用户名: 密码: 验证码:
纳米材料玻璃化转变和石墨烯界面及其吸附性质的计算机模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合热力学理论和分子动力学计算,研究了低维纳米材料的玻璃化转变机理,预测了纳米材料尺寸依赖的玻璃化转变温度(Tg),熔化温度(Tm),Kauzmann温度(TK)和相关的热力学参数的尺寸效应。研究发现TK/Tm及本征的玻璃化转变的动力学参数ξ(协同运动区域的大小)和尺寸无关。由于石墨烯(graphene)在电子器件和传感器领域的巨大潜在应用前景,利用第一原理密度泛涵理论,本文还研究了graphene界面及其吸附性质。研究发现graphene和SiO2基底之间的作用是弱的范德华力,然而在大的电场作用下,它们之间形成共价键,破坏了graphene优良的电学性能,这在实际应用中应避免。此外,分别对CO分子在graphene和Al掺杂的graphene上的吸附进行研究,结果表明Al掺杂的graphene是作为CO分子传感器的极好材料。同时对其在不同电场强度F下的吸附/解吸附行为进行研究,结果表明正F减弱其吸附,负F增强其吸附,且在F = 0.03 au时发生了CO分子从Al掺杂的graphene上解吸附。说明该传感器材料可以通过外加一个大的正电场重新激活。最后,通过研究温度T对CO分子在Al掺杂的graphene上的吸附/解吸附行为的影响,结果发现CO传感器在T = 400K时具有最高的灵敏度,且在该温度下具有适中的解吸附时间。
As a new reasearch field, nanotechnology, which bagan at the end of 1980s, now has significant influence on the fields of physics, chemistry, biology, material science, electronics and mechanics. On the other hand, non-crystal solid, usally also called glass, is one of the most intensive research subjects in the field of condensed matter. If the cooling process is quickly enough and the temperature is low enough, almost all of materials, including polymers, organic compounds and even metals, can transit into glasses. Recently, there are lots of attentions payed on glass transition of nanomatials, due to the size of the materials is located between bulk and cluster, and it is also on the upper limit of quantum mechanics calculation and lower limit of themodynamic analysis. Thus, these works are important for the applications of nanomaterials, especially for the phase transition theories of nanomaterials. Furthermore, these works are essential for the enhancement of understanding the relationship between the thermodyamic theories and quantum mechanics.
     Graphene, a single two-dimensional layer of graphite in a hexagonal structure, is the starting point for many nanographite devices and displays promising electronic properties. After the theoretical prediction of the peculiar electronic properties of graphene in 1947 by Wallace and the subsequent studies on its magnetic spectrum, it took half a century until the graphene could be experimentally fabricated and its anomalous quantum Hall effect was measured, which encourage numerous works on it now. Due to the instability of a freestanding graphene (it has an intrinsic three-dimensional structure or ripples), graphene used as devices is generally located on a substrate, such as on the common gate dielectricα-SiO2 substrate, which has significant effect on its electrical properties.
     On the other side, graphene related materials may be a solution for ultra-high sensitivity gas sensors. Similar to CNT, the working principle of graphene devices as gas sensors is based on the changes of their electrical conductivities induced by surface adsorbates, which act as either donors or acceptors associated with their chemical natures and preferential adsorption sites. Graphene is considered to be an excellent sensor material due to its following properties: (1) graphene is a single atomic layer of graphite with surface only, this can maximize the interaction between the surface dopants and adsorbates; (2) graphene has much smaller band gap energy, Eg, than CNT, hence, it has extremely low Johnson noise, therefore, a little change of carrier concentration can cause a notable variation of electrical conductivity; and (3) graphene has limit crystal defects, which ensures a low level of excess noise caused by their thermal switching.
     Now, computer simulation technology are being used widely in all kinds of fields, due to the following advantages: (1) the computer simulation is quick, so that the results can be gotten in short time; (2) it can do virtual experiments which can not be done actually; (3) it can provide many details which can not be obtained in actual experiments. Based on the above considerations, in this work, combing thermodynamic theoriesand classical molecular dynamics calculations, the thermodynamic and kinetic glass transition of nanomaterials were investigated. On the other hand, the first principle density functional theory method was used to calculate the graphene/SiO2 interface and the effect of electrical field on the atomic structure was studied. In addition, due to the advantages of graphene on gas sensor, the adsorption behavior of CO on intrinsic and Al doped graphene was calculated to prob the performance of the proposed sensor material. The detailed contents are listed as follows:
     1. The size dependent glass transition temperature Tg(w,D) of several polymer blend nano-films in miscible ranges are determined by computer simulation and the Fox equation where w is the weight fraction of the second component, D denotes the thickness of films. Tg(w,D) function of a thin film can decrease or increase as D decreases depending on their surface or interface states. The computer simulation results are consistent with available experimental results and theoretical results for polymer blend films of PPO/PS [poly (2,6-dimethyl- 1,4-phenylene oxide)/polystyrene] and stereoregular PMMA/PEO [poly (methyl methacrylate) /poly (ethylene oxide)].
     2. Based on Sutton-Chen many body potential function, several thermodynamic parameters of Ag are simulated by molecular dynamics. The parameters simulated are size dependences of Kauzmann temperature TK and melting temperature Tm, size and temperature dependences of melting enthalpy Hm and melting entropy Sm. The simulation results and results of thermodynamic theory models of TK and Tm shows a good agreement, which find that as the size of Ag particles decreases, TK and Tm functions drop. However, the ratio of TK and Tm of Ag nanoparticles is size independent.
     3. Segment dynamics of free-standing polystyrene (PS) films is determined by considering the temperature- and thickness-dependent number of styrene segments Nα(T,D) in the cooperative rearranging region (CRR). Under the help of Adam-Gibbs glass transition theory and molecular dynamics simulation, Nα(T,D) function is established and it decreases as D decreases or T increases. However, Nα[Tg(D),D] at the glass transition temperature Tg(D) is size-independent, which is consistent with the simulation results obtained by Donth′s method. Meanwhile, its relative temperature function Nα{[T-Tg(D)]/Tg(D)} is also size-independent. Therefore, Nα[Tg(D),D] function as a criterion for glass transition, which describes the physical nature of the glass transition, is similar to the vibrational amplitude in Lindemann′s melting criterion.
     4. The atomic structure of the graphene/α?SiO2(0001) interface was calculated using density functional theory. Simulation results indicated that atomic structure of the interface after relaxation was a function of the initial distance d0′between graphene and SiO2 surface. When d0′≥4.000 ?, obtained structures varied with d0′, and the interface interactions were weaker than that within graphite. While d0′< 4.000 ?, a minimum energy structure was obtained with the interface interaction stronger than that in graphite. Furthermore, the interface under electric field F with different intensities was also studied. Results indicate that the atomic structure of the graphene/α-SiO2(0001) interface has only a slight change under the condition of F≤0.02 au. As F reaches 0.03 au, the formation of C?O covalent bond on the interface is present, which would destroy the excellent electronic properties of graphene. Thus, there exists a maximum for F in application of the graphene.
     5. A principle of enhancement CO adsorption was developed theoretically by using density functional theory through doping Al into graphene. The results show that the Al doped graphene has strong chemisorption of CO molecule by forming Al?CO bond, where CO onto intrinsic graphene remains weak physisorption. Furthermore, the enhancement of CO sensitivity in the Al doped graphene is determined by a large electrical conductivity change after adsorption, where CO absorption leads to increase of electrical conductivity via introducing large amount of shallow acceptor states. Therefore, this newly developed Al doped graphene would be an excellent candidate for sensing CO gas. After that, the correlation of the applied electric field F and adsorption/desorption behaviors of CO molecule in the Al doped graphene was studied. The results indicate that the positive F reduces the adsorption energies Eads of the CO adsorbed onto the doped graphene, while Eads increases under the negative F. Furthermore, desorption commences when a large positive F (F≥0.03 au) is applied. Moreover, the best sensitivity of CO detection at F = 0.01 au is found. Finally, the thermal stability of interaction between the CO molecules and the Al doped graphene is studied with ab initio molecular dynamics calculation to reveal the adsorption/desorption behaviors of the system. Based on the results of the calculations, the adsorption?desorption phase diagram was established by the atomic thermodynamics and the temperature (T) dependent desorption timeτ(T) was determined with thermal desorption method. The results show that the optimal desorption temperature is 400 K. Meantime, the effect of T on atomic structure parameters and electrical properties were analyzed, and the results show that the greatest conductivity change before and after adsorption is at T = 400 K. Therefore, this sensor material has the best sensing performance with appropriateτand the biggest conductivity change at 400 K.
