用户名: 密码: 验证码:
苯酚—淀粉酚醛树脂及其模塑料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用低成本的绿色资源替代高成本的有毒物质制取低成本、绿色化的酚醛树脂及其模塑料是酚醛树脂及塑料工业未来的重要发展方向。本文在全面综述了国内外酚醛树脂及其模塑料的研究历程和最新进展的基础上,针对如何降低酚醛树脂及其模塑料成本、毒性、污染问题,开展了用淀粉替代甲醛和部分苯酚制取苯酚-淀粉酚醛树脂及其模塑料的研究,旨在迅速推动我国酚醛树脂及塑料低成本、绿色化的制备技术,增加一类新型的酚醛树脂及其模塑料产品,奠定我国苯酚-淀粉酚醛树脂及其模塑料的研究基础,并从实验室走向实际应用提供必要的技术储备和保障。
     苯酚-淀粉酚醛树脂是以苯酚、淀粉为原料,在硫酸的催化下,经缩聚一步合成的一种新型酚醛树脂。本文探讨了催化剂用量、原料配比、反应温度、反应时间对树脂合成的影响,确定了最佳原料配方与合成工艺,表征了树脂结构,阐述了树脂合成反应机理与固化反应机理,分析了六次甲基四胺用量、分子量、水分含量、游离酚含量、氧化镁用量、温度对树脂固化的影响,进行了性能表征与研究;采用尼龙6改进了苯酚-淀粉酚醛树脂的脆性,确定了原料配方和合成工艺,测试了性能。结果表明,树脂合成的最佳工艺条件是:原料配方(质量份)为苯酚:淀粉:硫酸=550:600:4.95,时间与温度的控制参数为室温-60℃/15min+60℃/50min+60-105℃/30min+105℃/70min+105-115℃/20min+115-165℃/120min+165℃/60min+165-130℃/30min+130℃/30min,吸入液态苯酚真空度0.08-0.09MPa,脱废液真空度0.04-0.05MPa;合成反应机理可能是:在硫酸催化剂和热的作用下,淀粉生成葡萄糖,葡萄糖进一步生成羟甲基糠醛,羟甲基糠醛或葡萄糖与苯酚发生缩聚反应生成以1,2,6-苯环结构为主的热塑性苯酚-淀粉酚醛树脂;树脂性能受催化剂用量、反应温度、反应时间和苯酚/淀粉配比的影响较大,并且与热塑性苯酚-甲醛酚醛树脂相似,特别是具有很好的耐热性;用树脂量17%的六次甲基四胺在165℃以上可以使其迅速固化,固化反应速率与六次甲基四胺和氧化镁的用量、树脂的化学组成、树脂中水分和游离酚的含量、温度有关,其中影响最大的是温度,其次是树脂的化学组成、树脂中水分和游离酚的含量;与热塑性苯酚-甲醛酚醛树脂相比,原料成本低24.5%,废液量减少43.8%。改性树脂的原料配方(质量份)是:苯酚:淀粉:尼龙6:硫酸=300:330:35:2.00,时间与温度的控制参数为室温-60℃/15min+60℃/50min+60-105℃/30min+105℃/60min+105-115℃/20min+115-160℃/110min+160℃/80min+160-130℃/25min+130℃/45min,吸入液态苯酚真空度0.08-0.09MPa,脱废液真空度0.04-0.05MPa;弯曲强度提高22.5%,冲击强度提高18.2%。
     苯酚-淀粉酚醛模塑料是以苯酚-淀粉酚醛树脂、六次甲基四胺、木粉、碳酸钙、氧化镁、硬脂酸锌、硬脂酸、油溶苯胺黑和群青为原料,采用辊压法制备的一类新型酚醛模塑料,已研制出三种型号的模塑料PF2A1、PF2A2、PF2C4。PF2A1是用于制造日常生活用品的通用级酚醛模塑料,PF2A2是用于制造低压电器绝缘结构件的通用级酚醛模塑料,PF2C4是用于制造低压电器绝缘件的耐热级酚醛模塑料。本文探讨了原料配比、模塑温度对试样强度的影响,确定了最佳原料配方、制备工艺和模压成型工艺,提出了质量控制方法,分析了性能和经济优势,进行了应用推广。结果表明,PF2A1~①/PF2A2~②/PF2C4~③最佳原料配方(质量份)分别是:苯酚-淀粉酚醛树脂:六次甲基四胺:木粉:碳酸钙:氧化镁:硬脂酸锌:硬脂酸:油溶苯胺黑:群青=37.0:6.4:48.0:6.0:0.6:0.6:0.4:0.5:0.5~①/40.5:6.9:45.0:4.8:0.8:0.6:0.4:0.5:0.5~②/37.0:6.4:30.0:24.0:0.6:0.6:0.4:0.5:0.5~③;制备的主要控制工艺参数分别是:除树脂以外的原料混合时间≥10min,全部原料混合时间≥50min,工作辊温度85-95℃~①/100-110℃~②/90-100℃~③,空转辊温度145-155℃~①/140-150℃~②/145-155℃~③,辊距2.3-2.5mm~①/2.2-2.5mm~②/2.0-2.5mm~③,热炼时间4-5min,模塑料拼批时间≥45min;产品质量分别用模塑料片状料光亮外观和模塑料拉西格流动性70-110mm~①/80-120mm~②/80-120mm~③控制;模压成型工艺主要控制参数分别是:模塑料预热温度100-110℃,预热时间10-15min,模塑压力≥25MPa,模塑温度175-180℃~①175-180℃~②180-185℃~③,模塑时间0.8-1.0min·mm~(-1),排气≥3次;与同型号的热塑性苯酚-甲醛酚醛模塑料相比,原料成本分别低20.4%m/21.4%~②/20.9%~③。PF2A1的性能达到通用级酚醛模塑料A1国家标准,尤其是热变形温度170℃大大超过该国家标准,绝缘电阻5.0×10~(12)Ω、介电强度6.7MV·m~(-1)、介质损耗因数0.03、耐炽热14s优良,在潮湿环境中有优良的电性能,冲击强度、热变形温度、绝缘电阻、介电强度明显优于原有类似酚醛模塑料;PF2A2的性能达到通用级酚醛模塑料A2国家标准,尤其是热变形温度171℃、绝缘电阻3.0×10~(12)Ω、介电强度5.9MV·m~(-1)、介质损耗因数0.03大大超过该国家标准,耐炽热15s优良,在潮湿环境中有优良的电性能,热变形温度、绝缘电阻、介质损耗因数明显优于原有类似酚醛模塑料;PF2C4的性能达到耐热级酚醛模塑料C4国家标准,尤其是热变形温度174℃、耐炽热11s、绝缘电阻6.0×10~(12)Ω、介电强度6.7MV·m~(-1)大大超过该国家标准,介质损耗因数0.03优良,在潮湿环境中有很好的电性能,弯曲强度、热变形温度、绝缘电阻、介电强度与原有更高档次的PF2C3相当。合适的六次甲基四胺/树脂、木粉/树脂配比以及模塑温度是试样获得高强度的关键。
     研究了苯酚-淀粉酚醛树脂及其模塑料工业化设计。以生产能力410t·a~(-1)树脂、1000t·a~(-1)模塑料,工作时24h·d~(-1)、工作日250d·a~(-1),间歇生产法和连续生产法并举为设计要求,对原料消耗定额、设备与布局,厂房、水、电、气,岗位与人员、产品技术指标及出厂检验项目、投资概算、三废处理等内容进行了设计。在处理合成馏出液时,探索出冷却结晶回收90.16%的苯酚并将余液制成酚醛型消毒剂和防腐剂的新方法。应用推广证明,本工业化设计具有许多特点,切实可行。
Phenolic resins and their moulding materials of low cost and greenness are made by replacing poisonous matters of high cost with green natural resources of low cost, which is critical in the development of the phenolic resins and plastics industry of next generation. Based on the comprehensive review of the history and the newest progress of the studies on phenolic resins and their moulding materials at home and abroad, in view of these problems how to reduce cost, poisonousness and pollution of phenolic resins and their moulding materials, the developed studies focused on the making of phenol-starch resin and its moulding materials by replacing formaldehyde and part of phenol with starch, which speedily promote the preparative technique of phenolic resins and plastics of low cost and greenness at home, increase a kind of new type products of phenolic resins and their moulding materials, establish the study base of phenol-starch and its moulding materials , and provide necessary technical store and guarantee for phenol-starch resin and its moulding materials from laboratory to realistic application.
