of Chemical Physics,18(2005) 469.
    [20]Z.Wang,Y.Pan,T.Dong,X.Zhu,T.Kan,L.Yuan,Y.Torimoto,M.Sadakata and Q.Li,Applied Catalysis A:General 320(2007) 24.
    [21]X.Z.Wang,T.Dong,L.X.Yuan,T.Kan,X.F.Zhu,Y.Torimoto,M.Sadakata and Q.X.Li,Energy & Fuels,21(2007) 2421.
    [22]F.H.J.Li,L.Wang,S.Q.Yu,Y.Torimoto,M.Sadakata and Q.X.Li,Chem.Mater,17(2005) 2771.
    
    [23] F. Huang, J. Li, L. Wang, T. Dong, J. Tu, Y. Torimoto, M. Sadakata and Q.X. Li, J. Phys.Chem. B, 109 (2005) 12032.
    
    [24] Q.X. Li, K. Hayashi, M. Nishioka, H. Kashiwagi, M. Hirano, Y. Torimoto, H. Hosono and M.Sadakatad, Appl. Phys. Lett., 80 (2002) 4259.
    
    [251 C.F. Song, J.Q. Sun, S.B. Qiu, L.X. Yuan, J. Tu, Y. Torimoto, M. Sadakata and Q.X. Li,Chem. Mater., 20 (2008)) 3473.
    
    [26] GA. Somorjai, Introduction to surface chemistry and catalysis, New York, Wiley, (1994) 362.
    
    [27] S. M, Mitrovsk, L. C, C. Elliot and R.G Nuzzo, Langmuir, 20 (2004) 6974.
    
    [28] S. BEBELIS1, N. KOTSIONOPOULOS1, A.MAI2 and F. TIETZ2, Journal of Applied Electrochemistry 37 (2007) 15.
    
    [29] W. Jamsak, S. Assabumrungrat, P.L.D. *, N. Laosiripojana, R. Suwanwarangkul, S.Charojrochkul and E. Croiset, Chemical Engineering Journal 133 (2007) 187.
    
    [30] D. Cocco and V. Tola, J Appl Electrochem 38 (2008) 955.
    
    [31] M.N. Barroso, M.F. Gomez, L.A. Arru and M.C. Abello, Catal. Lett., 109 (2006) 13.
    
    [32] K. Shiozawaa and Y. Neo, American Vacuum Society, DO1: 10.1116/1.2432354 (2007 ).
    
    [33] ZhenhuaWang, K. Sunb, S.S. *, N. Zhang, J. Qiao and P. Xua, Journal of Membrane Science 320 (2008) 500.
    [1] A.N. Fatsikostas, D.I. Kondarides and X.E. Verykios, Catalysis Today, 75 (2002) 145.
    [2] F. Frusteri, S. Freni, V. Chiodo, L. Spadaro, O. Di Blasi, G. Bonura and S.Cavallaro, Applied Catalysis a-General, 270 (2004) 1.
    [3] D.K. Liguras, D.I. Kondarides and X.E. Verykios, Applied Catalysis B:Environmental, 43 (2003) 345.
    [4] J.P. Breen, R. Burch and H.M. Coleman, Applied Catalysis B-Environmental, 39(2002) 65.
    [5] A.N. Fatsikostas, D.I. Kondarides and X.E. Verykios, Chem. Commun., 2001 851-852.
    [6] A.N. Fatsikostas, D.I. Kondarides and X.E. Verykios, Chemical Communications,(2001)851.
    [7] W. Jamsak, S. Assabumrungrat, P.L. Douglas, N. Laosiripojana and S.Charojrochkul, Chemical Engineering Journal, 119 (2006) 11.
    [8] S. Freni, G. Maggio and S. Cavallaro, J. Power Sources, 62 (1996) 67 — 73.
    [9] S. Freni, S. Cavallaro, N. Mondello, L. Spadaro and F. Frusteri, J.Power Sources,108(2002)53-57.
    