引文
[1] FEYNMANN R P. There’s plenty of room at the bottom [J]. Engineering Science, 1960, 23:22-36
    [2] GLEITER H, HANSEN N, HORSEWELL A, LEFFERS T, LIHOLD H. (Eds.), Proceedings of the second international symposium on metallurgy and materials science [C]. Denmark: National Laboratory Roskilde, 1981.
    [3] GLEITER H. Nanostructured materials, Basic concept and microstructure [J]. Acta Materialia, 2000, 48:1.
    [4] CAVICCHI R E, SILSBEE R H. Coulomb suppression of tunneling rate from small metal particles [J]. Physical Review Letters, 1984, 52:1453.
    [5] GUSEV A I, REMPEL A A. Nanocrystalline Materials [M]. Cambridge International Scientific Publication, 2004.
    [6] TAKAGI M. Electron-diffraction study of liquid-solid transition of thin metal films [J]. Jornal Physical Society of Japan, 1954, 9:359.
    [7] JIANG Q, YANG C C. Size effect on phase stability of nanostructures [J]. Current Nanoscience, 2008, 4:179.
    [8] AO Z M, JIANG Q. Size effects on miscibility and glass transition temperature of binary polymer blend films [J]. Langmuir, 2006, 22:1241.
    [9] BALL P, GARWIN L. Science at the atomic scale [J]. Nature, 1992, 355:761.
    [10] SUN C Q. Oxidation electronics: bond-band-barrier correlation and its applications [J]. Progress of Material Science, 2003, 48:521.
    [11] DASH J G. History of the search for continuous melting [J]. Review of Moden Physics, 1999, 71:1737.
    [12] CHRISTIAN J W. The Theory of Transformations in Metals and Alloy, Part I, Equilibrium and General Kinetic Theory [M]. 2nd ed. Oxford: Pergamon Press, 1975, pp. 418-475.
    [13] AO Z M, ZHENG W T, JIANG Q. Molecular dynamics simulation of Kauzmann temperature and related thermodynamic parameters of Ag nanoparticles [J]. Nanotechnology,2007, 18:255706.
    [14] AO Z M, ZHENG W T, JIANG Q. Lindemann-like size-independent glass transition criterion for polymers [J]. Polymer, 2008, 49:3578.
    [15] ZALLEN R. The Physics of Amorphous Solids [M]. New York: John Wiley & Sons, 1983, p.16.
    [16] GIBBS J H, DIMARZIO E A. Nature of the glass transition and the glassy state [J]. The Journal of Chemical Physics, 1958, 28:373.
    [17] ADAM G, GIBBS J H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids [J]. The Journal of Chemical Physics, 1965, 43:139.
    [18] TURNBULL D, COHEN M H. Free-volume model of the amorphous phase: Glass transition [J]. The Journal of Chemical Physics, 1961, 34:120.
    [19] TURNBULL D, COHEN M H. On the free-volume model of the liquid-glass transition [J]. The Journal of Chemical Physics, 1970, 52:3038.
    [20] G?TZE W, SJ?GREN L. Relaxation processes in supercooled liquids [J]. Report Programme of Physics, 1992, 55:241.
    [21] KOB W, DONATI C, PLIMPTON S J, POOLE P H, GLOTZER S C. Dynamical Heterogeneities in a Supercooled Lennard-Jones Liquid [J]. Physical Review Letters, 1997, 79:2827.
    [22] DONATI C, GLOTZER S C, POOLE P H, KOB W, PLIMPTON S J. Spatial correlations of mobility and immobility in a glass-forming Lennard-Jones liquid [J]. Physical Review E, 1999, 60:3107.
    [23] MANSFIELD K F, THEODOROU D N. Molecular dynamics simulation of a glassy polymer surface [J]. Macromolecules, 1991, 24:6283.
    [24] FORREST J A, DALNOKI-VERESS K. The glass transition in thin polymer films [J]. Advance of Colloid Interface Science, 2001, 94:167.
    [25] ALCOUTLABI M, MCKENNA G B. Effect of confinement on material behavior at the nanometer size scale [J]. Journal of Physics: Condensed Matter, 2005, 17:R461.
    [26] KEDDIE J L, JOHNS R A L, CORY R A. Size-dependent depression of the glass transitiontemperature in polymer films [J]. Europhysical Letters, 1994, 27:59.
    [27] FORREST J A, DALNOKI-VERESS K, STEVENS J R, DUTCHER J R. Effect of free surfaces on the glass transition temperature of thin polymer films [J]. Physical Review Letters, 1996, 77:2002.
    [28] JIANG Q, SHI H X, LI J C. Finite size effect on glass transition temperatures [J]. Thin Solid Films, 1999, 354:283.
    [29] MATTSSON J, FORREST J A, B?RJESSON L. Quantifying glass transition behavior in ultrathin free-standing polymer films [J]. Physical Review E, 2000, 62:5187.
    [30] FORREST J A, DALNOKI-VERESS K, DUTCHER J R. Interface and chain confinement effects on the glass transition temperature of thin polymer films [J]. Physical Review E, 1997, 56:5705.
    [31] FRYER D S, NEALEY P F, DE PABLO J J. Thermal probe measurements of the glass transition temperature for ultrathin polymer films as a function of thickness [J]. Macromolecules, 2000, 33:6439.
    [32] FUKAO K, MIYAMOTO Y. Glass transitions and dynamics in thin polymer films: Dielectric relaxation of thin films of polystyrene [J]. Physical Review E, 2000, 61:1743.
    [33] ZHAO J H, KIENE M, HU C, HO P S. Thermal stress and glass transition of ultrathin polystyrene films [J]. Applied Physics Letters, 2000, 77:2843.
    [34] TATE R S, FRYER D S, PASQUALINI S, MONTAHUE M F, DE PABLO J J, NEALEY P F. Extraordinary elevation of the glass transition temperature of thin polymer films grafted to silicon oxide substrates [J]. The Journal of Chemical Physics, 2001, 115:9982.
    [35] PRUCKER O, CHRISTIAN S, BOCK H, RUHE J, FRANK CW, KNOLL W, On the glass transition in ultrathin polymer films of different molecular architecture [J]. Macromolocular Chemistry and Physics, 1998, 199:1435.
    [36] FRYER D S, PETERS R D, KIM E J, TOMASZEWSKI J E, DE PABLO J J, NEALEY P F, WHITE C C, WU W L. Dependence of glass transition temperature of polymer films on interfacial energy and thickness [J]. Macromolecules, 2001, 34:5627.
    [37] HARTMANN L, GORBATSCHOW W, HAUWEDE J, KREMER F. Molecular dynamics inthin films of isotactic poly(methyl methacrylate) [J]. European Physical Journal E, 2002, 8:145.
    [38] ZHENG X, RAFAILOVICH M H, SOKOLOV J, STRZHEMECHNY Y, SCHWARZ S A, SAUER B B, RUBINSTEIN M. Long-range effects on polymer diffusion induced by a bounding interface [J]. Physical Review Letters, 1997, 79:241.
    [39] KEDDIE J L, JONES R A L. Glass transition behavior in ultra-thin polystyrene films [J]. Israel Journal of Chemistry, 1995, 35:21.
    [40] KAWANA S, JONES R A L. Character of the glass transition in thin supported polymer films [J]. Physical Review E, 2001, 63:021501.
    [41] SUN L, DUTCHER J R, GIOVANNIN L, NIZZOLI F, STEVENS J R, ORD J L, Elastic and elasto-optic properties of thin-films of poly(styrene) spin-coated onto Si(001) [J]. Journal of Applied Physics, 1994, 75:7482.
    [42] DEMAGGIO G B, FRIEZE W E, GIDLEY D W, ZHU M, HRISTOV H A, YEE A F. Interface and surface effects on the glass transition in thin polystyrene films [J]. Physical Review Letters, 1997, 78:1524.
    [43] FORREST J A, MATTSSON J. Reductions of the glass transition temperature in thin polymer films: probing the length scale of cooperative dynamics [J]. Physical Review E 2000, 61:R53.
    [44] MAKAROVA T, PALACIO F. Carbon-Based Magnetism: An Overview of Metal Free Carbon-Based Compounds and Materials [M]. Amsterdam: Elsevier, 2005.
    [45] WALLACE P R. The band theory of graphite [J]. Physical Review, 1947, 71:622.