     Phenol-starch resin is a new type phenolic resin of the one-step synthesis by polycondensation with phenol, starch as raw materials under catalysis of sulfuric acid. In the thesis, the effects of amount of catalyst, raw materials mass ratio, reaction temperature and reaction time on the resin synthesis were discussed, the optimum raw materials formula and synthetic technology were determined, the resin structure was characterized, the resin synthetic reaction mechanism and curing reaction mechanism were expounded, the effects of hexamethylene-tetramine use weight, molecular weight, water content, free phenol content, magnesium oxide use weight and temperature on the resin curing were analyzed, the characterization and study of the resin properties were conducted; the brittleness of phenol-starch resin were modified by nylon 6, the raw materials formula and synthetic technology of the modified resin were determined, its properties was tested. The results show that the optimum technological conditions of the resin synthesis are that the raw materials formula (mass portion) is phenol : starch : sulfuric acid = 550 : 600 : 4.95, the control parameters of time and temperature are room temperature-60℃/15min+60℃/50min+60-105℃/30min +105℃/70min+105-115℃/20min+115-165℃/120min+165℃/60min+165-130℃ /30min+130℃/30min, vacuum degree 0.08-0.09MPa for drawing liquid phenol, vacuum degree 0.04-0.05MPa for taking off waste fluid; the synthetic reaction mechanism may be that starch produces glucose, further glucose produces hydroxymethylfurfural and the polycondensation reaction takes place between hydroxymethylfurfural or glucose and phenol to yield phenol-starch resin under function of sulfuric acid catalyst and heat, the resin containing a great many of the structure of 1,2,6-benzene ring is the thermoplastic phenolic resin; it is large that the effects of amount of catalyst, reaction temperature, reaction time and phenol/starch mass ratio on the resin properties, the resin is similar in the properties to the thermoplastic phenol-formaldehyde resin, specially it has very good heat resisting property; the resin is cured speedily by hexamethylene-tetramine of 17% resin mass at over 165℃, curing reaction rate relate to amount of hexamethylene-tetramine and magnesium oxide , chemical composition of the resin, water and free phenol content in the resin and temperature, among them the greatest effect factor is temperature, and then factors are chemical composition of the resin and water and free phenol content; by comparison with the phenol-formaldehyde resin, the cost of raw materials is reduced by 24.5%, amount of waste fluid is reduced by 43.8%. The raw materials formula (mass portion) of the modified resin is phenol : starch : nylon 6 :sulfuric acid = 300 : 330 : 35 : 2.00,the control parameters of time and temperature are room temperature~60℃/15min+60℃/50min+60-105℃/30min+105℃/60min+105-115℃/20min+115-160℃/110min+160℃/80min+160-130℃/25min+130℃/45min, vacuum degree 0.08-0.09MPa for drawing liquid phenol, vacuum degree 0.04-0.05MPa for taking offwaste fluid; its flexural strength is increased by 22.5%, its impact strength is increased by 18.2%.
