用户名: 密码: 验证码:
PIP工艺制备C_f/SiC复合材料孔隙结构及其传热传质特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
先驱体浸渍—裂解(PIP)工艺制备的C_f/SiC复合材料内部孔隙率可达10~20vol.%,孔隙是除纤维、基体、界面外C_f/SiC复合材料的又一重要组分,直接影响材料的力学、抗氧化、传热、传质等性能,并赋予复合材料许多潜在功能。本文以PIP-C_f/SiC复合材料孔隙结构为对象,开展孔隙表征、控制及应用技术研究。旨在建立一套适合其特点的综合表征体系,实现对孔隙结构的准确、全面描述;探明工艺因素对孔隙形成的影响规律,总结行之有效的控制方法;并以主动冷却防热结构为背景,建立孔隙结构与PIP-C_f/SiC复合材料传热、传质性能间的本构关系与预测模型,为深化PIP-C_f/SiC复合材料理论研究,拓展其应用领域奠定基础。
     根据PIP-C_f/SiC复合材料的孔隙结构及使用特点,对多孔介质已有表征手段进行筛选、改进,首次建立了适合PIP-C_f/SiC复合材料的一套表征方法,即综合压汞(MIP)、等温吸附(BET)、扫描电镜(SEM)及气泡法等手段表征PIP-C_f/SiC复合材料的孔隙率、比表面、孔隙形貌、孔隙尺寸及分布、孔隙拓扑结构(分形特征)等特征,建立了孔隙结构物理模型。
     通过研究三维编织物(3D)、“二维半”编织物(2.5D)及二维叠层碳布(2D)增强的PIP-C_f/SiC复合材料孔隙结构发现,各织构复合材料的孔隙存在若干共性特征,如主体结构呈“孔道/喉—孔腔”二元模式,纳米微孔在各类材料中普遍存在,贯通孔仅占全部孔隙的一部分等;但在孔隙尺寸、形状、含量、连通性等方面,纤维增强体的织构方式具有决定性影响:例如在孔隙率方面,2.5D-C_f/SiC的最高,三维四向编织物(3D4d)次之,三维五向织物(3D5d)最低,而二维碳布叠层(2D)复合材料介于两种三维编织物之间。孔隙空间结构方面,3D-C_f/SiC复合材料内部孔隙呈三维网络,主要包括百微米级纤维束间孔腔(pore chambers),几微米至几十微米的纤维束间孔道(pore channels/throats)以及纳米级微孔(micro-pores/cracks)等三类,纤维束间孔道不但沟通了各个孔腔,也连接了更小的纳米微孔。2.5D-C_f/SiC与2D-C_f/SiC复合材料孔隙呈现二维层状特征,其连通性具有明显的各向异性特征。此外,织构上的差别还导致3D4d-C_f/SiC、3D5d-C_f/SiC、2.5D-C_f/SiC及2D-C_f/SiC复合材料内的孔腔、孔道、纳米孔及贯通孔含量存在较大差异。对表面特征研究表明,不同织构PIP-C_f/SiC复合材料比表面均不高,属非多孔固体的水平,但与吸附质(N_2)作用较大,且由于孔尺寸分布范围广泛,吸附等温线均呈Ⅱ类反S型,上述特征均与复合材料内部纳米微孔含量及分布密不可分。
     通过对不同制备周期中间体的跟踪表征,首次研究了PIP-C_f/SiC复合材料的孔隙结构随制备进行的演化过程,发现SiC基体优先在3D复合材料的纤维束间孔道填充,但当致密度达到一定水平后,孔道体积未继续下降,而以孔腔填充为主;相反,2.5D和2D-C_f/SiC复合材料在经纬纱交叠处的孔隙尺寸在制备初期既已形成,两者的层间孔腔是后续基体填充的主要对象,孔隙空间连通性也随制备相应演化;受所含纳米微孔含量变化影响,各类复合材料的比表面演化情况也不同,但其孔隙表面粗糙程度基本接近,均由织物表面覆盖的SiC颗粒所贡献。
     系统研究了浸渍工艺参数(浸渍液类型、浸渍压力、时间等)对孔隙结构的影响。结果表明,以硅油(PSO)为代表的具有低粘度、良好浸润性及受热交联的浸渍液体系填充增强体织物内部空间的能力较强,致密化效率高于聚碳硅烷(PCS)/Xylene/SiC_p(泥浆)、PCS/DVB及PCS/Xylene体系,制得复合材料的孔隙率低于5%,孔隙以20~0.1μm的基体内微裂纹为主。浸渍压力对浸渍不同尺寸孔隙的促进效果是不同的,对于0.1μm以下微裂纹,需要对浸渍液施加较高的外界压力(4MPa以上)方能实现克服浸渍阻力,提高浸渍效率的目的。目前使用的PCS/Xylene,PCS/Xylene/SiC_p,PCS/DVB以及PSO浸渍液体系均能与碳纤维织物较好的浸润,保持现有浸渍时间,各类浸渍液均能够深入织物内部,对织物内主要孔隙进行充分填充。
     通过气体透过法研究了PIP-C_f/SiC复合材料的渗流传质特性。结果显示,气体(N_2)在各类织构C_f/SiC复合材料中渗流时的流态包括层流、非层流及滑流,流态转变的临界压力受材料致密度、增强体织构、浸渍液类型等因素影响。
     PIP-C_f/SiC复合材料内的贯通孔结构是控制气体渗流关键因素。气泡法能够测定这些渗流的通道的分布函数α(D),结合并联(或串联)毛细管模型能够有效预测C_f/SiC复合材料的气体渗透系数K。不同织构C_f/SiC复合材料的K与其总孔隙率Φ间并无直接联系,各类C_f/SiC复合材料按其渗透能力高低排列为:3D4d-C_f/SiC>2D-C_f/SiC>3D5d-C_f/SiC>2.5D-C_f/SiC,其中3D4d-C_f/SiC的K值可达10~(-14)m~2,但织构一定的条件下,致密度提高能够有效降低复合材料的渗透系数。此外,浸渍PSO,PCS/DVB,PCS/Xylene/SiC_p及PCS/Xylene体系制备的3D复合材料的按其渗透系数大小可排序为:C_f/SiC/Si-O-C<C_f/SiC/C<C_f/SiC/SiC_p<C_f/SiC,3D-C_f/SiC/Si-O-C的气体渗透系数仅为10~(-18)m~2左右。
     采用有效当量法研究了PIP-C_f/SiC复合材料的热物理性能。室温下,3D-C_f/SiC复合材料的比热容为0.74J/(g·K),随温度升高而升高;热扩散系数为0.0183cm~2/s,随温度升高线性降低;有效导热系数K_(eff)室温时为2.45W/(m·K),且随温度正向变化;半球全发射率为0.75(80~90℃)。有效导热系数K_(eff)反映了C_f/SiC复合材料固体骨架(纤维,基体)的声子导热及孔隙的辐射换热的综合传热效果,特别在高温下,后者的传热贡献能够弥补导热量下降,导致PIP-C_f/SiC复合材料的K_(eff)随温度提高反而增大。
     通过研究PIP-C_f/SiC热物理性能的影响因素发现,先驱体转化SiC基体的有效导热系数不高(1.56~1.47 W/m/K,RT~700℃)是导致C_f/SiC复合材料整体传热水平不高的重要原因之一,这与其内部裂纹缺陷及晶体结构发育不完全有关。此外,增强体织构决定了固体骨架及孔隙排布,对C_f/SiC复合材料内导热及辐射换热机制具有显著影响。对于本文C纤维热导率远高于SiC基体的情况,C_f/SiC复合材料在某一方向的有效导热系数与织物在该向纤维体积含量成正比。由于孔隙辐射换热的差异,致密度对各类织构C_f/SiC复合材料的传热性能影响各不相同,如对3D复合材料而言,孔隙率降至15%以下,继续致密化非但不能提高导热系数,反而使其略有下降;而2.5D织物增强复合材料的K_(eff)却随致密度持续提高。
     由H-J模型计算的PIP-C_f/SiC复合材料界面接触热阻与文献报道值吻合,但高于CVI-C_f/SiC。界面接触热阻与增强体织构、纤维种类关系不大,而主要受制备工艺的影响,升温能使界面间隙部分愈合,导致热阻有所降低。
Besides fiber,matrix and their interface,pore is another important component of carbon fiber reinforced silicon carbide(C_f/SiC) composites fabricatd via precursor infiltration and pyrolysis(PIP).Typical porosity of PIP-C_f/SiC composites amounts to 10~20%.These unignorable pores have considerable influence on the mechanical properties,oxidation behaviour;mass and heat transfer of the composites,and provide them some potential functions.In this dissertation,the PIP-C_f/SiC's porous microsturcture characterization techniques were investigated.The pore structure's evolution during fabrication was tracked,its relationship with processing factors was discussed,and the control means were concluded consequently.Aiming at the application of active-cooled aerospace thermal components,the PIP-C_f/SiC's porous structure's effects on its thermal properties and permeability were also researched.
