用户名: 密码: 验证码:
大中型非球面计算机控制研抛工艺方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非球面光学零件具有校正像差、改善像质、扩大视场和增大作用距离的优点,同时还能够减轻系统重量、减小占用空间,因此在现代光学系统中具有广泛的应用。随着光学系统性能要求的不断增长,对非球面光学零件口径、相对口径、加工精度、轻量化程度、加工效率和生产成本等方面都提出了更高的要求。计算机控制光学表面成形(CCOS)技术具有加工精度高、工艺实现简单、投资低的显著特点,因此广泛应用于大中型非球面光学零件的加工过程中。目前,CCOS技术仍有一些问题需要解决,例如加工收敛效率较低、小尺度制造误差较大、存在边缘效应等。这些问题的存在严重影响了目前光学零件的加工精度和效率。本论文研究工作的主要任务就是要有效解决CCOS技术目前存在的关键问题,使CCOS技术得以完善,提高我国大中型非球面光学零件的加工能力。论文的研究工作包括以下几个部分:
     1.介绍了根据非球面加工需要研制的加工设备——AOCMT光学加工机床,该机床集铣磨成型、研磨抛光、接触式检测于一体;设计了一种基于同步带传动的双旋转研磨抛光工具,通过调节自转与公转的转速、自转中心和公转中心的偏距、气缸工作压力等参数,能够得到需要的去除函数。
     2.建立了双旋转研抛工具的去除函数模型,在此基础上对研磨抛光工艺参数进行了系统的实验研究,得出了其对材料去除效率、表面粗糙度和亚表面损伤深度等的影响规律,提出了各加工阶段工艺参数的选择方法。通过实验的方法确定了研磨阶段亚表面损伤深度的量值,对选择后续加工材料去除量提供了依据。利用优化的工艺参数将K9光学玻璃材料研磨阶段的亚表面损伤深度控制在2.2微米左右,大大缩短了后续抛光加工时间,提高了整体加工效率。
     3.分析了双旋转研抛工具去除函数的修形能力,给出了偏心率(自转中心到公转中心的距离与研抛盘半径的比值)和转速比(自转速度与公转速度的比值)的优化结果(偏心率0.8、转速比-3);建立了去除函数尺寸、空间误差波长、额外去除量与误差收敛比的传递关系;基于CCOS卷积模型,对由卷积效应引起的残留误差随各参数的产生规律进行了仿真研究,在此基础上提出了面形误差收敛过程的优化控制方法。
     4.分析了小尺度制造误差产生的四个原因;提出了以信息熵理论表述研抛效果的新方法,并提出了基于最大熵原理的研抛工艺参数优选方法;针对目前常用消除小尺度制造误差的方法——大尺寸研抛盘全口径均匀研抛修正法,给出了运动速度和研抛盘尺寸等主要工艺参数的选择依据;为了减少修正小尺度制造误差的时间,提高整体加工效率,提出了小尺度制造误差的确定区域修正法。
     5.在上述工作基础上,提出了考虑大中型非球面的全口径、全波段面形误差控制和整体加工效率的CCOS研抛加工控制策略。以此为指导,利用AOCMT光学加工机床在233小时内成功加工出φ500mm f/3抛物面反射镜,加工后的面形精度达到9.4nm rms(λ/67 rms,λ=632.8nm),其中尺度在100mm~2mm(5~250个周期)范围内的制造误差含量为3.6nm rms,表面粗糙度约为1.5nm rms,顶点曲率半径偏差控制在1.2mm(0.4%0),其结果符合预期要求。
Aspheric optics are being used more and more widely in modern optical systems, due to their ability of correcting aberrations, enhancing the image quality, enlarging the field of view and extending the range of effect, while reducing the weight and volume of the system. With the ever-increasing demands on optical system performances, requirements for aspheric optical components are more and more critical, which involve aperture, relative aperture, accuracy, lightweight extent, manufacturing efficiency and cost. Computer controlled optical surfacing (CCOS) technique is used widely in machining process of the large and medium aspheric surfaces, because of its high accuracy, simple process conditions, low cost and other merits. However, there are some problems at present in CCOS technique, such as low convergence rate, small scale manufacturing errors and edge effect. These problems have influenced machining accuracy and efficiency of optical components seriously. This thesis is dedicated to solve the key problems in CCOS technique, in order to consummate CCOS technique and improve capability for manufacturing large and medium aspheric surfaces. The major research efforts include the following points.