     Phenol-starch moulding materials are a kind of new type phenolic moulding materials prepared by the method of rolling with phenol-starch resin, hexamethylene-tetramine, wood flour, calcium carbonate, magnesium oxide, zinc stearate, stearic acid, Oil Aniline Black and ultramarine as raw materials, developed three type moulding materials are PF2A1, PF2A2 and PF2C4. PF2A1 belongs to versatile phenolic moulding materials for making articles for daily life use, PF2A2 belongs to versatile phenolic moulding materials for making insulating structural parts of low voltage electrical equipments, PF2C4 belongs to heat resisting phenolic moulding materials for making insulating parts of low voltage electrical equipments,In the thesis, the effects of raw materials mass ratio and moulding temperature on strength of their test specimens were discussed, their optimum raw materials formulas, preparing technologies and moulding technologies were determined, methods of their quality control were put forward, their properties and economic advantage were analyzed, application popularization was conducted. The results show that optimum raw materials formulas (mass portion) of PF2A1~①/PF2A2~②/PF2C4~③are differently phenol-starch resin : hexamethylene- tetramine : wood flour : calcium carbonate : magnesium oxide : zinc stearate : stearic acid : Oil Aniline Black : ultramarine=37.0 : 6.4 : 48.0 : 6.0 : 0.6 : 0.6 : 0.4 : 0.5 : 0.5~①/ 40.5 : 6.9 : 45.0 :4.8: 0.8: 0.6 : 0.4 : 0.5: 0.5~②/ 37.0 : 6.4 :30.0 : 24.0 : 0.6 : 0.6 : 0.4 : 0.5 : 0.5~③;majorcontrol technological parameters of preparation are differently raw materials except resin mixing time≥10min,all raw materials mixing time≥50min, temperature of the working roller 85-95℃~①/100-110℃~②/90-100℃~③,temperature of the idle roller 145-155℃~①/ 140-150℃~②/145-155℃~③,distance of the two rollers 2.3-2.5mm~①/ 2.2~2.5mm~②/ 2.0-2.5mm~③,warm-up time 4-5min, moulding materials combining batch time≥45min; quality of these products is controlled by bright outward appearance of sheet materials of moulding materials and Raschig flow properties 70-120mm~①/80-120mm~②/80-120mm~③of moulding materials; major control parameters of moulding technology are differently preheating temperature 100-110℃,preheating time 10-15min, moulding pressure≥25MPa, moulding temperature 175-180℃~①/175-180℃~②/180-185℃~③,moulding time 0.8-1.0min·mm~(-1),exhaust≥3 times;by comparison with the same type thermoplastic phenol-formaldehyde moulding material, the cost of raw materials is reduced differently by 20.4%~①/ 21.4%~②/20.9%~③.The properties of PF2A1 come up to the national standard of raw versatile phenolic moulding materials A1,specially its thermal deformation temperature 170℃surpass greatly the national standard, insulating resistance 5.0×10~(12)Ω,dielectric strength6.7MV·m~(-1),dielectric loss tangent 0.03, red heat resistance 14s are excellent, it shows excellent electric properties in moist environment, and it excels obviously original similar phenolic moulding material in impact strength, thermal distortion temperature, insulation resistance and dielectric strength; the properties of PF2A2 come up to the national standard of raw versatile phenolic moulding materials A2, specially its thermal deformation temperature 171℃,insulating resistance 3.0×10~(12)Ω,dielectric strength 5.9MV·m~(-1),dielectric loss tangent 0.03 surpass greatly the national standard, the red heat resistance 15s is excellent, it shows excellent electric properties in moist environment, and it excels obviously original similar phenolic moulding material in thermal distortion temperature, insulation resistance and dielectric loss tangent; the properties of PF2C4 come up to the national standard of raw heat resisting phenol-formaldehyde moulding materials C4, specially its thermal deformation temperature 174℃,red heat resistance 11s, insulating resistance 6.0·10~(12)Ω,dielectric strength 6.7MV·m~(-1) surpass greatly the national standard, the dielectric loss tangent 0.03 is excellent, it shows very good electric properties in moist environment, and it is about equal to original more high-grade PF2C3 in flexural strength, thermal distortion temperature, insulation resistance and dielectric strength. Suitable hexamethylene-tetramine/resin, wood flour/resin mass ratio and moulding temperature are keies that test specimens obtain high strength.
     The industrialization design of phenol-starch resin and its moulding materials were studied. Based on the design demands, i. e. production capacity 410t·a~(-1) resin and 1000t·a~(-1) moulding material, work-time 24h·d~(-1) and work-day 250d·a~(-1),production methods of intermittent method and continuous method, the design contents including raw materials consumption quota, installations and layout, plant buildings, water, electricity and gas, posts and men, products quality standard and factory test items, investment estimate, the effluents treatment, et al were made. In disposing synthesis distillate fluid of phenol-starch resin, a new method was explored out, which 90.16% phenol is recovered by cooling crystallization and remaining fluid is made into disinfectant and preservative belong among type phenolic. Application popularization proves that the industrialized design has a lot of characteristics, and it is a feasible design.
引文
[1] 殷荣忠.酚醛树脂及其应用(合成树脂及应用丛书)[M].北京:化学工业出版社,1990.
    [2] 黄发荣,焦杨声.酚醛树脂及其应用(合成树脂及应用丛书)[M].北京:化学工业出版社,2003.
    [3]张凤桐,蔡玉梅,薛维宝,等.酚醛树脂及其复合材料最新进展[J].工程塑料应用,1996,24(6):53-57.
    [4]包筱梅.工程塑料[M].北京:国防工业出版社,1982.