    [10]钱伯章,化工科技市场,, 10(2004) 1.
    [11]F. Frusteri, S. Freni, V. Chiodo, L. Spadaro, O.D. Blasi, S. G. Bonura and Cavallaro, Appl. Catal., A 270 ( 2004) 30—38.
    [12]F. Aupretre, C. Descorme and D. Duprez, Catalysis Communications, 3 (2002) 263.
    [13]D. Srinivas, C. V., V. Satyanarayana, H.S. Potdar and P. Ratnasamy, Appl. Catal.,A,246 (2003) 323-334.
    [14]F. Marino, G. Baronetti, M. Jobbagy and M. Laborde, Appl.Catal. A: Gen., 238(2003)41-54.
    [15]M.N. Barroso, M.F. Gomez, L.A. Arrua and M.C. Abello, Applied Catalysis a-General, 304 (2006) 116.
    [16]D. Srinivas, C.V.V. Satyanarayana, H.S. Potdar and P. Ratnasamy, Applied Catalysis a-General, 246 (2003) 323.
    [17] J. Comas, M.L. Dieuzeide, G. Baronetti, M. Laborde and N. Amadeo, Chemical Engineering Journal, 118 (2006) 11.
    [18] J. Comas, F. Marino, M. Laborde and N. Amadeo, Chemical Engineering Journal,98(2004)61.
    [19]B.C. Zhang, Y. Li, W.J. Cai, X.L. Tang, Y.D. Xu and W.J. Shen, Chinese Journal ofCatalysis,27(2006)567.
    [20]J. Llorca, N. Homs, J. Sales and P. Ram?irez de la Piscina, Journal of Catalysis,209 (2002) 306.
    [21]J. Kugai, S. Velu, C. Song, M. Engelhard and Y.H. Chin, ACS National Meeting Book of Abstracts, Philadelphia, PA, 2004.
    [22]M.A. Goula, S.K. Kontou and P.E. Tsiakaras, Appl.Catal. B, (2004) 135-144.
    [23]H.S. Roh, A. Platon, Y. Wang and D.L. King, Catalysis Letters, 110 (2006) 1.
    [24]A. Erdohelyi, J. Rasko, T. Kecske?s, M. To?th, M. Do?mo?k and K. Baa?n,Catalysis Today, 116 (2006) 367.
    [25]P.D. Vaidya and A.E. Rodrigues, Industrial & Engineering Chemistry Research,45 (2006) 6614.
    [26]S. Cavallaro, V. Chiodo, A. Vita and S. Freni, Journal of Power Sources, 123(2003) 10.
    
    [27]S. Freni, Journal of Power Sources, 94 (2001) 14.
    [28]J. Llorca, J.A. Dalmon, P.R. de la Piscina and N. Horns, Applied Catalysis a-General,243 (2003) 261.
    
    [29] A. Kaddouri a, C. Mazzocchia b, Catalysis Communications, 5 (2004) 339.
    [30]S. Freni, S. Cavallaro, N. Mondello, L. Spadaro and F. Frusteri, Catalysis Communications, 4 (2003) 259.
    [31]H. Wang, P.X. Liu, Y. Liu and Y.N. Qin, Chinese Journal of Catalysis, 27 (2006) 976.
    [32]R.K.S. Santos, M.S. Batista, E.M. Assaf and J.M. Assaf, Efeito do teor meta?lico em catalisadores Co/Al2O 3 aplicados A? reac?a?o de reforma a vapor de etanol,28 (2005) 587.
    [33]J. Llorca, N. Horns, J. Sales, J.G. Fierro and P.R. Piscina, J. Catal., 222 (2004) 470-480.
    [34]J. Sun, X. Qiu, F. Wu, W. Zhu, W. Wang and S. Hao, International Journal of Hydrogen Energy, 29 (2004) 1075.
    [35]F. Aupretre, C. Descorme, D. Duprez, D. Casanave and D. Uzio, Journal of Catalysis, 233 (2005) 464.
    [36]V. Fierro, O. Akdim, H. Provendier and C. Mirodatos, Journal of Power Sources,145 (2005) 659.
    [37]N. Laosiripojana and S. Assabumrungrat, Journal of Power Sources, 163 (2007) 943.
    [38]M.H. Youn, J.G. Seo, P. Kim, J.J. Kim, H.I. Lee and I.K. Song, Journal of Power Sources, 162(2006)1270.
    [39]S. Velu, K. Suzuki, M. Vijayaraj, S. Barman and C.S. Gopinath, Applied Catalysis B: Environmental, 55 (2005) 287.
    
    [40]S. Velu, N. Satoh, C.S. Gopinath and K. Suzuki, Catalysis Letters, 82 (2002) 145.
    [41]M.B. F. Mari~no, G. Baronetti,M. Laborde, International Journal of Hydrogen Energy, 26 (2001) 665.
    [42]F. Marin?o, M. Jobbagy, G. Baronetti and M. Laborde, Studies in Surface Science and Catalysis, 130 C (2000) 2147.
    [43]G.A. Somorjai, Introduction to surface chemistry and catalysis, New York, Wiley,(1994)362.
    [44]K. Shiozawaa and Y. Neo, American Vacuum Society, DOI: 10.1116/1.2432354 (2007).
    [45]S. BEBELIS1, N. KOTSIONOPOULOS1, A.MAI2 and F. TIETZ2, Journal of Applied Electrochemistry 37 (2007) 15.
    [46]W. Jamsak, S. Assabumrungrat, P.L.D. *, N. Laosiripojana, R. Suwanwarangkul, S. Charojrochkul and E. Croiset, Chemical Engineering Journal 133 (2007) 187.
    [47] S. M, Mitrovsk, L. C, C. Elliot and R.G. Nuzzo, Langmuir, 20 (2004) 6974.
    