     Through evaluating and improvig the general porous media's measuring techniques,an integrated characterization procedure was established,including the MIP, BET,SEM and bubble point method etc.,then applied to research the PIP-C_f/SiC's porous characters successfully,e.g.porosity,morphology,pore size distribution, topology and so on.Based on the results,a detailed physical model was constructed.
     Three dimensional braided(3D) fabrics,two and a half dimensional braided(2.5D) fabrics,and carbon cloth laminates(2D) reinforced C_f/SiC composites' pore structures were investigated respectively.It is found that there are some common features of pores in C_f/SiC despite the reinforcements architectures' differences,e.g.the "chamber-throat/channel" binary pattern of the most pores,the existence of nanopores, and the small fraction of the fully-open pores etc..Nevertheless,the reinforcements have decisive effects on porous structures,e.g.from the aspect of porosity,2.5D-C_f/SiC>3 dimesional,4 directional(3D4d)-C_f/SiC>2D-C_f/SiC>3 dimensional,5 directional (3D5d)-C_f-/SiC.As for the configuration,3D-C_f/SiC's pores are three-dimensional network style,composed of some hundreds of microns inter-bundle pore chambers, dozens of microns inter-bundle pore throats/channels,and nano-micropores.The channels communicate such chambers and micropores,integrating all pores inside. While the pores in 2.5D- and 2D-C_f/SiC have a laminar structure,whose topology is obviously anisotropic.Surface characterization indicates the specific surface areas of the aforementioned C_f/SiC are much lower than traditional porous media's,the isotherm sorption curve isⅡstyle,which are all determinated by the nano-micropores' contents and size distributions.
     By tracing the structural variations of the semi-articles before finally produced,the porous structure's evolution is recognized during the PIP fabrication.It is found that the SiC matrix keeps filling the inter-bundle channels of the 3D-C_f/SiC firstly,and changes to fill the pore chambers as the densification reachs some level.On the contrary,the channels at the warp-weft crossply of 2.5D and 2D-C_f/SiC have come into being at the fabrication beginning,the laminar pore chambers are the matrix filling targets all along, and the pores' connectivity evolutes consequently.Owing to the fractions of nano-micropores,the aforementioned C_f/SiC's specific areas develop differently; however,their surfacial toughness is similar,which is due to the covering SiC matrix on the surfaces of pores.
     The influences of infiltration conditions on the pore structure were researched systematically concerning infiltrate types,pressures,and holding time etc.The results indicate low-viscosity,good wettability,and heat-cure capacities are preferable for infilates to fill the reinforcements' inner spaces efficiently.Thus,polysiloxane(PSO) has higher densification efficiency than polycarbosilane(PCS)/Xylene/SiC_p(slurry), PCS/Xylene,and PCS/DVB.The composites infiltrated by PSO have a much lower porosity(less than 5%),and contain 0.1~20μm micro-cracks mainly.To overcome the resistance and accelerate the infiltrates penetrating,various pressure levels are required for different sized pores,e.g.1atm is sufficient for the pores above 1μm,while at least 4MPa additional pressure are necessary for micropores below 0.1μm.Attributing to the good wettability of aforementioned infiltrates on the carbon fibers,present infiltration time esures all inliltrate permeate into the fabrics deeply.
     The mass transfer features were evaluated by measuring the gas permeability of PIP-C_f/SiC.The flowrate-pressrue curves indicate that gas(N_2) flows through the C_f/SiC in three different modes,i.e.laminar,non-laminar,and slipping flow.The flowmode conversion pressures are affected by the densification level,reinforcements' architectures,and infiltrates types et al.
     It is found that the full-open pores' characters are the crucial factor determining the gas permeability of C_f/SiC,because they provide the flowing channels for the fluids. Through the bubble point method,their size distribution functionα(D) is obtained. Insertingα(D) into the parrell or series capillary model is able to predict the composites' permeabilities accurately.There are no direct relationship between the permeabilities and porosities of C_f/SiC reinforced by different fabrics,and the relative ranking of their permeabilities is 3D4d-C_f/SiC>2D-C_f/SiC>3D5d-C_f/SiC>2.5D-C_f/SiC,in which the level of 3D4d-C_f/SiC is 10~(-14)m~2.However,the increase of densification can deduce the composite's permeability effectively,for each C_f/SiC above.Moreover,infiltrating PSO, PCS/DVB,PCS/Xylene/SiC_p,and PCS/Xylene produced 3D composites are able to be ranked as:C_f/SiC/Si-O-C<C_f/SiC/C<C_f/SiC/SiC_p<C_f/SiC,according to their permeabilities.And the lowest one of 3D-C_f/SiC/Si-O-C is only 10~(18)m~2.
     The equivalent concept was adopted in studying the thermal properties of PIP-3D-C_f/SiC. At room temperature,the specific heat(C_p) is 0.74 J/g/K,thermal diffusivity (TD) is 0.0183 cm~2/s,effective thermal conductivity(K_(eff)) is 2.45 W/m/K,and total emssivity is 0.75(80~90℃).With the temperature inceasing,the C_p and K_(eff) both present positive temperature dependence,while the TD shows negative one over the full temperature range.The K_(eff) values reflect the exact mechanisms of the PIP-C_f/SiC's heat transfer,which involves the solide skeleton(fiber,matrix) thermal conduction via phonons and the radiation contribution of pores inside.Moreover,it is supposed that the latter mechanism is capable of compensating the decrease of thermal conduction occurred at high temperatures,which results in the positive temperature dependence of K_(eff).