    [5]李晨,孙晓牧.化工产品市场及趋势——酚醛树脂[J].化工技术经济,1998,16(5):40-42.
    [6]陈祥宝.高性能树脂基体[M].北京:化学工业出版社,1999.
    [7]亢雅君,饶军.新型酚醛复合材料及工艺进展[J].玻璃钢/复合材料,1996,(2):43-46.
    [8]孙晓牧.国外酚醛树脂市场概况[J].热固性树脂,1997,(1):53-56.
    [9]于红卫.改性酚醛树脂研究进展[J].建筑人造板,2001,(2):20-24.
    [10]钟丽.酚醛树脂市场调研报告[J].化工科技市场,2004,(12):47-49.
    [11]闫联生.高性能酚醛树脂研究进展[J].玻璃钢/复合材料,2000,(6):47-50,54.
    [12]艾军,翁向丽,李晓平.酚醛树脂的改性[J].东北林业大学学报,1996,24(6):66-69.
    [13]化工部合成树脂及塑料工业信息总站《塑料工业》编辑部.1996-1997年我国塑料工业进展[J].塑料工业,1998,26(2):79-101.
    [14]李世科.改性酚醛及其应用新进展[J].热固性树脂,2000,15(3):47-48.
    [15]诸德祺.国内酚醛树脂及塑料工业现状和发展方向[J].热固性树脂,2004,19(1):42-44.
    [16]化工部合成树脂及塑料工业信息总站《塑料工业》编辑部.1996-1997年国外塑料工业进展[J].塑料工业,1998,26(3):89-110.
    [17]杜艳芬,韩卿.酚醛树脂的改性及应用[J].黑龙江造纸,2003,(1):33-35.
    [18]杨淑丽.国外酚醛树脂及塑料的新进展[J].热固性树脂,1998,(2):44-47.
    [19]李春华,齐暑华,张剑,等.酚醛树脂的增韧改性研究进展[J].国外塑料,2006,24(2):35-39.
    [20]徐修成.胶粘剂及其应用 第三讲 酚醛树脂胶粘剂[J].化工进展,1992,(1):51-55.
    [21]顾宜,谢美丽,刘新华,等.开环聚合酚醛树脂研究进展[J].化工进展,1998,17(2):43-47.
    [22]和亚莉,李玲,董风云.一种新型酚醛树脂——苯并(?)嗪树脂的研究进展[J].中国胶粘剂,2006,15(6):42-46.
    [23]Frank Cheng-Yu Wang, M. L. Dettloff, M. J. Nuli, et al.Qualitative and Quantitative Analysis of a Thermoset Polymer, poly (benzoxazine), by Pyrolysis- Gaschromatography [J]. Journal of Chromatography A, 2000, (886): 217-224.
    [24] 李胜方,付继芳,王洛礼.苯并(?)嗪树脂的研究进展[J].精细石油化工进展,2004,5(8):47-52.
    [25] Mudde, P. John. Corn Starch: a Low-Cost Route to Novolak Resins [J]. Mod. Plast., 1980, 57(2): 69,74.
    [26] 郭驸,蔡永源.国外以淀粉为原料的化工产品发展趋势[J].天津化工,1987(2):26-29.
    [27] 陈盛明,张新民.酚醛树脂的绿色化研究[J].塑料工业,2005,33(9):8-10,17.
    [28] 闫联生.硼酚醛烧蚀材料的研究[J].固体火箭技术,2000,(2):69-73.
    [29] 华幼卿,秦倩,吴一弦.用DSC和TG方法研究钼酚醛的固化反应及动力学[J].现代科学仪器,1998,(5):33-36.
    [30] 夏绍灵,邹文俊,彭进,等.聚氨酯改性酚醛树脂的研究[J].金刚石与磨料磨具工程,2006,(3):62-64.
    [31] 牛巧玲,石干.耐火材料用酚醛树脂的发展状况[J].耐火材料,2006,(3):221-224,230.
    [32] 魏化震,王成国,王海庆.新型抗烧蚀酚醛树脂的研究[J].材料工程,2002,(7):36-39.
    [33] 江凤珍.阻燃耐高温酚醛树脂的研究[J].化学建材,2001,(5):43-44.
    [34] 张大鹏译,卢传康校.酚醛树脂的现状和未来[J].绝缘材料通讯,1995,(3):48-49.
    [35] 顾里之.纤维增强复合材料[M].北京:机械工业出版社,1988.
    [36] 王善琦.高分子化学[M].北京:航空专业教材编审室,1985.
    [37] C. C. Riccardi, G Astarloa Aierbe, J. M. Echevena, et al.Modelling of Phenolic Resin Polymerisation[J]. Polymer, 2002, 43:1631-1639.
    [38] Marie-Florence, Jrenier-Loustalot, Stephane Larroque, et al. Phenolic Resin: 2. Influence of Catalyst Type on Reaction Mechanisms and Kinetic [J]. Polymer. 1996, 37(8): 1363-1369.
    [39] 陈久宽,张道京.浅谈合成酚醛树脂的反应机理[J].中学化学教学参考,1998,(6):6-7.
    [40] 易继锴,王素芝,石福强,等.酚醛树脂聚合反应过程的模糊控制[J].北京工业大学学报,1991,17(4):42-47.
    [41] 陈精明,敖文亮,吴晓卫,等.甲阶酚醛树脂的合成研究进展[J].热固性树脂,2004,19(6):31-34.
    [42] 贾丽霞译.酚醛FRP的特性(Ⅱ)[J].纤维复合材料,1994,11(3):26-39.
    [43] 上海化工学院玻璃钢教研室.合成树脂[M].北京:中国建筑工业出版社,1979.
    [44] 吴瑶曼,黄志镗.用红外光谱法对热固性酚醛树脂固化过程的研究[J].高分子通讯,1981,(6):403-407.