    [46] MCCLURE J W. Diamagnetism of graphite [J]. Physical Review, 1956, 104:666.
    [47] ZHENG Y, ANDO T. Angular and temperature dependence of the magnetic circular dichroism in 4d core-level photoemission from Gd(0001) [J]. Physical Review B, 2002, 65:245420.
    [48] NOVOSELOV K S, GEIM A K, MOROZOV S V, JIANG D, ZHANG Y, DUBONOS S V, GRIGORIEVA I V, FIRSOV A A. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306:666.
    [49] ZHANG Y, TAN Y-W, STRORMER H L, KIM P. Experimental observation of the quantum Hall effect and berry’s phase in graphene [J]. Nature, 2005, 438:201.
    [50] NOVOSELOV K S, GEIM A K, MOROZOV S V, JIANG D, KATSNELSON M I, GRIGORIEVA I V, DUBONOS S V, FIRSOV A A. Two-dimensional gas of massless Dirac fermions in graphene [J]. Nature, 2005, 438:197.
    [51] GUSYNIN V P, SHARAPOV S G. Unconventional interger Quantum Hall effect in graphene [J]. Physical Review Letters, 2005, 95:146801.
    [52] KANE C L, MELE E J. Quantum spin Hall effect in graphene [J]. Physical Review Letters, 2005, 95:226801.
    [53] PERES N M R, GUNINA F, CASTRO NETO A H. Electronic state and Laudau level in graphene stacks [J]. Physical Review B, 2006, 73:245426.
    [54] HASEGAWA Y, KOHMOTO M. Quantum Hall effect and the topological number in graphene [J]. Physical Review B, 2006, 74:155415.
    [55] MEYER J C, GEIM A K, KATSNELSON M I, NOVOSELOV K S, BOOTH T J, ROTH S. The structure of suspended graphene sheets [J]. Nature, 2007, 446:60.
    [56] ISHIGAMI M J, CHEN H, CULLEN W G, FUHRER M S, WILLIAMS E D. Atomic structure of graphene on SiO2 [J]. Nano Letters, 2007, 7:1643.
    [57] JAYARAMAN R, SODINI C G. A 1/f noise technique to extract the oxide trap density near the conduction band edge of silicon [J]. IEEE Transolation Electron Devises, 1989, 36:1773.
    [58] MOROZOV S V, NOVOSELOV K S, KATSNELSON M I, SCHEDIN F L, PONOMARENKO A, JIANG D, GEIM A K. Strong suppression of weak localization in graphene [J]. Physical Review Letters, 2006, 97:016801.
    [59] ZHOU S Y, GWEON G -H, FEDOROV A V, FIRST P N, DE HEER W A, LEE D -H, GUINEA F, CASTRO NETO A H, LANZARA A. Substrate-induced bandgap opening in epitaxial graphene [J]. Nature Materials, 2007, 6:770.
    [60] GIOVANNETTI G, KHOMYAKOV P A, BROCKS G, KELLY P J, VAN DEN BRINK J. Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations [J]. Physical Review B, 2007, 76:073103.
    [61] OKAMOTO Y. Density-functional calculations of icosahedral M13 (M = Pt and Au) clusters on graphene sheets and flakes [J]. Chemical Physics Letters, 2006, 420:382.
    [62] HWANG E H, ADAM S, DAS SARMA S. Transport in chemically doped graphene in the presence of adsorbed molecules [J]. Physical Review B, 2007, 76:195421.
    [63] NAKADA K, FUJITA M, DRESSELHAUS G, DRESSELHAUS M S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence [J]. Physical Review B, 1996, 54:17954.
    [64] NIIMI Y, MATSUI T, KAMBARA H, TAGAMI K, TSUKADA M, FUKUYAMA H. Scanning tunneling microscopy and spectroscopy of the electronic local density of states of graphite surfaces near monoatomic step edges [J]. Physical Review B, 2006, 73:085421.
    [65] WEHLING T O, BALATSKY A V, KATSNELSON M I, LICHTENSTEIN A I, SCHARNBERG K, WIESENDANGER R. Raman scattering of carbon nanotube bundles under axial strain and strain-induced debundling [J]. Physical Review B, 2007, 75:125425.
    [66] BERTONI G, CALMELS L, ALTIBELI A, SERIN V. First-principles calculation of the electronic structure and EELS spectra at the graphene/Ni(111) interface [J]. Physical Review B, 2005, 71:075402.
    [67] OKAMOTO Y. Density-functional calculations of graphene interfas with Pt(111) and Pt(111)/RuML surfaces [J]. Chemical Physics Letters, 2005, 407:354.
    [68] N′DIAYE A T, BLEIKAMP S, FEIBELMAN P J, MICHELY T. Two-Dimensional Ir cluster lattice on a graphene Moire on Ir(111) [J]. Physical Review Letters, 2006, 97:215501.
    [69] ECHTERMEYER T J, LEMME M C, BOLTEN J, BAUS M, RAMSTEINER M, KURZ H. Graphene field-effect devices [J]. European Physics Journal: Special Topics, 2007, 148:19.
    [70] SINGH J. Physics of Semiconductors and Their Heterostructures [M]. New York: McGraw-Hill, 1993.
    [71] O′KEEFFE J, WEI C Y, CHO K J. Bandstructure modulation for carbon nanotubes in uniform electric field [J]. Applied Physics Letters, 2002, 80:676.
    [72] LI Y, ROTKIN S V, RAVAIOLI U. Electronic response and bandstructure modulation of carbon nanotubes in a transverse electrical field [J]. Nano Letters, 2003, 3:183.
    [73] FISTUL M V, EFETOV K B. Electromagnetic-field induced suppression of transport through n-p junctions in graphene [J]. Physical Review Letters, 2007, 98:256803.
    [74] LU C L, CHANG C P, HUANG Y C, CHEN R B, LIN M L. Infulence of an electric field on the optical properties of few-layer graphene with AB stacking [J]. Physical Review B, 2006, 73:144427.
    [75] MOSELEY P T. Solid state gas sensor [J]. Measurement Science and Technology, 1997, 8:223.
    [76] KONG J, FRANKLIN N R, ZHOU C, CHAPLINE M G, PENG S, CHO K, DAI H. Nanotube molecular wires as chemical sensors [J]. Science, 2000, 287:622.
    [77] COLLINS P G, BRADLEY K, ISHIGAMI M, ZETTL A. Extreme oxygen sensitivity of electronic properties of carbon nanotubes [J]. Science, 2000, 287:1801.
    [78] PENG S, CHO K. Ab initio study of doped carbon nanotube sensors [J]. Nano Letters, 2003, 3:513.
    [79] KONG J, CHAPLINE M G, DAI H. Functionalized carbon nanotubes for molecular hydrogen sensors [J]. Advanced Materials, 2001, 13:1384.
    [80] WEI B Y, HSU M C, SU P G, LIN H M, WU R J, LAI H J. A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature [J]. Sensor and Actuator B, 2004, 101:81.
    [81] ZHAO Q, NARDELLI M B, LU W, BERNHOLC J. Carbon nanotube-metal cluster composites: A new road to chemical sensors? [J]. Nano Letters, 2005, 5:847.
    [82] WANG R, ZHANG D, SUN W, HAN Z, LIU C. A novel aluminum-doped carbon nanotubes sensor for carbon monoxide [J]. Journal of Molecular Structure: Theochemistry, 2007, 806:93.
    [83] ZHANG Y M, ZHANG D J, LIU C B. Novel chemical sensor for cyanides: Boron-doped carbon nanotubes [J]. Journal of Physical Chemistry B, 2006, 110:4671.
    [84] SCHEDIN F, GEIM A K, MOROZOV S V, HILL E W, BLAKE P, KATASNELSON M I, NOVOSELOV K S. Detection of individual gas molecules adsorbed on graphene [J]. Nature Materials, 2007, 6:652.
    [85] LEENAERTS O, PARTOENS B, PEETERS F M. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study [J]. Physical Review B, 2008, 77:125416.
    [86] WEHLING T O, NOVOSELOV K S, MOROZOV S V, VDOVIN E E, KATSNELSON M I, GEIM A K, LICHTENSTEIN A I. Molecular doping of graphene [J]. Nano Letters, 2008, 8:173.
    [87] GEIM A K, NOVOSELOV K S. The rise of graphene [J]. Nature Materials, 2007, 6:183.
    [88] ZHANG Y, TAN J W, STORMER H L, KIM P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene [J]. Nature, 2005, 438:201.