     1. Aspheric optical compound machining tool (AOCMT) is introduced, which has milling, grinding and polishing, and contact measuring functions. A dual rotors grinding and polishing tool is designed, based on the timing belt drive. The required material removal function can be obtained by adjusting rotational speeds of the dual rotors, eccentricity of the two rotating centers, working pressure of the cylinder and other parameters.
     2. The material removal function model of the dual rotors grinding and polishing tool is built. Systematic experiments are done to study the grinding and polishing parameters. The influences of parameters on material removal rate, surface quality and subsurface damage (SSD) depth are gained. The methods for selecting process parameters in each fabrication stage are given. The SSD depth values in grinding stage are gained experimentally, which provides basis for determining the material removal quantity in the subsequent process. With optimized parameters, the SSD depth of K9 optical glass in grinding stage is controlled within about 2.2μm. Consequently the polishing time is considerably decreased and the machining efficiency is improved.
     3. The figuring ability of the removal functions of the dual rotors grinding and polishing tool is analyzed. The optimized parameters are gained, with the eccentricity ratio being 0.8 and the rotate speed ratio -3. The transfer relation of removal function size, spatial error wavelength, and extra material removal quantity to error convergence ratio is analyzed. Based on CCOS convolution model, the generating rules of residual errors due to convolution effect are gained by computer simulations. The optimizing control method in the shape error convergence process is brought forward.
     4. Four reasons for generation of small scale manufacturing errors are recognized. Based on maximum entropy principle, a new method for expressing the polishing effect and optimizing processing parameters is presented. The typical method for controlling small scale manufacturing errors is to polish the whole surface uniformly with a large tool. Aiming at this method, the principle for selecting main processing parameters including kinematic velocity and size of polishing tool is put forward. Moreover, in order to increase working efficiency, a new method for controlling small scale manufacturing errors is brought forward, which suggests correcting errors in definite areas.
     5. Finally, a CCOS control strategy is proposed to control full aperture errors and full band of frequency errors of the large and medium aspheric surfaces and to increase working efficiency. As an application, a 500-mm diameter, f/3, parabolic mirror was successfully fabricated on AOCMT within 233 hours. The finished mirror has a shape accuracy of 9.4nm rms (λ/67 rms,λ=632.8nm), surface roughness of about 1.5nm, and curvature error of 1.2mm (0.4‰). The magnitude of the surface errors from 100mm to 2mm scale is 3.6nm rms. The results meet expected requirements.
引文
[1]郁道银,谈恒英.工程光学.北京:机械工业出版社,1999
    [2]辛企明.光学塑料非球面制造技术.北京:国防工业出版社,2005
    [3]Mills J P.Conformal Optics:Theory and Practice.Proc.SPIE,2001,4442:101-107
    [4]杨力.先进光学制造技术.北京:科学出版社,2001
    [5]陈善勇.非球面子孔径拼接干涉测量的几何方法研究:学位论文.长沙:国防科技大学,2006
    [6]Endelman L L,Enterprises E,Jose S.Hubble Space Telescope:now and then.Proc.SPIE,1997,2869:44-57
    [7]Crocker J H.Commissioning of Hubble Space Telescope:the strategy for recovery.Proc.SPIE,1993,1945:2-10
    [8]Stahl H P.Optic Needs for Future Space Telescopes.Proc.SPIE,2003,5180:1-5