     The influencing factors of PIP-C_f/SiC's thermal properties are also discussed.Due to the inherent micro-cracks and low crystalline,the SiC presents low K_(eff)(1.56~1.47 W/m/K,from RT to 700℃) derived from PCS,which is the main reason of relatively low heat transfer capacity of PIP-C_f/SiC.Besides the matrix,the reinforcements' architectures determine the configuration of solide skeleton and pore,thus have inevitably great effects on the thermal conduction and radiation,e.g.the K_(eff) is direct proportion to the fiber fraction of fabrics along some direction.There is no fixed correlationship between the densifcation levels and thermal properties of C_f/SiC.For instance,as the porosity of 3D-C_f/SiC decease below 15%,following densification process can not make K_(eff) increase continuously,but cause it deduce a little,while for 2.5D-C_f/SiC,this inceasing trend is lasting in spite of the densification level.The diversity of radiation capacity accounts for this phenomenon,deriving from the different pores' configurations.
     The interfacial contact thermal resistance is coincident with the literature reported value of PIP-C_f/SiC calculated by H-J model.The interfacial thermal resistance is insensitive to the reinforecements' architectures and fiber types,but is determined by fabrication process,e.g.the PIP-C_f/SiC value is obviously higher than the CVI one.Due to some interfacial cracks' closure,temperature increasing make the thermal resistance fall off a bit.
引文
[1]乔松楼,乐俊淮,苏雨生.新材料——科技进步的基石.北京:中国科学技术出版社,1994
    [2]贾成广,李汶霞,郭志猛等.陶瓷基复合材料导论.北京:冶金工业出版社,1998
    [3]Derek Hull.An Introduction to Composites Materials.London:Cambridge University Press,1981
    [4]Hilsdorf R.Ceramic Usage in Turbine Advances.American Metal Market,1987,6:1-8
    [5]徐立华等.先进复相陶瓷的研究现状和展望(Ⅰ).硅酸盐通报,1996,5:34-38
    [6]G.Kostorz.High-Tech Ceramics-Viewpoints and Perspectives.CA(USA):Academic Press,1989
    [7]宗保重行[日].迟文俊译.近代陶瓷.上海:同济大学出版社,1988
    [8]樱井良文,小泉光惠[日].陈俊彦,王余军译.新型陶瓷材料及其应用.北京:中国建筑工业出版社,1983
    [9]Luh E.Y.,Evans A.G High-temperature mechanical properties of a ceramic matrix composite.Journal of Amercian Ceramic Society,1987,70:466-469
    [10]Longo C.R.O.,White K.W.Elevated-temperature fracture characteirzation of advanced fibrous ceramic thermal insulators.Journal of Amercian Ceramic Society,1994,77:2703-2711
    [11]张长瑞,郝元恺.陶瓷基复合材料——原理、工艺、性能与设计。长沙:国防科技大学出版社,2001
    [12]吴人洁主编.复合材料.天津:天津大学出版社,2000
    [13]Evans A.G.Design and life prediction issues for high-temperature engineering ceramics and their composites.Acta Materials,1997,45:23-40
    [14]Singh J.P.,Singh D.,Sutaria M.Ceramic composites:roles of fiber and interface.Composites:Part A,1999,30:445-450
    [15]Shin D.W.,Park S.S.,Choa Y.H.Silicon/silicon carbide composites fabricated by infiltration of a silicon melt into charcoal.Journal of Amercian Ceramic Society,1999,82:3251-3253
    [16]Besmann T.M.,Sheldon B.W.,Moss Ⅲ T.S.Development status of the reusable high-performance engines with functionally graded materials.Acta Astronautica,2002,50:427-432
    [17]Jiang D.Y.,Zhang C.,Shi J.L.Mierostructure and mechanical properties of Dy-α-sialon/nano-size SiC composites.Journal of Material Science and Technology,1997,13:336-338
    [18]Stanley R.L.,Ahmed K.N.,Samuel L.V.Flight-vehicle material structure and dynamics assessment and future directions.Cermaics and ceramic-matrix composites.New York:Amenrican Society of Mechanical Engineers,1992
    [19]E.Paquette,Glen Burnie,R.Warburton.Cooled CMC scramjet combustor sturcture development.AIAA 2002-4132.2002
    [20]陈朝辉编著.先驱体结构陶瓷.长沙:国防科技大学出版社,2003
    [21]Doug Freitag.The Advanced Ceramics Industry "An Increasingly Strategic Material".USACA report.2004
    [22]邹武.陶瓷基热结构复合材料应用研究.中国航天科技集团第四研究院第四十三所内部资料.1996
    [23]邹青,候帅.再入太空船的全陶瓷体襟翼.飞航导弹,2004,10:61-63
    [24]Imuta M.,Gotoh J.Development of high temperature materials including CMCs for space application.Key Engineering Materials,1999,164-165:439-444
    [25]Trabandt U.,Wulz H.G.,Schmid T.CMC for hot structures and control surfaces of future launchers.Key Engineering Materials,1999,164-165:445-450
    [26]Hald H.,Weihs H.,Benitsch B.Development of a nose cap system for X-38.In:Proceedings of International Symposium Atmospheric Reentry Vehicles and System,Arcachon,France,1999
    [27]闫联生,王淘,邹武等.国外复合材料推力室技术研究进展.固体火箭技术,2003,26:64-68
    [28]Dr.Jerry Lang.Uncooled C/SiC Composite Chamber Tested Successfully in Rocket Combustion Lab.NASA Glenn's Research & Technology reports.2003
    [29]Jerry Lang.C/SiC Composite Chamber Tested Successfully in Rocket Combustion Lab.NASA Glenn's Research & Technology reports.2003
    [30]Schmidt S.,Beyer S.,Knabe H.et al.Advanced ceramic matrix composites materials for current and future propulsion technology applications.In:IAC-03-S.3,Germany,2003
    [31]钟徐,张中光.空间发动机用C/SiC、SiC/SiC复合材料的研究.上海航天动力机械研究所内部资料.2003
    [32]Brewer D.,Ojard G.,Gibler M.Ceramic Matrix Composite Combustor Liner Rig Test.In:Proceedings of ASME Turbo EXPO,Munich,Germany,2000
    [33]Singh M.,Edgar L.C.Design,Fabrication,and Testing of Ceramic Joints for High Temperature SiC/SiC Composites.In:Proceedings of ASME Turbo EXPO,Munich,Germany,2000