    [45] A.T.什瓦乐茨,O.H.金慈布尔格.橡胶与塑料及合成树脂的并用[Z],1972.
    [46] 康明,陈勉已,吴桑,等.催化剂对热塑性酚醛树脂性能的影响[J].工艺与设备,1998,19(2):22-24.
    [47] 天津大学有机化学教研室,华东石油学院有机化学教研室.有机化学[M].北京:高等教育出版社,1978.
    [48] A.Knop, L. A. Pilato. Phenolic Resin Chemistry Application and Performance [M]. Berlin: Spring-Verlag,1985.
    [49] Bakelite GmbH. Industrial Phenolic Resin of Bakelite GmbH [R]. Bakelite GmbH West Germany,1989.
    [50] PHRB Lemon. First Report of Institute Working Party T30-Mould and Core Production [J].Foundryman,1993, 86(3): 94-104.
    [51] Marko Turunen. Modification of Phenol Formaldehyde Resol by Lignin, Starch, and Urea [J], Journal of Applied Polymer Science, 2003, (88): 582-588.
    [52] 李新明,李晓林,苏志强,等.丁腈橡胶共聚改性酚醛树脂[J].工程塑料应用,2002,17(3):11-14.
    [53] 赵小玲,齐暑华,杨辉,等.高性能化改性酚醛树脂的研究进展[J].工程塑料应用,2003,31(11):63-66.
    [54] 赵小玲,齐暑华,杨辉,等.酚醛树脂改性研究的最新进展[J].现代塑料加工应用,2003,15(5):56-60.
    [55] 俞军,马榴强,叶晓.有机硅改性酚醛-丁腈胶粘剂的研究[J].中国胶粘剂,2002,12(1):22.
    [56] 赵小玲,齐暑华,杨辉,等.酚醛树脂的高性能化改性研究新进展[J].塑料科技,2003,6(158):50-54.
    [57] 王春明,凌英,李瑞杰.丁腈橡胶增韧酚醛树脂基变密度烧蚀防热复合材料研究[J].宇航材料工艺,2006,(2):41-44.
    [58] 银贵晨.一种综合性能优良的酚醛注射料的研制[J].中国塑料,2001,15(6):50-52.
    [59] 王进福,华杰.高性能树脂PBT增韧酚醛塑料的研究[J].中国塑料,2006,20(6):14-17.
    [60] 高月静,侯向辉,李郁忠.三元尼龙改性酚醛树脂的研究[J].机械科学与技术,1996,15(3):411-414.
    [61] 齐暑华,寇开昌,曾昭智,等.改性酚醛树脂的研究[J].现代塑料加工应用,2000,12(1):7-9.
    [62] 殷耀华,崔丽梅.酚醛树脂与热塑性树脂的共混研究进展[J].塑料,2006,35(5):9-14.
    [63] Michael M. Coleman,Carl J. Seman,Paul C. Painter. Effect of Crosslinking on the Degree of Molecular Level Mixing in a Polymer Blend [J].Macromolecules, 1987, 20(1): 226-232.
    [64] Hyung kirn, E. M. Pearce, T. K. Kwei. Miscibility Control by Hydrogen Bonding in Polymer Blends and Interpenetrating Networks [J]. Macromolecules, 1989, (22): 3374-3380.
    [65] T. P. Yang, T. K. Kwei, E. M. Pearce. Blends and Interpenetrating Networks of Phenolic Resins and Polyamides [J]. Journal of Applied Polymer Science, 1990, 41(5): 1327-1332.
    [66] Feng-Yih Wang, Chen-Chi M. Ma, Hew-Der Wu. Hydrogen Bonding in Polyamide Toughened Novolak Type Phenolic Resin [J]. Journal of Applied Polymer Science, 1999, 74(9): 2283-2289.
    [67] 杨进元,李新法,王荣法.梓油改性酚醛树脂的合成及结构分析[J].高分子材料科学与工程, 1995,11(5):138-142.
    [68] 祝大同.国内纸基覆铜箔板用热固性酚醛树脂的发展[J].热固性树脂,2000,15(1):41-46,55.
    [69] Y. Yoshimura. Reaction of 3-Methyl Phenol with Tung Oil [J]. J. Appl.Polym.Sci.,1983,28:1147-1158.
    [70] Y. Yoshimura. Reaction of Phenols with Tung Oil [J]. J. Appl. Polym. Sci., 1984,29:1063-1069.
    [71] 李群,潘固平,王波,等.桐油改性线性酚醛树脂的制造及应用研究[J].四川联合大学学报(工程科学版),1998,2(3):42.
    [72] 商士斌,周永红,王丹,等.桐油酰亚胺酚醛树脂耐热性研究[J].林产化学与工业,2005,25:27-30.
    [73] 邵美秀,吴福盛,袁新华,等.酚醛树脂改性研究进展[J].中国塑料,2005,19(7):7-11.
    [74] 邵美秀,陈敏,袁新华,等.桐洞改性酚醛树脂及其在刹车片中的应用研究[J].工程塑料应用,2005,33(7):33-35.
    [75] 李屹,姚进,周元康.硼-桐油改性酚醛树脂对摩擦材料性能的影响[J].起重运输机械,2006,(1):58-59.
    [76] 刘晓洪,胡仁志.耐热性钼酚醛树脂基摩擦材料的研究[J].工程塑料应用,2002,30(9):4-6.
    [77] 刘晓洪,苟筱辉,王远亮.钼酚醛树脂的结构与耐热性研究[J].化学世界,1998,39(6):314-316.
    [78] 赵颖,高新来,刘晓辉.汽车摩擦材料用酚醛树脂的研究概况[J].化学与粘合,1999,(2):93-95.