    [9]Marshall Space Flight Center.SOMTC overview.Talk for NASA Technology Days 2004(http://optics.nasa.gov/tech_days/)
    [10]JWST Mirror Manufacturing Overview.Talk for NASA Technology Days 2005(http://optics.nasa.gov/tech_days/)
    [11]郝云彩.空间详查相机光学系统研究:学位论文.上海:中国科学院上海药物研究所,2000
    [12]Barakat R.The influence of random wavefront errors on the imaging characteristics of an optical system.Optica Acta,1971(18):683-694
    [13]Harvey J E and Kotha A.Scattering effects from residual optical fabrication errors.Proc.SPIE,1995,2576:155-174
    [14]Lawson J K,Auerbach J M,English R E,et al.NIF optical specifications:the importance of the RMS gradient.LLNL Report UCRL-JC-130032,1998:7-12
    [15]Tricard M and Murphy P E.Subaperture stitching for large aspheric surfaces.Talk for NASA Technology Days 2005(http://optics.nasa.gov/tech_days/)
    [16]辛企明,孙雨南,谢敬辉.近代光学制造技术.北京:国防工业出版社,1997
    [17]Preston F.The theory and design of plate glass polishing machines.J.Soc.Glass Technol,1927,9:214-256
    [18]张学军.数控非球面加工过程的优化研究:学位论文.长春:中国科学院长 春光机所,1997
    [19]郑为民.高陡度光学非球面自动成形的研究:学位论文.杭州:浙江大学,1998
    [20]王贵林.SiC光学材料超精密研抛关键技术研究:学位论文.长沙:国防科技大学,2002
    [21]程灏波,王英伟.纳米精度光学非球面研磨、抛光技术.航空精密制造技术,2004,40(1):6-9
    [22]Li Y,Wang D.X.Study on distortion control technology of the active stressed lap polishing deeper aspherical mirror.Proc.SPIE,2005,6024:60241V-1~60241V-8
    [23]Martin H M,Allen R G,Burge J H,et al.Polishing of a 6.5m f/1.25 mirror for the first Magellan telescope.Proc.SPIE,1999,3739:47-55
    [24]Kozhinova I A,Arrasmith S R,Lambropoulos J C,et al.Exploring anisotropy in removal rate for single crystal sapphire using MRF.Proc.SPIE,2001,4451:277-285
    [25]Lambropoulos J C,Arrasmith S R,Jacobs S D,et al.Manufacturing-induced residual stresses in optical glasses and crystals:Example of residual stress relief by magnetorheological finishing(MRF) in commercial silicon wafers.Proc.SPIE,2001,4451:181-190
    [26]Tricard M,Shorey A,Hallock B,et al.Cost-effective,deterministic finishing of large optics.Proceedings of the 6~(th) euspen international conference,2006:44-49
    [27]Shanbhag P M,Feiberg M R,Sandri G,et al.Ion beam machining of millimeter scale optics.Applied Optics,2000,39(4):599-611
    [28]Allen L N.Progress in ion figuring large optics.Proc.SPIE,1994,2428:237-247
    [29]Allen L N,Keim R E.An ion figuring system for large optic fabrication.Proc.SPIE,1989,1168:33-50
    [30]Bielke A,Beckstette K,K(u|¨)bler C.Fabrication of aspheric optics-process challenges arising from a wide range of customer demands and diversity of machine technologies.Proc.SPIE,2004,5252:1-12
    [31]张云庆.非球面光学加工——日益增长的需求和面临的工艺挑战.光机电信息,2005,11:14-21
    [32]Fine K R,Garbe R,Gip T,et al.Non-destructive,real time direct measurement of subsurface damage.Proc.SPIE,2005,5799:105-110
    [33]Campbell J H,Hawley-Fedder R A,Stolz C J,et al.NIF Optical Materials and Fabrication Technologies:An Overview.Proc.SPIE,2004,5341:84-101
    [34]Shen J,Liu S H,Yi K,et al.Subsurface damage in optical substrates.Optik,2005,116(6):288-294
    [35]Rupp W J.The development of optical surfaces during the grinding process.Applied Optics,1965,4(6):743-748
    [36]Zimmerman J.Continuous process improvement:manufacturing optics in the twenty-first century.Proc.SPIE,1994,1994:13-15
    [37]Aspden R,McDonough R,and Nitchie F R.Computer assisted optical surfacing.Applied Optics,1972,11(12):2739-2747
    [38]Jones R A.Optimization of computer controlled polishing.Applied Optics,1977,16(1):218-224
    [39]Jones R A.Computer controlled polisher demonstration.Applied Optics,1980,19(12):2072-2076
    [40]Jones R A.Computer controlled grinding of optical surfaces.Applied Optics,1982,21(5):1134-1138