    [34]Corman G.S.,Dean A.J.,Brabetz S.Rig and Engine Testing of Melt Infiltrated Ceramic Composites for Combuster and Shroud Application.In:Proceedings of ASME Turbo EXPO,Munich,Germany,2000
    [35]Shi J.Design,Analysis,Fabrication and Testing of a CMC Combustor Can.In:Proceedings of ASME Turbo EXPO,Munich,Germany,2000
    [36]Bouillon E.P.,Spriet P.C.,Habarou G.et al.Engine test experience and characterization of self sealing ceramic matrix composites for nozzle application in gas turbine engines.In:Proceedings of ASME Turbo EXPO,Atlanta,Georgia(USA),2002
    [37]Bouillon E.P.,Ojard G.C.,Habarou G.et al.Characterization and Nozzle Test Experience of a Self Sealing Ceramic Matrix Composite for Gas Turbine Applications.In:Proceedings of ASME Turbo EXPO,Amsterdam,Netherlands,2002
    [38]Bansal N.P.Handbook of ceramic composites.Boston:Kluwer Academic Publication,2005
    [39]张玉娣.C/SiC复合材料反射镜坯体及过渡层的研究.长沙:国防科技大学.博士学位论文,2005
    [40]Fischedick J.S.,Zern A.,Mayer J.et al.The morphology of silicon carbide in C/C-SiC composites.Materials Science and Engineering A,2002,332:146-152
    [41]Krenkel W.,Heidenreich H.,Renz R.C/C-SiC composites for advanced friction system.Advanced Engineering Materials,2002,7:427-436
    [42]Ziegler G.,Richter I.,Suttor D.Fiber-reinforced composites with polymer-derived matrix:processing,matrix formation and properties.Composites Part A,1999,30:411-417
    [43]Tanaka T.,Tamari N.,Kondoh I.et al.Fabrication of three-dimensional Tyranno fiber reinforced SiC composite by the polymer precursor method.Ceramics International,1998,24:365-370
    [44]W.J.Herwood,C.K.Whitmarsh,J.M.Jacobs et al.Low cost,near-net shape ceramic composites using resin transfer molding and pyrolysis(RTMP).Ceramic Engineering and Science Proceedings,1996,17:174-183
    [45]马江,张长瑞,周新贵等.先驱体转化法制备陶瓷基复合材料异型构件研究.In:湖南省宇航学会年会,长沙,1998
    [46]王建方.碳纤维在PIP工艺制备陶瓷基复合材料过程中的损伤机理研究.长沙:国防科技大学.博士学位论文,2003
    [47]李顺林主编.复合材料进展.北京:航空工业出版社,1994
    [48]Naslain R.CVI composites.In:Warren Red.Ceramic Matrix Composites,London,1992
    [49]Naslain R.R.,Pailler R.,Bourrat X.et al.Synthesis of highly tailored ceramic matrix composites by pressure-pulsed CVI.Solid State Ionics,2001,141-142:541-548
    [50]Chung G.Y.,McCoy B.J.,Smith J.M.Chemical vapor infiltration:Modelling solid matrix deposition for ceramic composites reinforced with layered woven fabrics.Chemical Engineering and Science,1992,47:311-323
    [51]Stinton D.P.,Caputo A.J.,Richard A.L.Synthesis of fiber-reinforced SiC composites by chemical vapor infiltration.American Ceramics Society Bullitin,1986,65:347-350
    [52]Noda T.,Araki H.,Abe F.et al.Preparation of carbon fiber/SiC composite by chemical vapor infiltration.ISIJ International,1992,32:926-931
    [53]Tai N.H.,Chen C.F.Nanofiber formation in the fabrication of carbon/silicon carbide ceramic matrix nanocomposites by slurry impregnation and pulse chemical vapor infiltration.Journal of Amercian Ceramic Society,2001,84:1683-1688
    [54]Chang H.C.,Morse T.F.,Sheldon B.W.Minimizing infiltration times during isothermal chemical vapor infiltration with methyltrichlorosilane.Journal of Amercian Ceramic Society,1997,80:1805-1811
    [55]Yin X.W.,Cheng L.F.,Zhang L.T.et al.Thermal shock behavior of 3-dimensional C/SiC composite.Carbon,2002,40:905-910
    [56]Robert P.C.Overlap model for chemical vapor infiltration of fibrous yarns.Journal of Amercian Ceramic Society,1990,73:2274-2280
    [57]D.Grupta,J.W.Evans.A mathematical model for chemical vapor infiltration with microwave heating and external cooling.Journal of Material Research,1991,6:810-818
    [58]Sheldon B.W.,Besmann T.M.Reaction and diffusion kinetics during the initial stages of isothermal chemical vapor infiltration.Journal of Amercian Ceramic Society,1991,74:3046-3053
    [59]Bertrand S.,Lavaud J.F.,Hadi R.E.et al.The thermal gradient-pulse flow CVI process:a new chemical vapor infiltraiton technique for the densification of fiber preforms.Journal of European Ceramic Society,1998,18:857-870
    [60]Harnisch B.,Kunkel B.,Papenburg U.Ultralight weight C/SiC mirrors and structures.ESA Bulletin,1998,95:148-152
    [61]Zbigniew S.,Rak A.A process for C/SiC composites using liquid polymer infiltration.Journal of Amercian Ceramic Society,2001,84:2235-2239
    [62]A.M(u|¨)hlratzer.Production,properties and applications of ceramic matrix composites,cfi/Ber.DKG,1999,74:30-35
    [63]S.Simmer,B.Derby.The processing of novel reaction bonded SiC ceramics using alloyed silicon infiltrates.Fourth Euro-Ceramics(Ed:A.Bellosi),1995,4:393-400
    [64]徐永东.三维碳/碳化硅复合材料的制备与性能.西安:西北工业大学.博士学位论文,1996
    [65]曹英斌,张长瑞,陈朝辉等.C_f/SiC陶瓷基复合材料发展状况.宇航材料工艺,1999.5:10-14
    [66]Berbon M.Z.,Dietrich D.R.,Marshall D.B.et al.Transverse thermal conductivity of thin C/SiC composites fabricated by slurry infiltrated and pyrolysis.Journal of Amercian Ceramic Society,2001,84:2229-2234
    [67]Klosterman D.,Chartoff R.,Osborne N.et al.Laminated object manufacturing,a new process for the direct manufacture of monolithic ceramics and continuous fiber CMCs.Ceramic Engineering and Science Proceedings,1997,18n4B:113-121