    [79] 伍林,欧阳兆辉,曹淑超,等.酚醛树脂耐热性的改性研究进展[J].中国胶粘剂,2005,14(6):45-49.
    [80] 田建团,张炜,郭亚林,等.酚醛树脂的耐热改性研究进展[J].热固性树脂,2006,21(2):44-48.
    [81] 范儆,梁国正.酚醛树脂的共聚改性[J].材料导报,1998,12(5):57-60.
    [82] 何筑华.硼改性酚醛树脂在摩擦材料上的应用[J].贵州化工,1999,(3):11.
    [83] O.A.Mohamed, A. Ludwick, T. Mitchell. Boron-Modified Phenolic Resins for High Performance Applications [J]. Polymer, 2003, 44(24): 7353-7359.
    [84] 王冬梅,赵献增.有机硼改性酚醛树脂的合成[J].中国胶粘剂,2006,15(1):15-16,20.
    [85] 胡玉辉,丁志聪,胡国林,等.耐高温的硼改性酚醛树脂涂敷砂[J].油田化学,2006,23(1):9-11.
    [86] 周重光,李桂芝,巩爱军.有机硅改性酚醛树脂热稳定性的研究[J].高分子材料科学与工程,2000,16(1):164-165,168.
    [87] 马榴强,周秀民,李晓林.酚醛树脂改性研究进展[J].塑料,2004,33(5):39-42,94.
    [88] A. David, E. L. Angel, D. A. Javier, et al.Synthesis and Characterization of Novel Polyimides with Bulky Pendant Groups [J]. Polymer Science Part A: Polymer Chemical, 1999, 37(6): 805-814.
    [89] 彭进,张琳琪,邹文俊,等.双马来酰亚胺改性酚醛树脂的合成研究[J].金刚石与磨料磨具工程,2003,(2):45-47.
    [90] B.S.Rao.Synthesis and Characterization of Polyimide-Polyoxyethylene Copolymers Containing Carboxylic Acid Functional Groups [J]. European Polymer Journal, 1997, 33(9): 1529-1536.
    [91] 肖东政,吴振耀,杨卫.新型摩擦材料研究——酚醛树脂改性与应用[J].塑料工业,1996,24(2):73-76.
    [92] 石鲜明,吴瑶曼,余云照.用作耐热材料的新型酚醛树脂的研究动向[J].高分子通报,1998,(4):57-64.
    [93] 李文峰,陈淳,王国建.酚醛型氰酸酯树脂的研究与应用[J].材料导报,2006,20(6):44-48.
    [94] Das Sajal.Phenolic-Triazine (PT) Resin: a New Family of High Performance Thermosets [J].Polymeric Materials Science and Engineering, Proceedings of the ACS Division of Polymeric Materials Science and Engineering, 1992, 66: 506-507.
    [95] Das Sajal, D. C. Prevorsek, B. T. Debona. Phenolic-Triazine Resins Yield High-Performance Thermoset Composite [J]. Modern Plastics, 1990,67(2): 4-8.
    [96] 高良倡.芳烷基醚-苯酚树脂的改性研究[J].玻璃钢/复合材料,1994,(1):14-17,27.
    [97] 何鲁林,石定杜.改性酚醛树脂基FST复合材料研究[J].材料工程,1992,(S1):89-91.
    [98] M.A.Espinosa,M. Calia,V.Cadiz. Novel Fame-Retardant Thermosets: Phosphine Oxide-Containing Diglycidylether as Curing Agent of Phenolic Novolak resins [J]. Polym.Sci. Part A: Polym.Chem., 2004,42:3516-3526.
    [99] M.A.Espinosa,V. Cadiz, M. Galia.Development of Novel Flame-Retardant Thermosets Based on Benzoxazine-Phenolic Resins and a Glycidol Phosphinate [J]. Journal of Polymer Science, Part A: Polymer Chemistry, 2004,42(2): 279-289.
    [100] H. J. Kim, Z. Brunovska, H. Ishida. Synthesis and Thermal Characterization of Polybenzoxazines Based on Acetylene-Functional Monomers [J]. Polymer, 1999, 40(23): 6565-6573.
    [101] 赵瑾朝,余冬.无卤阻燃改性酚醛树脂的研究进展[J].热固性树脂,2006,21(4):41-43.
    [102] M. A. Espinosa, V. Cadiz, M. Galia. Synthesis and Characterization of Benzoxazine-Based Phenolic Resins: Crosslinking Study [J]. Appl.Polym. Sci., 2003, 90: 470-481.
    [103] H. Isiha, K. J. Allan. Physical and Mechanical Characterization of Near Zero Shinking Polybenzoxazines [J]. Polymer Science Part B: Polymer. Physical, 1996, (34): 1019.
    [104] 张克惠.塑料材料学[M].西安:西北工业大学出版社,2000.
    [105] 陈祥宝.塑料工业手册 热固性塑料加工工艺与设备[M].北京:化学工业出版社,2001.
    [106] GB1403-1404-86,酚醛模塑料[S].
    [107] 朱永茂.国外酚醛树脂及其塑料发展动向[J].热固性树脂,2003,18(6):28-30,36.
    [108] 朱永茂,殷荣忠,刘勇,等.2004-2005年国外酚醛树脂及塑料工业进展[J].热固性树脂,2006,
    21(3):29-34.
    [109] Peter H. P. Brink Mann. Thermosetting Moulding Materials [J]. Kunststoffe Plast Curope Jahrg, 2001,91(10): 140-142.
    [110] 朱永茂,殷荣忠,刘勇.2001-2002年国外酚醛树脂及塑料工业进展[J].热固性树脂,2003,18(2):34-36.