    [89] DRESSELHAUS M S, DRESSELHAUS G. Intercalation compounds of graphite [J]. Advanced Physics, 2002, 51:1.
    [90] DUTTA P, HORN P M. Low-prequency fluctuations in solids: 1/f noise [J]. Review of Modern Physics, 1981, 53:497.
    [91]吴兴惠,项金钟.现代材料计算与设计教程[M].北京:电子工业出版社,2002.
    [92]冯端,金国钧.凝聚态物理学(上卷)[M].北京:高等教育出版社,2003.
    [93] SLATER J C. Wave functions in a periodic potential [J]. Physical Review, 1937, 51:846.
    [94] LEVY M. Electron densities in search of Hamitonians [J]. Physical Review A, 1982, 26:1200.
    [95] MADELUNG O. Introduction to Solid-State Theory [M]. New York: Springer-Verlag Berlin Heidelberg, 1978.
    [96] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects [J]. Physical Review, 1965, 140:A1133.
    [97] KOHN W. Density functional and density matrix method scaling linearly with the number of atoms [J]. Physical Review Letters, 1996, 76:3168.
    [98] KOHN W. Nobel Lecture: Electronic structure of matter-wave functions and density functionals [J]. Review of Modern Physics, 1999, 71:1253.
    [99]黄昆,韩汝琦.固体物理学[M].北京:高等教育出版社,1998.
    [100]吴代鸣.固体物理学[M].长春:吉林大学出版社,1996.
    [101]谢希德,陆栋.固体能带理论[M].上海:复旦大学出版社,1998.
    [102] HOHENBERG P, KOHN W. Inhomogenous electron gas [J]. Physical Review, 1964, 136:B864- B871.
    [103] SRIVASTAVA G P, WEAIRE D. The theory of the cohesive energies of solids [J]. Advances in Physics, 1987, 36:463.
    [104] NORSKOV J K, LANG N D. Effective-medium theory of chemical binding: Application to chemisorption [J]. Physical Review B, 1980, 21:2131.
    [105] STOTT M J, ZAREMBA E. Quasiatoms: An approach to atoms in nonuniform electronic systems [J]. Physical Review B, 1980, 22:1564.
    [106] PUSKA M J, NIEMINEN R M, MANNINEN M. Atoms embedded in an electron gas: Immersion energies [J]. Physical Review B, 1981, 24:3037.
    [107] MANNINEN M, JENA P, NIEMINEN R M, LEE J K. Ab initio calculation of interatomic potentials and electronic properties of a simple metal-Al [J]. Physical Review B, 1981, 24:7057.
    [108] YIN M T, COHEN MARVIN L. Theory of static structural properties, crystal stability, and phase transformations: Applicatin to Si and Ge [J]. Physical Review B, 1982, 26:5668.
    [109] BACHELET G B, HAMANN D R, SCHLUTER M. Pseudopotentials that work: From H to Pu [J]. Physical Review B, 1982, 26:4199.
    [110] NIELSEN O H, MARTIN R M. Stresses in semiconductors: Ab initio calculations on Si, Ge, and GaAs [J]. Physical Review B, 1985, 32:3792.
    [111] NEEDELS M, PAYNE M C, JOANNOPOULOS J D. Ab initio molecular dynamics on the Ge (100) surface [J]. Physical Review Letters, 1987, 58:1756.
    [112] AMITAVA B, JOHN R. S. Origins of the universal binding-energy relation [J]. Physical Review B, 1988, 37:6632.
    [113] LENNARD-JONES J E. The equation of state of gases and critical phenomena [J]. Physica, 1937, 10:941.
    [114] COTTERILL R M J, DOYAMA M. Energy and atomic configuration of complete and dissociated dislocations [J]. Physical Review, 1966, 145:465.
    [115] COTTERILL R M J, DOYAMA M. Lattice Defects and Their Interactions [M]. New York,1967, p1.
    [116] JOHNSON R A. Interstitials and vacancies inαiron [J]. Physical Review, 1964, 134:A1329.
    [117] JOHNSON R A. Empirical potentials and their use in the calculation of energies of point defects in metals [J]. Journal of Physics F: Metal Physics, 1973, 3:295-321.
    [118]周国辉.断键与环境断裂的分子动力学模拟[D].北京:北京科技大学博士论文,1998.
    [119] DAW MURRAY S, BASKES M I. Semiempirical, quantum mechanical calculation of hydrogen embrittlement in metals [J]. Physical Review Letters, 1983, 50:1285.
    [120] DAW MURRAY S, BASKES M I. Embedded-atom method: Derivation and application to impurities, surface, and other defects in metals [J]. Physical Review B, 1984, 29:6443.
    [121] FOILES S M, BASKES M I, DAW M S. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys [J]. Physical Review B, 1986, 33:7983.
    [122] JOHNSON R. A. Alloy models with the embedded-atom method [J]. Physical Review B, 1989, 39:12554.
    [123] ADAMS J B, FOILES S M. Development of an embedded-atom potential for a bcc metal: Vanadium [J]. Physical Review B, 1990, 41:3316.
    [124] JOHNSON R A. Analytic nearest-neighbor model for fcc metal [J]. Physical Review B, 1988, 37:3924.
    [125] JOHNSON R A, OH D J. Anlytic embedded atom method model for bcc metals [J]. Journal of Material Research, 1989, 4:1195.
    [126] BASKES M I. Application of the embedded-atom method to covalent materials: A semiempirical potential for silicon [J]. Physical Review Letters, 1987, 59:2666.
    [127] BASKES M I, NELSON J S, WRIGHT A F. Semiempirical modified embedded-atom potentials for silicon and germanium [J]. Physical Review B, 1989, 40:6085.
    [128] BASKES M I. Modified embedded-atom potentials for cubic materials and impurities [J]. Physical Review B, 1992, 46:2727.
    [129] ROSE J H, SMITH J R, GUINEA F, FERRANTE J. Universal features of the equation of state of metals [J]. Physical Review B, 1984, 29:2963.
    [130] BANERJEA A, SMITH J R. Origins of the universal binding-energy relation [J]. PhysicalReview B, 1988, 37:6632.
    [131] FINNIS M W, SINCLAIR J E. A simple empirical N-body potential for transition metals [J]. Philosophical Magazine A, 1984, 50:45.
    [132] ACKLAND G J, FINNIS M W. Semi-empirical calculation of solid surface tensions in body-centered cubic transition metals [J]. Philosophical Magazine A, 1986, 54:301.
    [133] ACKLAND G J, THETFORD R. An improved N-body semi-empirical model for body-centered cubic transition metals [J]. Philosophical Magazine A, 1987, 56:15.
    [134] HOAGLAND R G, DAW M S, FOILES S M, BASKES M I. An atomic model of crack tio deformation in aluminun using an embedded atom potential [J]. Journal of Material Research, 1990, 5:313.
    [135] STILLINGER F H, THOMAS A W. Computer simulation of local order in condensed phase of silicon [J]. Physical Review B, 1985, 31:5262.
    [136] BISWAS R, HAMANN D R. Intertomic potentials for silicon structural energies [J]. Physical Review Letters, 1985, 55:2001.
    [137] KHOR K E, SARMA S D. Proposed universal interatomic potential for elemental tetrahedrally bonded semiconductors [J]. Physical Review B, 1988, 38:3318.
    [138] TERSOFF J. New empirical approach for the structure and energy of covalent systems [J]. Physical Review B, 1988, 37:6991.
    [139] TERSOFF J. New empirical model for the structural properties of silicon [J]. Physical Review Letters, 1986, 56:632.
    [140] TERSOFF J. Empirical interatomic potention for silicon with improved elastic properties [J]. Physical Review B, 1988, 38:9902.
    [141] TERSOFF J. Empirical interatomic potention for carbon, with applications to amorphous carbon [J]. Physical Review Letters, 1988, 61:2879.
    [142] TERSOFF J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems [J]. Physical Review B, 1989, 38:5566.
    [143] ABRAHAM F F, PATRA I P. A model potential study of the Si(001)2×1 surface [J]. Surface Science, 1985, 163:L752.
    [144] DING K, ANDERSEN H C. Molecular-dynamics simulation of amorphous germanium [J]. Physical Review B, 1986, 34:6987.
    [145] KHOR K E, SARMA S D. Model-potential-based simulation of Si(100) surface reconstruction [J]. Physical Review B, 1987, 36:7733.
    [146] LUEDTKE W D, LANDMAN U. Molecular-dynamics studies of the growth modes and structure of amorphous silicon films via atom deposition [J]. Physical Review B, 1989, 40:11733.