    [68]Appiah K.A.,Wang Z.L.,Lackey W.J.Effects of deposition temperature on microstructure of laminated(SiC-C) matrix composites.Journal of Material Science and Technology,2001,35:1979-1984
    [69]Zheng G.B.,Sano H.,Uchiyama Y.et al.Preparation and fracture behavior of carbon fiber/SiC composites by multiple impregnation and pyrolysis of polycarbosilane J.Ceram.Soc.Jap.,1998,106:1155-1161
    [70]Fischedick J.S.,Zern A.,Mayer J.et al.The morphology of silicon carbide in C/C-SiC composites.Journal of material science and Engineering Part A,2002,332:146-152
    [71]Vogli E.,Mukerji J.,Hoffman C.et al.Conversion of oak to cellular carbide ceramic by gas-phase reaction with silicon monoxide.Journal of Amercian Ceramic Society,2001,84:1236-1240
    [72]Tani E.,Shobu K.,Kishi K.et al.Two-dimensional-woven-carbon-fiber- reinforced silicon carbide/ carbon matrix composites produced by reaction bonding.Journal of Amercian Ceramic Society,1999,82:1355-1357
    [73]Scholl R.,Brhm A.,Kieback B.Fabrication of silicide materials and their composites by reaction sintering.Materials Science and Engineering A,1999,261:204-221
    [74]Deng J.Y.,Wei Y.L.,Liu W.C.Carbon-fiber-reinforced composites with graded carbon-silicon carbide matrix composition.Journal of Amercian Ceramic Society,1999,82:1629-1632
    [75]Greil P,Lifka T.,Kaindl A.Biomorphic Cellular silicon carbide ceramics from wood:Ⅱ.Mechanical Properties.Journal of European Ceramic Society,1998,18:1975-1983
    [76]何新波等.先驱体转化—热压烧结碳纤维增强碳化硅复合材料的显微结构.航空材料学报,1999,19:43-50
    [77]王建方等.热压工艺在Cf/SiC复合材料制备中的应用.航空材料学报,2002,3:1-4
    [78]罗瑞盈,李贺军,杨诤等.一种快速制备高性能C/C复合材料的新技术.西北工业大学学报,1995,13:1
    [79]简科,陈朝辉,马青松等.浸渍工艺对先驱体转化制备C_f/SiC复合材料结构与性能的影响.航空材料学报,2005,25:38-41
    [80]马江.先驱体液相浸渍工艺制备纤维增强碳化硅复合材料.长沙:国防科技大学.硕士学位论文,2000
    [81]G.B.ZHENG et al.The properties of carbon fibre/SiC composites fabricated through impregnation and pyrolysis of polycarbosilane.Journal of Material Science,1999,34:827-834
    [82]邹武,陈长乐,肖志超等.聚碳硅烷浸渍裂解法制备的C/SiC材料研究.炭素,1997.2:19-23
    [83]Yoshida Hideti.J.ceram.Soc.Jpn.,1994,102:1016-1021
    [84]何新波,张长瑞,周新贵等.先驱体转化-热压烧结碳纤维增韧碳化硅复合材料的显微结构.航空材料学保,2000,19:43-50
    [85]王林山,熊翔,肖鹏等.反应熔渗法制备C/C-SiC复合材料及其影响因素的研究进展.粉末冶金技术,2003,21:37-41
    [86]张立同,成来飞,徐永东.新型碳化硅陶瓷基复合材料的研究进展.航空制造技术,2003,1:24-32
    [87]Michaud V.,Mortensen A.Infiltration processing of fibre reinforced composite:governing phenomena.Composites:Part A,2001,32:981-996
    [88]Hue Q.L.,R.Taylor,J.Day.Conversion of polycarbosilane(PCS) to SiC-based ceramic part Ⅱ pyrolysis and characterization.Journal of Materials Science,2001,36:4045-4057
    [89]周瑞发,韩雅芳,李树索编著.高温结构材料.北京:国防工业出版社,2006
    [90]王松.PIP工艺中碳纤维损伤控制及C/SiC复合材料推力室制备技术研究.长沙:国防科技大学.博士学位论文,2005
    [91]邹武.三维编织C/SiC复合材料的制备及其性能研究.西安:西北工业大学.博士学位论文,2001
    [92]邹世钦.C/SiC复合材料及其矢量喷管调节密封片制备与性能研究.长沙:国防科技大学.博士学位论文,2005
    [93]魏玺.3D C/SiC复合材料氧化机理分析及氧化动力学模型.西安:西北工业大学.硕士学位论文,2004
    [94]D.P.H.Hasselman.Effects of cracks on thermal conductivity.Journal of Composite Materials,1978,12:403-407
    [95]Min Z.Berbon,Donald R.Dietrich,David B.Marshall,et al.Transverse Thermal Conductivity of Thin C/SiC Composites Fabricated by Slurry Infiltration and Pyrolysis.Journal of American Ceramic Society,2001,84:2229-2234
    [96]Kamran Daryabeigi.Heat Transfer in High-Temperature Fibrous Insulation.In:8th AIAA/ASME Joint Thermophysics and Heat Transfer Conference,St.Louis,Missouri(US),2002
    [97]Y.Hirohata,T.Jinushi,Y.Yamauchi,et al.Gas permeability of SiC/SiC composites as fusion reactor material.Fusion Engineering and Design,2002,61-62:699-704
    [98]Suyama Shoko,Itoh Yoshiyasu.Evaluation of microstructure for SiC/SiC composites using mercury intrusion method.In:Proceedings of the 1999 23rd Annual Conference on Composites,Advanced Ceramics,Materials,and Structures,Cocoa Beach,FL,USA,1999
    [99]Suyama Shoko,Kamada Tsuneji,Itoh Yoshiyasu.Evaluation of microstructure for SiC/SiC composites using mercury intrusion method.Journal of the Ceramic Society of Japan,2000,108:854-860
    [100]R.W.Rice.Effects of amount,location,and character of porosity on stiffness and strength of ceramic fiber composites via different processing.Journal of Materials Science,1999,34:2769-2772
    [101]马青松.聚硅氧烷先驱体转化制备陶瓷基复合材料.长沙:国防科学技术大 学.博士学位论文,2003
    [102]J.Schulte-Fischedic,A.Zero,J.Mayer,et al.The morphology of silicon carbide in C/C-SiC composites.Materials Science and Engineering A,2002,332:146-152
    [103]Krenkel Walter.Designing with C/C-SiC composites.In:Advances in Ceramic Matrix Composites Ⅸ,Proceedings,Nashville TN,USA,2004
    [104]Junqiang Ma,Yongdong Xu,Litong Zhang.Micorstructure characterization and tensile behavior of 2.5D C/SiC composites fabricated by chemical vapor infiltration.Scirpta Materialia,2006,54:1967-1971
    [105]Stantschev G.,Friess M.,Kochiendorfer R.Long fibre reinforced ceramics with active fillers and a modified intra-matrix bond on the LPI process.Journal of the European Ceramics Society,2005,25:205-209
    [106]Xiaowei Yin,Laifei Cheng,Litong Zhang,et al.Microstructure and Oxidation Resistance of Carbon/Silicon Carbide Composites Infiltrated with Chromium Silicide.Materials Science and Engineering A,2000,290:89-94
    [107]张玉娣,张长瑞.CVI-PIP工艺制备C/SiC复合材料及其显微结构研究.材料科学与工程学报,2004,22:657-659