    [48]F. Huang, J. Li, L. Wang, T. Dong, J. Tu, Y. Torimoto, M. Sadakata and Q.X. Li, J.Phys. Chem. B, 109 (2005) 12032.
    [49]F.H. J. Li, L. Wang, S.Q. Yu, Y. Torimoto, M. Sadakata and Q.X. Li, Chem. Mater,17(2005)2771.
    [50]Q.X. Li, K. Hayashi, M. Nishioka, H. Kashiwagi, M. Hirano, Y. Torimoto, H.Hosono and M. Sadakatad, Appl. Phys. Lett., 80 (2002) 4259.
    [51]C.F. Song, J.Q. Sun, S.B. Qiu, L.X. Yuan, J. Tu, Y. Torimoto, M. Sadakata and Q.X. Li, Chem. Mater., 20 (2008)) 3473.
    [1]D.Wang,S.Czernik,D.Montane,M.Mann and E.Chornet,Industrial & Engineering Chemistry Research,36(1997) 1507.
    [2]D.N.Wang,S.Czernik and E.Chornet,Energy & Fuels,12(1998) 19.
    [3]L.Garcia,M.L.Salvador,J.Arauzo and R.Bilbao,Energy & Fuels,13(1999) 851.
    [4]M.Marquevich,S.Czernik,E.Chornet and D.Montane,Energy & Fuels,13(1999) 1160.
    [5]L.Garcia,R.French,S.Czernik and E.Chornet,Applied Catalysis a-General,201(2000)225.
    [6]S.Czernik,R.French,C.Feik and E.Chornet,Industrial & Engineering Chemistry Research,41(2002) 4209.
    [7]J.Sehested,J.A.P.Gelten,I.N.Remediakis,H.Bengaard and J.K.Norskov,Journal of Catalysis,223(2004) 432.
    [8]P.J.Dauenhauer,J.R.Salge and L.D.Schmidt,Journal of Catalysis,244(2006) 238.
    [9]T.Yamazaki and K.Matsuki,Journal of the Japan Petroleum Institute,49(2006) 246.
    [10]X.Z.Wang,T.Dong,L.X.Yuan,T.Kan,X.E Zhu,Y.Torimoto,M.Sadakata and Q.X.Li,Energy & Fuels,21(2007) 2421.
    [11]Z.Wang,Y.Pan,T.Dong,X.Zhu,T.Kan,L Yuan,Y.Torimoto,M.Sadakata and Q.Li,Applied Catalysis A:General 320(2007) 24.
    [12]H.Xian,Y.Pan,S.B.Qiu,J.Tu,X.F.Zhu and Q.X.Li,Chinese Journal of Chemical Physics,18(2005) 469.
    [13]Y.Pan,z.x.Wang,T.Kan,X.F.Zhu and Q.X.Li,Chinese Journal of Chemical Physics,19(2006) 190.
    [14]A.Akande,A.Aboudheir,R.Idem and A.Dalai,International Journal of Hydrogen Energy,31(2006) 1707.
    [15]A.J.Akande,R.O.Idem and A.K.Dalai,Appl.Catal.,A,287(2005) 159-175.
    [16]F.Marin?o,G.Baronetti,M.Jobbagy and M.Laborde,Applied Catalysis A:General,238(2002) 41.
    [17]J.C.Vargas,S.Libs,A.C.Roger and K.A,Catal Today,107-108(2005) 417-425.
    [18]C.Diagne,H.Idriss and A.Kiennemann,Catal.Commun.,3(2002) 565-571.
    [19]屠兢,伏义路and林培琰,燃料化学学报,27(1999).
    [20]廖卫兵and曹小华,化化工进展,27(2008)724.
    [21]W.a.SB and L.M,Journal of Chemical Technology and Biotechnology,,75(7)(2000,) 589.
    [22]G.R.A,Cata1.Today,,21(1994) 545.
    [23]李基涛,陈旦明and严前古,天然气化工,24(3)(1999) 25-27..
    [24]L.Garc(?)a,M.L.Salvador,J.Arauzo and R.Bilbao,Journal of Analytical and Applied Pyrolysis,58-59(2001) 491.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700