    [147] PAITHORPE B A. Molecular-dynamics simulations of atomic processes at the low-temperature diamond (111) surface [J]. Journal of Applied Physics, 1991, 70:543.
    [148] CAR R, PARRINELLO M. Unified approach for molecular dynamics and density-functional theory [J]. Physical Review Letters, 1985, 55:2471.
    [149]赵宇军,姜明,曹培林.从头算分子动力学[J].物理学进展, 1998, 18:47.
    [150] HEERMANN D H,秦克诚译.理论物理学中的计算机模拟方法[M].北京:北京大学出版社,1996, p22.
    [151] RAHMAN A. Correlation in the motion of atoms in liquid argon [J]. Physical Review, 1964, 136:A405.
    [152] VERLET L. Computer“Experiments”on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules [J]. Physical Review, 1967, 159:98.
    [153] HOCKNEY R W. Energy-conserving numerical approximations for Vlasov plasmas, Mathematics of Computation Physics, 1970, 9:136.
    [154] NORDSIECK A. On numerical intergration of ordinary differental equations [J]. Mathematics of Computation, 1962, 16:22.
    [155] GEAR C W. The Numerical intergration of ordinary differential equations [J]. Mathematics of Computation, 1967, 21:146.
    [156] TOXVAERD S. A new algorithm for molecular dynamics caculations [J]. Journal of Computational Physics, 1982, 47:444.
    [157] GEAR C W. Numerical initial value problems in ordinary differential equations [M]. Englewood Cliffs, NJ: Prentice Hall, 1971.
    [158] FRANK C W, RAO V, DESPOTOPOULOU M M, PEASE R F W, HINSBERG W D, MILLER R D, RABOLT J F. Structure in thin and ultrathin spin-cast polymer films [J]. Science, 1996, 273:912.
    [159] KIM J H, JANG J, ZIN W C. Thickness dependence of the glass transition temperature in thin polymer films [J]. Langmuir, 2001, 17:2703.
    [160] PARK C H, KIM J H, REE M, SOHN B H, JUNG J C, ZIN W C. Thickness and composition dependence of the glass transition temperature in thin random copolymer films [J]. Polymer, 2004, 45:4507.
    [161] TORRES J A, NEALEY P F, DE PABLO J J. Molecular simulation of ultrathin polymeric films near the glass transition [J]. Physical Review Letters, 2000, 85:3221.
    [162] CHRISTOPHER J E, JOHN M T. The distribution of glass-transition temperatures in nanoscopically confined glass formers [J]. Nature Materials, 2003, 2:695.
    [163] KIM J H, JANG J, ZIN W C. Estimation of the thickness dependence of the glass transition temperature in various thin polymer films [J]. Langmuir, 2000, 16:4064.
    [164] JIANG Q, LANG X Y. Glass transition of low-dimensional polystyrene [J]. Macromolocular Rapid Communications, 2004, 25:825.
    [165] KIM J H, JANG J, LEE DY, ZIN W C. Thickness and composition dependence of the glass transition temperature in thin homogeneous polymer blend films [J]. Macromolecules, 2002, 35:311.
    [166] ELLISON C J, TORKELSON J M. Sensing the glass transition in thin and ultrathin polymer films via fluorescence probes and labels [J]. Journal of Polymer Science Part B: Polymer Physics, 2002, 40:2745
    [167] HUANG Y, PAUL D R. Physical aging of thin glassy polymer films monitored by gas permeability [J]. Polymer, 2004, 45:8377.
    [168] HERMINGHAUS S, SEEMANN R, LANDFESTER K. Polymer surface melting mediated bu capillary waves [J]. Physical Review Letters, 2004, 93:017801.
    [169] JOSEPH Q P, PETER F G. The glass transition of thin film polymer/polymer blends: Interfacial interactions and confinement [J]. The Journal of Chemical Physics, 2002,116:5801.
    [170] GROHENS Y, HAMON L, REITER G, SOLDERA A, HOLL Y. Some relevant parameters affecting the glass transition of supported ultra-thin polymer films [J]. European Physical Journal E, 2002, 8:217.
    [171] GROHENS Y, BROGLY M, LABBE C, DAVID M O, SCHULTZ J. Glass transition of stereoregular poly(methyl methacrylate) at interfaces [J]. Langmuir, 1998, 14:2929.
    [172] BENNEMANN C, PAUL W, BINDER K, DüNWEG B. Molecular-dyanamics simulations of the thermal glass transition in polymer melts:α-relaxation behavior [J]. Physical Review E, 1998, 57:843.
    [173] VARNIK F, BASCHNAGEL J, BINDER K. Molecular dynamics results on the pressure tensor of polymer films [J]. The Journal of Chemical Physics, 2000, 113:4444.
    [174] PAUL D R, NEWMAN S. Polymer Blends [M]. New York: Academic Press, 1978 Chapter 5.
    [175] SCH?NHALS A, GOERING H, SCHICK C H. Segmental and chain dynamics of polymers: from the bulk to the confined state [J]. Journal of Non-Crystal Solids 2002, 305:140.
    [176] DONTH E. Relaxation and thermodynamics in polymers: glass transition [J]. Z Physical Chemistry, (Leipzig) 1978, 259:905.
    [177] DONTH E. The size of cooperatively rearranging regions in polystyrene and styrene-dimethylsiloxabe diblock copolymers at the glass transition temperature [J]. Acta Polymer, 1984, 35:120.
    [178] TRAN T A, SAY1D S, GROHENS Y. Nanoscle characteristic length at the glass transition in confined syndiotactic poly(methyl methacrylate) [J]. Macromolecules, 2005, 38:3867.
    [179] FOX T G. Influence of diluent and copolymer composition on the glass temperature of a polymer system [J]. Bulletin of American Physical Socioty, 1956, 1:123.
    [180] HAMON L, GROHENS Y, HOLL Y. Thickness dependence of the glass transition temperature in thin films of partially miscible polymer blends [J]. Langmuir, 2003, 19:10399.
    [181] MEIROVITCH H. Computer simulation of self-avoiding walks: testing the scanning method [J]. The Journal of Chemical Physics, 1983, 79:502.
    [182] THEODOROU D N, SUTER U W. Detailed molecular structure of a vinyl polymer glass [J]. Macromolecules, 1985, 18:1467.
    [183] SOLDERA A. Energetic analysis of the two PMMA chain tacticities and PMA through molecular dynamics simulations [J]. Polymer, 2002, 43:4269.
    [184] PARRINELLO M, RAHAMAN A. Polymorphic transitions in single crystals: A new molecular dynamics method [J]. Journal of Applied Physics, 1981, 52:7182.
    [185] HAILE J. M. Molecular dynamics simulation [M]. New York: Wiley, 1992.
    [186] SCHNEIDER K, SCH?NHALS A, DONTH E.über die Gr??e der kooperativen Umlagerungsbereiche am thermischen Glasübergang amorpher Polymere [J]. Acta Polymerica, 1981, 32:471.
    [187] PATNAIK S S, PACHTER R. A molecular simulations study of the miscibility in binary mixtures of polymers and low molecular weight molecules [J]. Polymer, 2002, 43:415.
    [188] http://fajerpc.magnet.fsu.edu/Education/2010/Lectures/3_ Chemical_Bonds.htm.
    [189] JAMES E M. Polymer data handbook [M]. New York: Oxford University Press, 1999.
    [190] HAMON L, GROHENS Y, SOLDERA A, HOLL Y. Miscilility in blends of stereoregular poly(methyl methacrylate)/ploy(ethylene oxide) based oligomers [J]. Polymer, 2001, 42:9697.
    [191] MARCO C, FATOU J G, GOMEZ M A, TANAKA H, TONELLI A E. Molecular weight effect on the miscibility of poly(ethylene oxide) and isotactic ploy(methyl methacrylate) in their blends [J]. Macromolecules, 1990, 23:2183.
    [192] JIANG Q, SHI H X, ZHAO M. Melting thermodynamics of organic nanocrystals [J]. The Journal of Chemical Physics, 1999, 111:2176.
    [193] ZHANG Z, ZHAO M, JIANG Q. Glass transition thermodynamics of organic nanoparticles [J]. Physica B, 2001, 293:232.
    [194] COUCHMAN P R. Compositional variation of glass-transition temperatures. 2. Application of the thermodynamic theory to compatible polymer blends [J]. Macromolecules, 1978, 11:1156.