    [108]郑文伟,陈朝辉,姚俊涛.炭纤维编织物中引入SiC微粉的超声工艺研究.材料工程,2004,31-34
    [109]索相波,陈朝辉,王松.聚硅氧烷封孔处理对C_f/SiC复合材料抗氧化性能的影响.航空材料学报,2004,24:34-37
    [110]Shin D.W.,Tanaka H.Journal of American Ceramic Society,1994,77:97
    [111]所俊,郑文伟,肖加余等.C_f/SiC复合材料先驱体转化法浸渍工艺条件优化.宇航材料工艺,2000,30:29
    [112]K.Nakano,A.Kamiya,Y.Nishino et al.Fabrication and characterization of three-dimensional carbon fiber reinforced silicon carbide and silicon nitride composites.Journal of Amercian Ceramic Society,1995,78:2811-2814
    [113]所俊.先驱体PCS、PSZ制备碳纤维增强陶瓷基复合材料的工艺及性能研究.长沙:国防科技大学.硕士学位论文,2001
    [114]D.Greuel,A.Herbertz,O.J.Haidn et al.Transpiration Cooling Applied to C/C Liners of Cryogenic Liquid Rocket Engines.AIAA2004-3682.2004
    [115]J.A.Landis,W.J.Bowman.Numerical Study of a Transpiration Cooled Rocket Nozzle.AIAA96-2580.1996
    [116]张纯良,张振鹏,袁军娅等.发汗冷却喷管在火箭发动机上的应用.上海航天,2002,2:8-12
    [117]E.Serbest,O.Haidn.Effusion Cooling in Rocket Combustors Applying Fiber Reinforced Ceramics.In:35th Joint Propulsion Conference,Los Angeles,CA,USA,1999
    [118]E.Serbert,O.J.Haidn,D.Greuel.Throat Region in Rocket Engines Applying Fibre Reinforced Ceramics.In:37th Joint Propulsion Conference,Salt Lake City,UT,USA,2001
    [119]M.Lezuo,O.J.Haidn.Transpiration Cooling in H_2/O_2-Combustion Device.In:32nd Joint Propulsion Conference,Lake Buena Vista,FL,USA,1996
    [120]ALCAN Can-Do.http://bnn.ids.web.boeing.com/030424engine.html
    [121]M.Bouchez,G.Cahuzac,S.Beyer.PTAH-SOCAR Fuel-cooled Composite Materials Structure in 2003.In:12th International Space Planes and Hypersonic Systems and Technologies,Norfolk,VA,USA,2003
    [122]Clement Bouquet,Roger Fischer,Jacques Thebault,et al.Composite technologies developement status for scramjet.In:AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technology,2005
    [123]吉洪亮.C/SiC发汗冷却复合材料的孔隙结构设计、制备及其性能研究.长沙:国防科技大学.博士学位论文,2007
    [124]Sean P.Rigby,David Barwick,Robin S.Fletcher,et al.Interpreting mercury porosimetry data for catalyst supports using semi-empirical alternatives to the Washburn equation.Appl.Catal.A,2003,238:303-318
    [125]Sean P.Rigby,Robins S.Fletcher,Sandra N.Riley.Determination of the cause of mercury entrapment during porosimetry experiments on sol-gel silica catalyst supports.Appl.Catal.A,2003,247:27-39
    [126]F.Porcheron,P.A.Monson.Molecular Modeling of Mercury Porosimetry.Adsorption,2005,11:325-329
    [127]刘培生,马晓明编著.多孔材料检测方法.材料检测技术丛书.北京:冶金工业出版社,2006
    [128]宝鸡有色金属研究所编著.粉木冶金多孔材料 下册.北京:冶金工业出版社.1979
    [129]近藤精一,石川达雄,安部郁夫著.李国希译.吸附科学.第二版.北京:化学工业出版社,2006
    [130]F.A.L.Dullien.多孔介质—流体渗流与孔隙结构.北京:石油工业出版社,1990
    [131]刘代俊.分形理论在化学工程中的应用.北京:化学工业出版社,2006
    [132]Peter Klobes,Klaus Meyer,Ronald G.Munro.Porosity and Specific Surface Area Measurements for Solid Materials.special publication 960-17.2006,NIST(US)
    [133]C.Francisco,Lorenzano Porras,Michale J.Annen,et al.Pore Structure and Diffusion Tortuosity of Porous ZrO_2 Sythesized by Two Different Colloid-Aggregation Processes.Journal of Colloid and Interface Science,1995,170:299-307
    [134]A.L.Mccutcheon,G.S.Kamali Kannangara,M.A.Wilson.Preliminary Analysis of Pore Distributions Using NMR in Natural Coral and Hydrothermally Prepared Hydroxyapatite.Journal of Materials Science,2004,39:5711-5717
    [135]郁伯铭.多孔介质输运性质的分形分析研究进展.力学进展,2003,33: 333-346
    [136]P Pfeifer,D Avnir.Chemistry in noninteger dimension between two and three Ⅰ.fractal theory of heterogeneous surfaces.J.Chem.Phys.,1983,79:3558-3566
    [137]徐龙军,顾乐观,鲜学福.分形吸附模型.煤炭转化,2000,23:91-93
    [138]刘龙波,王旭辉.由吸附等温线分析膨润土的分形孔隙.高校化学工程学报,2003.17:591-595
    [139]朱文魁,张双全,唐志红,et al.气体吸附法研究活性炭表面分形维数.碳素,2004.118:12-15
    [140]胡松,孙学信,向军等.淮南煤焦颗粒内部孔隙结构在燃烧过程中的变化.化工学报,2003,54:107-111
    [141]X Ji,S.Y.N.Chan,N.Feng.Fractal Model for Simulating the Space-Filling Progress of Cement Hydrates and Fractal Dimensions of Pore Structure of Cement-Based Materials.Cem.Concr.Res.,1997,27:1691-1699
    [142]Qing Wang,Guo Qiang Jin,Dong Hua Wang,et al.Biomorphic porous silicon carbide prepared from carbonized millet.Materials Science and Engineering,2007,459:1-6
    [143]李永鑫,陈益民,贺行洋.粉煤灰—水泥浆体的孔体积分形维数及其与孔结构和强度的关系.硅酸盐学报,2003,31:774-779
    [144]王桂荣,王富民,辛峰等.利用分形几何确定多孔介质的孔尺寸分布.石油学报,2002,18:86-91
    [145]傅雪海,秦勇,薛秀谦等.煤储层孔、裂隙系统分形研究.中国矿业大学学报(自然科学版),2001,30:225-228
    [146]李中锋,何顺利,杨文新.砂岩储层孔隙结构分形特征描述.成都理工大学学报(自然科学版),2006,33:203-208
    [147]唐明,王甲春,李连君.压汞测孔评价混凝土材料孔隙分形特征的研究.沈阳建筑工程学院学报(自然科学版),2001,17:272-275
    [148]Bao Quan Zhang,Wei Liu,Xiu Feng Liu.Scale-dependent nature of the surface fractal dimension for bi-and multi-disperse porous solids by mercury porosimetry.Applied Surface Science,2006,253:1349-1355
    [149]Neimark,V.A.Calculating Surface Fractal Dimensions of Adsorbents.Adsorption Science and Technology,1990,7:210-219
    [150]Bao Qiang Zhang,S.F.Li.Determination of the Surface Fractal Dimension for Porous Media by Mercury Porosimetry.Industrial Engineering & Chemistry Research,1995,34:1383-1386
    [151]韦江雄,余其俊,曾小星等.混凝土中孔结构的分形维数研究.华南理工大学学报(自然科学版),2007,35:121-124
    [152]鲁洪江,邢正岩,王永诗.压汞和退汞资料在储层评价中的综合应用探讨.油气采收率技术,1997,4:48-53
    [153]彭彩珍,郭平,李莉等.流纹岩类储层压汞毛管压力曲线测定和应用.钻采工艺,2005,28:51-54
    [154]Shoko Suyama,Yoshiyasu Itoh.Evaluation of microstructure for SiC/SiC composites using mercury intrusion method.Ceram.Eng.& Sci.Proc.,1999,20:181-189