    [111] 朱永茂,殷荣忠,刘勇,等.2002-2003年国外酚醛树脂及塑料工业进展[J].热固性树脂,2004,19(4):44-47.
    [112] 朱永茂,殷荣忠,刘勇,等.2003-2004年国外酚醛树脂及其塑料市场现状和技术进展[J].热固性树脂,2005,20(2):36-39.
    [113] 耿耀辉.粉煤灰填充酚醛模塑料[J].塑料工业,1995,23(6):43-44.
    [114] 刘义红,朱永茂,刘勇,等.汽车换向器用酚醛树脂模塑料的研究[J].汽车工艺与材料,2004,(10):33-34.
    [115] 王艳萍.高强度酚醛模塑料的研制[J].绝缘材料,2006,(1).13-14,27.
    [116] Matthew H.Naitove. Phenolic Set Stiff Pace under the Hood [J]. Plast. Technol, 2003,49(4): 47.
    [117] Alfred A. Bulitz. Give Thermosets and Even Break [J]. Modern Plastics, 2004,1:18.
    [118] Plast. Technol Edition. Plastic BMC Arrives [J]. Plast. Technol, 2003, (9): 24.
    [119] 赵小玲,齐暑华,张剑,等.聚砜改性酚醛树脂玻纤增强模塑料的热老化研究[J].塑料工业,2003,31(6):38-40.
    [120] 沐霖,杨玮,刘义红.酚醛模塑料耐高温性的研究[J].中国塑料,2005,19(1):62-63.
    [121] 沐霖,杨玮,刘义红.汽车碳刷架用酚醛模塑料的性能研究[J].汽车工艺与材料,2004,(12):35-36.
    [122] 朱永茂,刘勇,沐霖,等.有机纤维增强的耐热型酚醛模塑料的研制[J].塑料工业,2003,31(10):46-47.
    [123] 沐霖,杨玮,刘勇,等.注射型耐热酚醛模塑料EA-5555J及其应用[J].热固性树脂,2003,18(6):22-23.
    [124] 王鸿,朱永茂,刘勇,等.耐高温注射型酚醛模塑料的研制[J].中国塑料,2001,15(8):47-49.
    [125] M.A.Espinosa. Novel Phosphorilated Flame Retardant Thermosets: Epoxy-Benzoxazine-Novalac Systems [J]. Polymer. 2004, 45: 6103-6109.
    [126] 周大鹏,郭维真,邹沈斌.高绝缘性快速成型酚醛注塑料的研制[J].绝缘材料,2006,39(2):1-3.
    [127] 银贵晨.无氨耐燃烧酚醛注塑料的研制[J].广东塑料,2005,(1/2):1-4.
    [128] 银贵晨,路晓军.无氨阻燃酚醛塑料的研制[J].工程塑料应用,2002,30(7):7-9.
    [129] 银贵晨.无阻燃剂阻燃酚醛塑料的研制[J].化工新型材料,2000,28(10):28-30.
    [130] 丁向前,刘长维,刘元明,等.导电酚醛树脂的研究[J].热固性树脂,2006,21(6):32-35.
    [131] 王锦成.电磁屏蔽材料的屏蔽原理及研究现状[J].化工新型材料,2002,30(7):16-18,12.
    [132] 杨贵忠,齐暑华,陈晓蕾,等.耐油型酚醛模塑料的研究[J].西北工业大学学报,2003,21(6):749-752.
    [133] 张亚娟,齐暑华,杨贵忠,等.环保型耐磨酚醛模塑料成型工艺及性能的研究[J].工程塑料应用,2002,30(10):12-14.
    [134] 张亚娟,齐暑华,张福斌.不同纤维增强酚醛模塑料磨损性的研究[J].塑料工业,2003,31(1):38-39,45.
    [135] 董抒华,王成国,李士同.纤维增强摩阻材料的冲击性能研究[J].工程塑料应用,2002,30(1):9-11.
    [136] Italy Cannon Co, Ltd. Continuous Production Line of Phenolic Foam Insulation Panel [J].International Plastics News for China, 2005, 5: 92-94.
    [137] 黄洪乐.国内外酚醛树脂及塑料新进展[J].工程塑料应用,1990,(3):52-55.
    [138] 吴俊芳,朱雪梅,顾红.苯酚-淀粉树脂的研制[J].热固性树脂,1999,(2):56-57.
    [139] 曹文辉,吴俊芳.苯酚-淀粉胶的研制[J].化学与粘合,1998,(3):177-178.
    [140] 刘宝,张长桥,郭玉梅.(?)锅煮制备酚醛树脂的研究[J].山东科学,2000,13(3):49-53.
    [141] 刘宝.用玉米淀粉合成酚醛树脂的研究[J].化学工程师,1999,(6):5-7.
    [142] 黄政宇.土木工程材料[M].北京:高等教育出版社,2002.
    [143] 尤新.淀粉衍生物(精细化学品系列丛书)[M].北京:中国物资出版社,2001.
    [144] 张燕萍.变性淀粉制造与应用[M].北京:化学工业出版社,2001.
    [145] 张力田.碳水化合物化学[M].北京:轻工业出版社,1988.
    [146] 戴有盛.食品的生化与营养[M].北京:科学技术出版社,1994.
    [147] 陈湘,蒋钧荣,陈建湘,等.双酚A型线性酚醛树脂的合成[J].热固性树脂,1999,(3):10-13.
    [148] 宋家乐,陈立新,景晨丽,等.热塑性酚醛树脂环保合成工艺的研究[J].粘接,2006,27(4):1-3,6.
    [149] G. Astarloa Aierbe, J. M. Echevena, M. D. Martin, et al.Influence of the Initial Formaldehyde to Phenol Molar Ratio (F/P) on the Formation of a Phenolic Resol Resin Catalyzed with Amine [J]. Polymer 2000, 41(18): 6797-6802.