    [195] CHAMP S, XUE W, HUGLIN M B, SAUNDERS G D, CROUCHER T G. Size selectiveconcentrating of poly(ethylene oxide) in aqueous solution by thermosensitive hydrogels [J]. Macromolocular Rapid Communications, 2001, 22:768.
    [196] VAN DER LEE A, HAMON L, HOLL Y, GROHENS Y. Density profiles in thin PMMA supported films inverstigated by X-ray reflectometry [J]. Langmuir, 2001, 17:7664.
    [197] DEBENEDETTI P G, STILLINGER F H. Supercooled liquids and the glass transition [J]. Nature, 2001, 410:259.
    [198] KAUZMANN W. The glassy state and the behaviour of liquids at low temperature [J]. Chemical Review, 1948, 9:219.
    [199] FECHT H J, JOHNSON W L. Entropy and enthalpy catastrophe as a stability limit for crystalline material [J]. Nature, 1988, 334:50.
    [200] ANGELL C A. Formation of glasses from liquids and biopolymers [J]. Science, 1995, 267:1924.
    [201] SASTRY S, DEBENEDETTI P G, STILLINGER F H. Signatures of distinct dynamical regimes in the energy landscape of a glass-forming liquid [J]. Nature, 1998, 393:554.
    [202] SCALA A, STARR F W, NAVE E L, SCIORTINO F, STANLEY H E. Configurational entropy and diffusivity of supercooled water [J]. Nature, 2000, 406:166.
    [203] SASTRY S. The relationship between fragility, configurational entropy and the potential energy landscape of glass-forming liquids [J]. Nature, 2001, 409:164.
    [204] KRAKOVIACK V. Liquid-glass transition of a fluid confined in a disordered porous matrix: A mode-coupling theory [J]. Physical Review Letters, 2005, 94:065703.
    [205] STILLINGER F H. Supercooled liquids, glass trasnitions, and the Kauzmann paradox [J]. The Journal of Chemical Physics, 1988, 88:7818.
    [206] TEICHLER H. Melting transition in molecular-dynamics simulations of the Ni0.5Ze0.5 intermetallic compound [J]. Physical Review B, 1999, 59:8473.
    [207] TANAKA H. Two-order-parameter model of the liquid-glass transition. II. Universal patterns of relaxations in glass-forming liquids [J]. Journal of Non-Crystal Solids, 2005, 351:3396.
    [208] COLUZZI B, PARISI G, VERROCCHIO P. Thermodynamicial liquid-glass transition in aLennard-Jones Binary mixture [J]. Physical Review Letters, 2000, 84:306.
    [209] STILLINGER F H, DEBENEDETTI P G, TRUSKETT T M, ROBERTS C J. The equation of state of an energy landscape [J]. Journal of Physical Chemistry B, 1999, 103:7390.
    [210] JIANG Q, ZHAO M, XU X. Y. Kauzmann temperature of alloys obtained by different methods [J]. Philosophical Magazine B, 1997, 76:1.
    [211] ATTILI A, GALLO P, ROVERE M. Inherent structures and Kauzmann temperature of confined liquids [J]. Physical Review E, 2005, 71:031204.
    [212] SASLOW W S. Scenario for the Vogel-Fulcher“law”[J]. Physical Review B, 1988, 37:676.
    [213] KLOSE G, FECHT H J. Heat flow in spray-formed Al-4Cu [J]. Material Science and Engineering, 1994, A179-A180:77.
    [214] LI T, PARK H G, LEE H S, CHOI S H. Circular dichroism study of chiral biomolecules conjugated with silver nanoparticles [J]. Nanotechnology, 2004, 15:S660.
    [215] LI P, LI J, WU C, WU Q, LI J. Synergistic antibacterial effects ofβ-lactam antibiotic combined with silver nanoparticles [J]. Nanotechnology, 2005, 16:1912.
    [216] MORONES J R, ELECHIGUERRA J L, CAMACHO A, HOLT K, KOURI J B, RAMíREZ J T, YACAMAN M J. The bactericidal effect of silver nanopartices [J]. Nanotechnology, 2005, 16:2346.
    [217] GAO W, ZHAO M, JIANG Q. A DFT study on electronic structures and catalysis of Ag12O6/Ag(111) for ethylene epoxidation [J]. Journal of Physical Chemistry C, 2007, 111:4042.
    [218] PEREPEZKO J H, PAIK J S. Thermodynamic properties of undercooled liquid metals [J]. Journal of Non-Crystal Solids, 1984, 61&62:113.
    [219] SINGH H B, HOLZ A. Stability limit of supercooled liquids [J]. Solid State Communications, 1983, 45:985.
    [220] SIMON S L, PARK J Y, MCKENNA G B. Enthalpy recovery of a glass-forming liquid constrained in a nanoporous matrix: Negative pressure effects [J]. European Physics Journal E, 2002, 8:209.
    [221] LINDEMANN F A. The calculation of molecular vibration frequencies, Physik in unsererZeit, 1910, 11:609.
    [222] REGEL A R, GLAZOV V M. Entropy of melting of semiconductors [J], Semiconductors, 1995, 29:405.
    [223] SUTTON A P, CHEN J. Long-range Finnis-Sinclair potential [J]. Philosophical Magazine Letters, 1990, 61:139.
    [224] UPPENBRINK J, WALES D J. Structure and dynamics of model metal cluster [J]. The Journal of Chemical Physics, 1993, 98:5720.
    [225] KART H H, ULUDO?AN M, CA?IN T, TOMAK M. Simulation of crystallization and glass formation of binary Pd-Ag metal alloys [J]. Journal of Non-Crystal Solids, 2004, 342:6.
    [226] MIAO L, BHETHANABOLTA V R, JOSEPH B. Melting of Pd clusters and nanowires: A comparison study using molecular dynamics simulation [J]. Physical Review B, 2005, 72:134109.
    [227] LLOYD L D, JOHNSTON R L. Theoretical analysis of 17-19-atom metal clusters using many-body potentials [J]. Journal of Chemical Socioty, Dalton Transactions, 2000, 3:307.
    [228] HUANG S P, BALBUENA P B. Melting of bimetallic Cu-Ni nanoclusters [J]. Journal of Physical Chemistry B, 2002, 106:7225.
    [229] SANKARANARAYANAN S K R S, BHETHANABOTLA V R, JOSEPH B. Molecular dynamics simulation study of the melting of Pd-Pt nanoclusters [J]. Physical Review B, 2005, 71:195415.
    [230] GALE J D. GULP: A computer program for the symmetry-adapted simulation of solids [J]. Journal of Chemical Socioty, Faraday Transactions, 1997, 93:629.
    [231] BERENDSEN H J C, POSTMA J P M, VAN GUNSTEREN W F, DINOLA A, HAAK J R. Molecular dynamics with coupling to an external bath [J]. The Journal of Chemical Physics, 1984, 81:3684.
    [232] TEICHLER H. Mode coupling theory and the glass transition in molecular dynamics simulated NiZr [J]. Physical Review Letters, 1996, 76:62.
    [233] FRANCESCA B, RICCARDO F. Structural properties of nanocluster: energetic, thermodynamic, and kinetic effects [J]. Review of Moden Physics, 2005, 77:371.
    [234] CHEN Y, BIAN X F, ZHANG J X, ZHANG Y N, WANG L. Structure and dynamics of gold nanocluster under cooling conditions [J]. Modelling Simulation of Material Science and Engineering, 2004, 12:373.
    [235] http://www.webelements.com/
    [236] XIAO S, HU W, YANG J. Melting behaviors of nanocrystalline Ag [J]. Journal of Physical Chemistry B, 2005, 109:20339.
    [237] UBBELOHDE A R. Melting and Crystal Structure [M]. Oxford: Clarendon Press, 1965, p 171.
    [238] SUN C Q. Size dependence of nanostrcutures: Impact of bond order deficiency [J]. Progress in Solid State Chemistry, 2007, 35:1.
    [239] HU W, XIAO S, YANG J, ZHANG Z. Melting evolution and diffusion behavior of vanadium nanoparticles [J]. European Physics Journal B, 2005, 45:547.
    [240] ALAVI S, THOMPSON D L. A molecular-dynamics study of structural and physical properties of nitromenthane nanoparticles [J]. The Journal of Chemical Physics, 2004, 120:10231.
    [241] ANGELL C A, NGAI K L, MCKENNA G B, MCMILLAN P F, MARTIN S W. Relaxation in glassforming liquids and amorphous solids [J]. Journal of Applied Physics, 2000, 88:3113.