    [155]F.Moro,H.B6hni.Ink-Bottle Effect in Mercury Intrusion Porosimetry of Cement-Based Materials.J.Colloid Interface Sci,2002,246:135-149
    [156]Sean P.Rigby,Robin S.Fletcher,Sandra N.Riley.Characterisation of porous solids using integrated nitrogen sorption and mercury porosimetry.Chem.Eng.Sci.,2004,59:41-51
    [157]王桂荣.扩散/反应条件下多孔介质孔结构研究.天津:天津大学.博士学位论文,2000
    [158]Constantinos Salmas,George Androutsopoulos.Mercury Porosimetry:Contact Angle Hysteresis of Materials with Controlled Pore Structure.J.Colloid Interface Sci,2001,239:178-189
    [159]G.P.Matthews,Cathy J.Ridgway,Michael C.Spearing.Void space modeling of mercury intrusion hysteresis in sandstone,paper coating and other porous media.J.Colloid Interface Sci,1995,171:8-27
    [160]孙黎娟.砂岩孔隙空间结构特征研究的新方法.大庆石油地质与开发,2002,21:29-31
    [161]Zheng Liu,Douglas Winslow.Sub-distributions of Pore Size:A New Approach to Correlate Pore Structure with Permeability.Cement and Concrete Research,1995,25:769-778
    [162]Zheng Liu,Douglas Winslow.Sub-Distribution of Pore Size:A New Approach to Correlate Pore Structure With Permeability.Cem.Concr.Res.,1995,25:769-778
    [163]严继民,张启元,高敬琮.吸附与凝聚-固体的表面与孔.第二版.北京:科学出版社,1986
    [164]Ryuta Kamiya,Bryan A.Cheeseman,Peter Popper,et al.Some recent advances in the fabrication and design of three-dimensional textile preforms:a review.Composites Science and Technology,2000,60:33-47
    [165]董纪伟,孙良新,洪平.三维编织复合材料宏细观结构的计算机图形模拟.宇航材料工艺,2004,21-24
    [166]赵立新,郑立允,韩彦华等.复合材料中三维编织碳纤维增强体的性能特点.河北建筑科技学院学报,2004,21:77-80
    [167]邹武.三维编织C-SiC复合材料的制备及其性能研究.西安:西北工业大学.博士学位论文.2001
    [168]张钧.三维碳—碳化硅复合材料基体裂纹演化规律.西安:西北工业大学.硕士学位论文,2003
    [169]道德锟,无以心,李兴国.立体织物与复合材料.上海:中国纺织大学出版社,1998
    [170]简科.先驱体浸渍裂解工艺制备2D Cf/SiC复合材料及构件的研究.长沙:国防科学技术大学.2006
    [171]张美忠,李贺军,李克智.三维编织碳/碳复合材料预制体结构模拟.材料科学与工程学报,2004,22:634-636
    [172]杨柳.三维编织复合材料结构性能分析.上海纺织科技,2004,32:46-48
    [173]陈作荣,诸德超,陆萌.三维四步编织复合材料单元胞体几何模型.北京航空航天大学学报,2000,26:539-542
    [174]修英珠,陈利,李嘉禄.三维编织复合材料制件的细观单胞元分析.复合材料学报,2003,20:63-66
    [175]Junqiang Ma,Yongdong Xu,Litong Zhang,et al.Microstructure characterization and tensile behavior of 2.5D C/SiC composites fabricated by chemical vapor infiltration.Scripta Materialia,2006,54:1967-1971
    [176]肖鹏,徐永东,张立同等.连续同步复合法快速制备C/SiC复合材料.航空学报,2001,22:125-129
    [177]辛峰.用渗流网络模型研究多孔介质中的孔结构和气体扩散.天津大学.博士论文,1996
    [178]N.A.Seaton.Determination of the Connectivity of Porous Solids from Nitrogen Sorption Measurements.Chemical Engineering Science,1991,46:1895-1909
    [179]Mortensen A.,Jin I.Solidification processing of metal matrix composites.Int.Mater Rev,1992,37:101-128
    [180]Mortensen A.,Michaud V.J.Pressure infiltration processing of reinforced aluminum.J.Metals,1993,45:36-43
    [181]Cornie J.A.et al.Processing of metal and ceramic matrix composites.Bull.Amer.Ceram.Soc.,1986,65:293-304
    [182]Fitzer E.,Gadow R.Fiber reinforced silicon carbide.Bull.Amer.Ceram.Soc.,1986,65:326-335
    [183]Gutowski T.G.Advanced composite manufacturing.New York:Wiley,1997
    [184]Yang H,Lee L.J.Mold filling and curing analysis in scrimp.In:ANTEC 2000,2000
    [185]Chawla K.K.Ceramic matrix composites.London,UK:Chapman&Hall,1993
    [186]Lim S.T.Analysis of three-dimensional resin transfer mold filling process.In:Proceedings of the Fifth International Conference on Flow Processes in Composite Materials,Plymouth,UK,1999
    [187]Advani SG.Flow and rheology in polymer composite manufacturing.Composite Materials Series.Delaware:Elsevier,1994
    [188]Hillig W.B.Melt infiltration approach to ceramic matrix composites.J.Amer Ceram.Soc.,1988,71:96-99
    [189]M.Klucakova.Rheological properties of phenolic resin as a liquid matrix precursor for impregnation of carbon -carbon composites with respect to conditions of the densification process.Composites Science and Technology,2004,64:1041-1047
    [190]M.Klucakova.Analysis of relationship between properties and behaviour of materials used and impregnation conditions of carbon-carbon composites.Acta Materialia,2005,53:3841-3848
    [191]林瑞泰.多孔介质传热传质引论.北京:科学出版社,1995
    [192]孔祥言.高等渗流力学.合肥:中国科学技术大学出版社,1999
    [193]A.E.薛定谔.多孔介质中的渗流物理.北京:石油工业出版社,1982
    [194]刘培生,马晓明.多孔材料检测方法.材料检测技术丛书.北京:冶金工业出版社,2006
    [195]李亨,张锡文,何枫.考虑气体压缩性的多孔材料渗透率和惯性系数的测定.应用力学学报,2002,17:326-332
    [196]F.A.L.Dullien,范玉平,陈东伟等译.现代渗流物理学.北京:石油工业出版社,2001
    [197]王克文,关继腾,范业活等.孔隙网络模型在渗流力学研究中的应用.力学进展,2005,35:353-360
    [198]辛峰.用渗流网络模型研究多孔介质中的孔结构和气体扩散.天津:天津大学.博士学位论文,1996
    [199]J.J.Meyers,A.I.Liapis.Network modeling of the convective flow and diffusion of molecules adsorbing in monoliths and in porous particles packes in a chromatographic column.Journal of Chromatography A,1999,852:3-23
    [200]Gerasimos S.Armatas.Determination of the effects of the pore size distribution and pore connectivity distribution on the pore tortuosity and diffusive transport in model porous networks.Chemical Engineering Science,2006,61:4662-4675
    [201]L.Mattias Bryntesson.Pore network modelling of the behaviour of a solute in chromatography media:transient and steady-state diffusion properties.Journal of Chromatography A,2002,945:103-115
    [202]Boming Yu,Ping Cheng.A fractal permeability model for bi-dispersed porous media.International Journal of Heat and Mass Transfer,2002,45:2983