    [150] Byung-Dae Park, Bernard Riedl,Yoon Soo Kim, et al. Effect of Synthesis Parameters on Thermal Behavior of Phenol-Formaldehyde Resol Resin [J].Journal of Applied Polymer Science, 2002, 83:1415-1424.
    [151] G. Astarloa Aierbe. J. M. Echevena, C. C. Riccardi, et al, Influence of the Temperature on the Formation of a Phenolic Resol Resin Catalyzed with Amine [J]. Polymer, 2002, 43: 2239-2243.
    [152] 高嘉安.淀粉与淀粉制品工艺学[M].北京:中国农业出版社,2001.
    [153] 张力田.淀粉糖[M].北京:中国轻工业出版社,1998.
    [154] 江西中医学院药学系.淀粉与葡萄糖的生产[M].南昌:江西人民出版社,1978
    [155] 王正熙.聚合物红外光谱分析和鉴定[M].成都:四川大学出版社,1989.
    [156] 卢涌泉,邓振华.实用红外光谱解析[M].北京:电子工业出版社,1989.
    [157] Stanley F. Wanat. Characterization of Fractionated Phenolic Resins Used in Photoresists [J], Polymer Engineering and Science, 2003, 43(10): 1675-1682.
    [158] Guangbo He.~(13)C NMR Study on Structure, Composition and Curing Behavior of Phenol-Formaldehyde Resol Resins [J]. Polymer. 2004, 45: 6813-6822.
    [159] 裘理仁,冀克俭,刘志娟,等.高效液相色谱法对酚醛树脂的表征[J].山东化工,1998,(5):55-56.
    [160] 裘理仁,胡梅,李学,等.高效液相色谱法和凝胶色谱法对钨酚醛树脂的表征[J].色谱,1995,13(6):463-465.
    [161] 焦剑,雷渭媛.高聚物结构、性能与测试[M].北京:化学工业出版社,2003.
    [162] 胡飞,唐黎明,方宇,等.酚醛树脂分子结构的~1H-NMR分析[J].高分子材料科学与工程,2005,21(3):180-183.
    [163] 沈德言.红外光谱在高分子研究中的应用[M].北京:科学出版社,1982.
    [164] Guangbo He. Model Free Kinetics: Curing Behavior of Phenol Formaldehyde Resins by Differential Scanning Calorimetry [J]. Journal of Applied Polymer Science, 2003, (87): 433-440.
    [165] 冀克俭,邓卫华,张银生,等.新型酚醛树脂固化过程的表征研究[J].工程塑料应用,2003,31(4):44-47.
    [166] 华幼卿,权旭辉,李彦荣,等.钨酚醛树脂的固化反应与热稳定性研究[J].北京化工大学学报,1996,23(3):39-43.
    [167] J. M. Laza. Analysis of the Crosslinking Process of a Phenolic Resin by Thermal Scanning Rheometry [J]. Journal of Applied Polymer Science, 2002, 83(1): 57-65.
    [168] Guangbo He. Curing Process of Powdered Phenol-Formaldehyde Resol Resins and the Role of Water in the Curing Systems [J]. Journal of Applied Polymer Science. 2003, (89): 1371-1378.
    [169] Young-Kyu Lee. Activation Energy and Curing Behavior of Resol and Novolak Type Phenolic Resins by Differential Scanning Calorimetry and Thermogravimetric Analysis [J]. Journal of Applied Polymer Science, 2003,(89): 2589-2596.
    [170] 高家武.高分子材料热分析曲线集[M].北京:科学出版社,1990.
    [171] 焦扬声.含氰基的酚醛树脂及其碳纤维复合材料[J].功能高分子学报,1994,7(3):337-343.
    [172] 陈孟恒.酚醛树脂的增韧化[J].国外塑料,1997,15(4):39-43.
    [173] 孙玉琢,商平,宋诗莹,等.废尼龙丝/酚醛树脂的原位聚合与接枝聚合[J].橡塑资源利用,2006,(6):7-9.
    [174] 朱永茂,招锦荣,卢鸿达.酚醛模塑料粉碎新工艺[J].塑料工业,2000,28(3):48-49.
    [175] 耿耀辉.酚醛模塑料模压前的预热对制件性能的影响[J].塑料工业,1994,(4):52-53.
    [176] 蒲泽双,杜廷安.酚醛模塑料用木粉代用品的研究[J].绝缘材料通讯,1999,(4):10-12.
    [177] 耿耀辉.玻纤增强酚醛模塑料的研制[J].塑料工业,1996,(2):98-99.
    [178] Zhou Minghua, Wu Zucheng. Electrocatalytic Degradation of Phenol-Containing Waste Water [J].Journal of Chemical Industry and Engineering (China), 2002, 53 (1): 40-44.
    [179] 闫百兴,何岩.燃烧法处理酚醛废水的试验[J].环境污染与防治,1998,20(1):21-22.
    [180] 徐承明,张金江,王少华.酚醛树脂生产过程中高浓度含酚废水处理工艺的研究[J].鞍钢技术,2003,(3):32-34.
    [181] 贺启环,方华.酚醛树脂生产废水处理工艺[J].化工环保,2003,23(4):216-220.
    [182] 官宝红,徐根良,曾爱斌,等.治理酚醛树脂生产废水的试验[J].环境污染与防治,2001,23(4):176-179.
    [183] 王扎根,欧阳韧,张家卓,等.酚醛树脂合成工业废水处理技术的研究[J].金刚石与磨料磨具工程,2000,(4):48-49.
    [184] 陈淑红,李占春.酚醛树脂废水治理工艺新探[J].内蒙古环境保护,1997,9(2):29-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700