    [242] JACKSON C L, MCKENNA G B. The glass transition of organic liquids confined to small pores [J]. Journal of Non-Crystal Solids, 1991, 131:221.
    [243] ELLISON C J, TORKELSON J M. The distribution of glass-transition temperatures in nanoscopically confined glass formers [J], Nature Materials, 2003, 2:695.
    [244] SERGHEI A, TRESS M, KREMER F. Confinemente effects on the relaxation time distribution of the dynamic glass transition in ultrathin polymer films [J]. Macromolecules, 2006, 39:9385.
    [245] SHARP J S, FORREST J A. Thickness dependence of the dynamics in thin films of isotactic poly (methylmethacrylate) [J]. European Physics Journal E, 2003, 12(s01):97.
    [246] FAKHRAAI Z, FORREST J A. Probing slow dynamics in supported thin polymer films [J]. Physical Review Letters, 2005, 95:025701.
    [247] DUDOWICZ J, FREED K F, DOUGLAS J F. The glass transition temperature of polymer melts [J]. Journal of Physical Chemistry B, 2005, 109:21285.
    [248] XIA X, WOLYNES P G. Fragilities of liquids predicted from the random first order transition theory of glasses [J]. Proceedings of the National Academy of Sciences of USA, 2000, 97:2990.
    [249] ZHOU Y, VITKUP D, KARPLUS M. Native proteins are surface-molten solids: application od the lindemann criterion for the solid versus liquid state [J]. Journal of Molecular Biology, 1999, 285:1371.
    [250] STILLINGER F H, STILLINGER D K. Computational study of transition dynamics in 55-atom clusters [J]. The Journal of Chemical Physics, 1990, 93:6013.
    [251] GóMEZ RIBELLES J L, VIDAURRE GARAYO A, COWIE J M G, FERGUSON R, HARRIS S, MCEWEN I J. The length of cooperativity at the glass transition in poly(vinyl acetate) from the modeling of the structural relaxation process [J]. Polymer, 1998, 40:183.
    [252] TOMCZAK N, VALLéE R A L, VAN DIJK E M H P, KUIPERS L, VAN HULST N F, VANCSO G J. Segment dynamics in thin polystyrene films probed by single-molecule optics [J]. Journal of American Chemical Socioty, 2004, 126:4748.
    [253] DONTH E. Characteristic length of the glass transition [J]. Journal of Polymer Science: Polymer Physics, 1996, 34:2881.
    [254] VALLéE R A L, TOMCZAK N, KUIPERS L, VANCSO G J, VAN HULST N F. Single molecule lifetime fluctuations reveal segmental dynamics in polymers [J]. Physical Review Letters, 2003, 91:038301.
    [255] HODGE I M. Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 6. Adam-Gibbs formulation of nonlinearity [J]. Macromolecules, 1987, 20:2897.
    [256] HELFAND E. Dynamics of conformational transitions in polymers [J]. Science, 1984, 226:647.
    [257] KOH Y P, MCKENNA G B, SIMON S L. Calorimetric glass transition temperature and adsolute heat capacity of polystyrene ultrathin films [J]. Journal of Polymer Science: Polymer Physics, 2006, 44:3518.
    [258] WU W, SAMBASIVAN S, WANG C, WALLACE W E, GENZER J, FISCHER D A. A direct comparison of surface and bulk chain-reaxation in polystyrene [J]. European Physical Journal E, 2003, 12:127.
    [259] ROTH C B, DUTCHER J R. Glass transition temperature of free-standing films of atactic poly(methyl methacrylate) [J]. European Physical Journal E, 2003, 12(s01):103.
    [260] ROTH C B, POUND A, KAMP S W, MURRAY C A, DUTCHER J R. Molecular-weight dependence of the glass transition temperature of freely-standing poly(methyl methacrylate) films [J]. European Physical Journal E, 2006, 20:441.
    [261] ELLISON C J, MUNDRA M K, TORKELSON J M. Impacts of Polystyrene molecular weight and modification to the repeat uite structure on the glass transition nanoconfinement effect and the cooperativity length scale [J]. Macromolecules, 2005, 38:1767.
    [262] RIGBY D, SUN H, EICHINGER B E. Computer simulations of poly(ethylene oxide): force field, pvt diagram and cyclization bahavior [J]. Polymer International, 1997, 44:311.
    [263] NOSéS. A unified formulation of the constant temperature molecular dynamics methods [J]. The Journal of Chemical Physics, 1984, 81:511.
    [264] KARAYIANNIS N C, MAVRANTZANS V G, THEODOROU D N. Detailed atomistic simulation of the segemental dynamics and barrier properties of amorphous poly(ethylene terephthalate) and poly(ethylene isophthalate) [J]. Macromolecules, 2004, 37:2978.
    [265] ZHANG Y, JIANG Z, SMALL J P, PUREWAL M S, TAN Y-W, FAZLOLLAHI M, CHUDOW J D, JASZCZAK J A, STORMER H L, KIM P. Landau-level splitting in graphene in high magnetic fields [J]. Physical Review Letters, 2006, 96:136806.
    [266] GUINEA F A, CASTRO NETO H, PERES N M R. Electronic states and Landau levels in graphene stacks [J]. Physical Review B, 2006, 73:245426.
    [267] SIDOROV A N, YAZDAPANAH M M, JALILIAN R, OUSEPH P J, COHN R W, SUMANASEKERA G U. Electrostatic deposition of graphene [J]. Nanotechnology, 2007, 18:135301.
    [268] RIGNANESE G -M, DE VITA A, CHARLIER J–C, GONZE X, CAR R. First-principles molecular-dynamics study of the (0001)α-quartz surface [J]. Physical Review B, 2000,61:13250.
    [269] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Physical Review B, 1990, 41:R7892.
    [270] DEGALL M D, LINDAN P L D, PROBERT M J, PICKARD C J, HASNIP P J, CLARK S J, PAYNE M C. First-principles simulation: ideals, illustrations and the CASTEP code [J]. Journal of Physics: Condensed Matter, 2002, 14:2717.
    [271] CEPERLEY D M, ALDER B J. Ground state of the electron gas by a stochastic method [J]. Physical Review Letters, 1980, 45:566.
    [272] PERDEW J P, ZUNGER A. Self-interaction correction to density-functional approximations for many-electron systems [J]. Physical Review B, 1981, 23:5048.
    [273] PERDEW J P, WANG Y. Accurate and simple analytic representation of the electron-gas correlation energy [J]. Physical Review B, 1992, 45:13244.
    [274] SIEGEL D J, HECTOR JR L G, ADAMS J B. Adhesion, stability, and bonding at metal/metal-carbide interfaces: AI/WC [J]. Surface Science, 2002, 498:321.
    [275] LEVIEN L, PREWITT C T, WEIDNER D J. Structure and elastic properties of quartz at pressure [J]. The Amrican Mineralogist, 1980, 65:920.
    [276] LIU W, ZHENG W T, JIANG Q. First-principles study of the surface energy and work function of III-V semiconductor compounds [J]. Physical Review B, 2007, 75:235322.
    [277] FIORENTINI V, METHFESSEL M. Extracting convergent surface energies from slab calculations [J]. Journal of Physics: Condensed Matter, 1996, 8:6525.
    [278] BOETTGER J C. Nonconvergence of surface energies obtained from thin-film calculations [J]. Physical Review B, 1994, 49:16798.
    [279] JIANG Q, CHEN Z P. Thermodynamic phase stabilities of nanocarbon [J]. Carbon, 2006, 44:79.
    [280] TSUNEKAWA S, ITO S, KAWAZOE Y. Surface structures of cerium oxide nanocrystalline particles from the size dependence of the lattice parameters [J]. Applied Physics Letters, 2004, 85:3845.
    [281] HASEGAWA M, NISHIDATE K. Semiempirical approach to the energetics of interlayerbinding in graphite [J]. Physical Review B, 2004, 70:205431.
    [282] AIZAWA T, SOUDA R, OTANI S, ISHIZAWA Y, OSHIMA C. Anomalous bond of monolayer graphite on transition-metal carbide surfaces [J]. Physical Review Letters, 1990, 64:768.
    [283] MOORE G E. Cramming more components onto integrated circuits [J]. Electronics, 1965, 38:114.
    [284] LIN Y M, APPENZELLER J, CHEN Z H, CHEN Z G, CHENG H M, AVOURIS P. High-performance dual-gate carbon nanotibe FETs with 40-nm gate length [J]. IEEE Electron Devices Letters, 2005, 26:823.