    [203]Boming Yu,L.James Lee.A fractal in-plane permeability model for fabrics.Polymer Composites,2002,23:201-221
    [204]Peng Xu,Boming Yu.Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry.Advances in Water Resources,2007,doi:10.1016/j.advwatres.2007.06.003:
    [205]Boming Yu,Mingqing Zou,Yongjin Feng.Permeability fo fractal porous media by Monte Carlo simulations.International Journal of Heat and Mass Transfer,2005,48:2787-2794
    [206]刘俊亮,田长安,曾燕伟等.分形多孔介质孔隙微结构参数于渗透率的分维关系.水科学进展,2006,17:812-817
    [207]何更生.油层物理.第一版.北京:石油工业出版社,1994
    [208]杨满平,李治平,李允等.油气储层多孔介质的变形理论及试验研究.天然气工业,2003,23:110-113
    [209]庞宏伟,岳湘安,李丰辉等.有效压力对低渗透变形介质油藏物性的影响.大庆石油地质与开发,2007,26:50-53
    [210]高树生,熊伟.有效应力对低渗低孔介质孔渗参数的影响.辽宁工程技术大学学报,2001,20:538-540
    [211]郝春山,李治平,杨满平等.变形介质的变形机理及物性特征研究.西南石油学院学报,2003,25:19-22
    [212]吕兆华.泡沫型多孔介质等效导热系数的计算.南京理工大学学报,2001,25:257-261
    [213]凤仪,朱震刚,陶宁等.闭孔泡沫铝的导热性能.金属学报,2003,39:817-820
    [214]童文辉,沈峰满,柴田浩幸等.高炉常用耐火材料导热系数的测定.金属学报,2002,38:983-988
    [215]闵凯,刘斌,温广.导热系数测量方法与应用分析.保鲜与加工,2005,31:35-38
    [216]G.E.Yongblood,D.J.Sensor,R.H.Jones.Optimizing the transverse thermal conductivity of 2D-SiCf/SiC composites.Ⅰ.Modeling.Journal of Nuclear Materials,2002,307-311:1112-1119
    [217]陈奎,于帆,张欣欣等.基于空心球聚合体的多孔介质有效导热系数的两种模型.北京科技大学学报,2004,26:650-654
    [218]魏高升,张欣欣,于帆.超级绝热材料气凝胶的纳米孔结构与有效导热系数.热科学与技术,2005,4:107-111
    [219]S.R.Mirmira,M.C.Jackson,L.S.Fletcher.Thermal Conductivity and Contact Conductance of Graphite Fiber Composites.In:1998
    [220]Kamran D.Analysis and Testing of High Temperature Fibrous Insulation for Reusable Launch Vehicles.In:37th AIAA Aerospace Sciences Meeting and Exhibit,Reno,NV(US),1999
    [221]Alan D.Sullins,Kamran Daryabeigi.Effective Thermal Conductivity of High Porosity Open Cell Nickel Foam.In:35th AIAA Thermophysics Conference,Anaheim,CA(US),2001
    [222]J.Marschall,J.Maddren,J.Parks.Internal Radiation Transport and Effective Thermal Conductivity of Fibrous Ceramic Insulation.In:35th AIAA Thermophysics Conference,Anaheim,CA(US),2001
    [223]施明恒,樊荟.多孔介质导热的分形模型.热科学与技术,2002,1:28-31
    [224]李小川,施明恒,张东辉.非均匀多孔介质中导热过程.东南大学学报(自然科学版),2005,35:761-765
    [225]张东辉.多孔介质扩散、导热、渗流分形模型的研究.南京:东南大学.博士学位论文,2003
    [226]Ruiying Luo,Tao Liu,Jinsong Li,et al.Thermalphysical propeties fo carbon/carbon composites and physical mechanism of thermal expansion and thermal conductivity.Carbon,2004,42:2887-2895
    [227]罗瑞盈,程永宏.预制体织构合热解碳组织对二维碳/碳复合材料热物理性能影响.中国航空学报(英文版),2004,17:1112-118
    [228]Laifei Cheng,Yongdong Xu,Qing Zhang,et al.Thermal diffusivity of 3D C/SiC composites from room temperature to 1400℃.Carbon,2003,41:707-711
    [229]Kiyoshi Itatani,Tsuyoshi Tanaka,Ian J.Davies.Thermal Properties of Silicon Carbide Composites Fabricated with Chopped Tyranno~(?)Si-Al-C Fibers.Journal of the European Ceramic Society,2006,26:703-710
    [230]R.Yamada,N.Igawa,T.Taguchi.Thermal Diffusivity/Conductivity of Tyranno SA Fiber-and Hi-Nicalon Type S Fiber-reinforced 3-D SiC/SiC Composites.Journal of Nuclear Materials,2004,329-333:497-501
    [231]奚同庚.无机材料热物性学.上海:上海科学技术出版社,1981
    [232]赵建国,李克智,李贺军等.碳/碳复合材料导热性能的研究.航空学报,2005.26:501-504
    [233]蔡岸,谢华清,奚同庚.航天器用十一种热控材料热物理性质及其与显微组织和工艺因素关系的研究.无机材料学报,2006,21:1173-1178
    [234]武文明.C/SiC复合材料热辐射性能研究.西安:西北工业大学.硕士学位论文,2005
    [235]G.Neuer,G.Jaroma-Weiland.Spectral and Total Emissivity of High-Temperature Materials.International Journal of Thermophyiscs,1998,19:917-929
    [236]G.Neuer.Spectral and Total Emissivity Measurements of Highly Emitting Materials.International Journal of Thermophyiscs,1995,16:257-265
    [237]杨世铭,陶文铨.传热学.第三版.北京:高等教育出版社,2000
    [238]M.Frieβ,W.Frenkel,R.Brandt,et al.Influence of Process Parameters on the Thermophysical Properties of C/C-SiC.
    [239]Katsumi Yoshida,Masamitsu Imai,Toyohiko Yano.Mechanical and Thermal Properties of Hot-Pressed SiC/SiC composite Using SiC Matrix Containing SiC grains.
    [240]Hemanshu Bhatt,Kimberly Y.Donaldson,D.P.H.Hasselman.Role of Interfacial Carbon Layer in the Thermal Diffusivity/Conductivity of Silicon Carbide Fiber-Reinforced Reaction-Bonded Silicon Nitride Matrix Composites.Journal of American Ceramic Society 1992,75:334-340
    [241]R.Yamada,N.Igawa,T.Taguchi,et al.Highly thermal conductive,sintered SiC fiber-reinforced 3D-SiC/SiC composites:experiments and finite-element analysis of the thermal diffusivity/conductivity.Journal of Nuclear Materials,2002,307-311:1215-1220
    [242]G.E.Youngblood,David J.Senor,R.H.Jones,et al.The Transverse Thermal Conductivity of 2D-SiCf/SiC composites.Composites Science and Technology,2002,62:1127-1139
    [243]G.E.Youngblood,D.J.Sensor,R.H.Jones,et al.Optimizing the transverse thermal conductivity of 2D-SiCf/SiC composites,Ⅱ.Experimental.Journal of Nuclear Materials,2002,307-311:1120-1125
    [244]张玉龙,马建平主编.实用陶瓷材料手册.北京:化学工业出版社,2006
    [245]Toray Carbon Fibers America Inc.www.torayusa.com/cfa/pdfs
    [246]张天孙,卢改林.传热学.第二版.北京:中国电力出版社,2006
    [247]D.P.H.Hasselman,Lloyd F.Johnson.Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistance.Journal of Composite Materials,1987,21:508-515
    [248]于翘.材料工艺.导弹与航天丛书.北京:国防工业出版社,1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700