    [285] CHAU R, DATTA S, DOCZY M, DOYLE B, JIN B, KAVALIEROS J, MAJUMDAR A, METZ M, RADOSAVLJEVIC M. Benchmarking nanotechnology for high-performance and low-power logic transistor applications [J]. IEEE Transactions on Nanotechnology, 2005, 4:153.
    [286] BERGER C, SONG Z, LI X, WU X, BROWN N, NAUD C, MAYOU D, LI T, HASS J, MARCHENKOV A N, CONRAD E H, FIRST P N, DE HEER W A, Electronic confinement and coherence in patterned epitaxial graphene [J]. Science, 2006, 312:1191.
    [287] DELLEY B. From molecules to solids with the Dmol3 approach [J]. The Journal of Chemical Physics, 2000, 113:7756.
    [288] HAMMER B, HANSEN L B, N?RSKOV J K, Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals [J]. Physical Review B, 1999, 59:7413.
    [289] LIU W, LIAN J S, JIANG Q. Theoretical study of C2H2 adsorbed on low-index Cu surfaces [J]. Journal of Physical Chemistry C, 2007, 111:18189.
    [290] DELLEY B. An all-electron numerical method for solving the local density functional for polyatomic molecules [J]. The Journal of Chemical Physics, 1990, 92:508.
    [291] JELOAICA L, SIDIS V. DFT inversigation of the adsorption of atomic hydrogen on a cluster-model graphite surface [J]. Chemical Physics Letters, 1999, 300:157.
    [292] LUGO-SOLIS A, VASILIEV I. Ab initio study of K adsorption on graphene and carbonnanotubes: Role of long-range ionic forces [J]. Physical Review B, 2007, 76:235431.
    [293] DELLEY B. Hardness conserving semilocal pseudopotentials [J]. Physical Review B, 2002, 66:155125.
    [294] LIDE D R. CRC Handbook of Chemistry and Physics [M]. 81st ed. Boca Raton, FL: CRC Press, 2000.
    [295] PENG S, CHO K, QI P, DAI H. Ab initio study of CNT NO2 gas sensor [J]. Chemical Physics Letters, 2004, 387:271.
    [296] HYMAN M P, MEDLIN J W. Theoretical study of the adsorption and dissociation of oxygen on Pt(111) in the presence of homogeneous electric fields [J]. Journal of Physical Chemistry B, 2005, 109:6304.
    [297] AO Z M, YANG J, LI S, JIANG Q. Enhancement of CO detection in Al doped graphene [J]. Chemical Physics Letters, 2008, 461:276.
    [298] AO Z M, ZHENG W T, JIANG Q. Effects of electronic field on atomic structure of graphene/α-SiO2 interface [J]. Nanotechnology, 2008, 19:275710.
    [299] ECHTERMEYER T J, LEMME M C, BAUS M, SZAFRANEK B N, GEIM A K, KURZ H, A graphene-based electrochemical switch. http://arxiv.org/abs/0712. 2026.
    [300] TOMANEK D, KREUZER H, BLOCK J. Tight-binding approach to field desorption: N2 on Fe(111) [J]. Surface Science, 1985, 157:L315.
    [301] TIELENS F, GRACIA L, POLO V, ANDRéS J. A theoretical study on the electronic structure of Au-XO(0,-1,+1) (X=C, N, and O) complexes: Effect of an external electric field [J]. Journal of Physical Chemistry A, 2007, 111:13255.
    [302] LOZOVOI A Y, ALAVI A. Vibratinal frequencies of CO on Pt(111) in electric field: A periodic DFT study [J]. Journal of Electrical Chemistry, 2007, 607:140.
    [303] MCEWEN J-S, GASPARD P, MITTENDORFER F, VISART DE BOCARMéT, KRUSE N. Field-assisted oxideation of rhodium [J]. Chemical Physics Letters, 2008, 452:133.
    [304] ACHARYA C K, TURNER C H. Effect of an electric field on the adsorption of metal clusters on Boron-doped carbon surfaces [J]. Journal of Physical Chemistry C, 2007, 111:14804.
    [305] KOPER M T M, VAN SANTEN R A. Electric field effects on CO and NO adsorption at the Pt(111) surface [J]. Journal of Electroanalytical Chemistry, 1999, 476:64.
    [306] BLYHOLDER G. Molecular orbital view of chemisorbed carbon monoxide [J]. Journal of Physical Chemistry, 1964, 68:2772.
    [307] VAN WEES B J, VAN HOUTEN H, BEENAKKER C W J, WILLIAMSON J G, KOUWENHOVEN L P, VAN DER MAREL D, FOXON C T. Quantized conductance of point contacts in a two-dimensional electron gas [J]. Physical Review Letters, 1998, 60:848.
    [308] MARES A I, VAN RUITENBEEK J M. Observation of shell effects in nanowires for the noble metals Cu, Ag, and Au [J]. Physical Review B, 2005, 72:205402.
    [309] HE C, ZHANG P, ZHU Y F, JIANG Q. Structures and quantum conduction of copper nanowires under electric fields using first principles [J]. Journal of Physical Chemistry C, 2008, 112:9045.
    [310] NORSKOV J K, BLIGAARD T, LOGADOTTIR A, BAHN S, HANSEN L B, BOLLINGER M, BENGAARD H, HAMMER B, SLJIVANCANIN Z, XU Y, DAHL S, JACOBSEN C J H. Universality in heterogeneous catalysis [J]. Journal of Catalyst, 2002, 209:275.
    [311] KAXIRAS E, BAR-YAM Y, JOANNOPOULOS J D, PANDEY K C. Ab initio theory of polar semiconductor surfaces. I. Methodology and the (22) reconstructions of GaAs(111) [J]. Physical Review B, 1987, 35:9625.
    [312] QIAN G–X, MARTIN R M, CHADI D J. First-principles study of the atomic reconstructions and energies of Ga- and As-stabilized GaAs(100) surfaces [J]. Physical Review B, 1988, 38:7649.
    [313] CRISTOL S, PAUL J–F, PAYEN E, BOUGEARD D, CLéMENDOT S, HUTSCHKA F. Theoretical study of the MoS2 (100) surface: A chemical potential analysis of sulfur and hydrogen coverage [J]. Journal of Physical Chemistry B, 2000, 104:11220.
    [314] REUTER K, SCHEFFLER M. Compostion and structure of the RuO2 (110) surface in an O2 and CO environment: Implications for the catalytic formation of CO2 [J]. Physical Review B, 2003, 68:045407.
    [315] MICHAELIDES A, BOCQUET M–L, SAUTET P, ALAVI A, KING D A. Structures andthermodynamic phase transitions for oxygen and siliver oxide phases on Ag{111} [J]. Chemical Physics Letters, 2003, 367:344.
    [316] LOFFREDA D, DELBECQ F, SAUTET P. Adsorption thermodynamics of acrolein on Pt(111) in realistic temperature and pressure from first-principle calculations [J]. Chemical Physics Letters, 2005, 405:434.
    [317] SPENCER M J S, YAROVSKY I. Ab initio molecular dynamics study of H2S dissociation on the Fe(110) surface [J]. Journal of Physical Chemistry C, 2007, 111:16372.
    [318] HUBER K P, HERZBERG G. Molecular Spectra and Molecular Structure [M]. New York: Van Nostrand Reinhold, 1979, vol. IV.
    [319] LIAO M S, ZHANG Q E. Electric field-induced shifts of vibratinal frequencies of CO adsorbed on Ni, Pb, Pt, Cu, Ag and Au metal (100) surfaces [J]. Journal Chemical Socioty, Faraday Transactions, 1998, 94:1301.
    [320] NOSE S. Molecular Dynamics simulations [J]. Progress Theoretical Physics, 1991, supplement:1.
    [321] RAAEN S, RAMSTAD A. Monte-Carlo simulations of thermal desorption of adsorbed molecules from metal surfaces [J]. Energy, 2005, 30:821.
    [322] SEITSONEN A P, KIM Y D, KNAPP M, WENDT S, OVER H. CO adsorption on the reduced RuO2(110) surface: Energetics and structure [J]. Physical Review B, 2001, 65:035413.
    [323] READHEAD P A. Thermal desorption of gases [J]. Vacuum, 1962, 12:203.
    [324] TOSATTI E, PRESTIPINO S, KOSTLMEIER S, DAL CORSO A, DI TOLLA F D. String tension and stability of magic tip-suspended nanowires [J]. Science, 2001, 291:288.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700