    [41]Jones R A.Computer controlled polisher demonstration.Applied Optics,1980,19(12):2072-2076
    [42]Jones R A.Fabrication using the computer controlled polisher.Applied Optics,1978,17(12):1889-1891
    [43]Jones R A.Grinding and polishing with tools under computer control.Proc.SPIE,171:102-107
    [44]Jones R A.Segmented mirror polishing experiment.Applied Optics:1982,21(3):561-564
    [45]Jones R A.Computer controlled optical surfacing with orbital tool motion.Optical Engineering,1986,25(6):59-62
    [46]Golini D,Rupp W J,Zimmerman J.Microgrinding:new technique for rapid fabrication of large mirrors.Proc.SPIE,1989,1113:204-210
    [47]Bogdanov A P.Automation of planning of technological process for machining high-precision optical components.Sov.J.Opt.Technol.,1984,51(9):539-541
    [48]Evteev G V,Nikitin D B,Podgorbunskikh I V.Package of applied processing programs for the automated finishing of large optical components.Soy.J.Opt.Technol.,1992,59(7):421-423
    [49]Lyamin Y B,Ryabinin V A.Model AD automated lapping machines.Soy.J.Opt. Technol.,1987,54(7):423-425
    [50]Grodnikov A I,Gorshkov V A.Technological system for the automated shaping of large optical components.Sov.J.Opt.Technol.,1991,58(9):588-592
    [51]Bubis I Y,Esin D R.Technological complexes for the shaping of large high-precision aspherical surfaces.Sov.J.Opt.Technol.,1990,57(11):713-714
    [52]Semenov A P,Savel'ev A S,Abdulkadyrov M A.Calculation of material removal for automated shaping of surfaces of large optical elements using the 'ADI' program.Sov.J.Opt.Technol.,1990,57(4):249-253
    [53]Semenov A P,Savel'ev A S,Abdulkadyrov M A.Analysis of errors of automated shaping of optical surfaces on the AD series of machines using the 'ADI' program.Sov.J.Opt.Technol.,1990,57(1):44-46
    [54]Aronno R.Aspheres research for the stars and grow in down-to-earth applications.Photonics Spectra,1995,4:100-102
    [55]Bajuk D,Kestner R.Fabrication and testing of EUVL Optics.Proceedings on Soft X-ray Optics,1997:325-335
    [56]Robichaud J.Recent Silicon Carbide Optical Performance Results at SSG/Tinsley.Talk for NASA Technology Days 2002(http://optics.nasa.gov/tech_days/)
    [57]Gallagher B.JWST mirror manufacturing status.Talk for NASA Technology Days 2006(http://optics.nasa.gov/tech_days/)
    [58]杨世杰.非球面的计算机辅助带区修改.紫金山天文台台刊,1988,8(3):192-198
    [59]冯之敬.数控非球面抛光机床及其控制系统.北京理工大学博士后科研工作报告,1990
    [60]Li Q S,Cheng Y.Computer controlled fabrication of free-form glass lens.Proc.SPIE,1999,3782:203-212
    [61]Zhang X J,Zhang Z Y,Zheng L G,et al.Manufacturing and Testing SiC Aspherical mirrors in Space telescopes.Proc.SPIE,2005,6024:602402-1~602402-5
    [62]Wagner R E,Shannon R R.Fabrication of aspheric using a mathematical model for material removal.Applied Optics,1974,13(7):1683-1689
    [63]Golini D,Czajkowski W.Microgrinding makes ultrasmooth optics fast.Laser Focus World,1992,28(7):146-150
    [64]Funkenbusch P D.Role of topography in deterministic microgrinding.Convergence,1996,8
    [65]Edwards D F and Hed P P.Optical glass fabrication technology 1:Fine grinding mechanism using bound diamond abrasives.Applied Optics,1987,26(21):4670-4676
    [66]Hed P P and Edwards D F.Optical glass fabrication technology 2:Relationship between subsurface damage depth and surface roughness during grinding of optical glass with diamond tool.Applied Optics,1987,26(21):4677-4680
    [67]Jones R A.Automated optical surfacing.Proc.SPIE,1990,1293:704-710
    [68]杨世杰.计算机在天文镜面加工中的应用.紫金山天文台台刊,1987,6(4):385-388
    [69]Donald W S,Steven J H.An automated aspheric polishing machine.Proc.SPIE,645:66-74
    [70]Carnal C L,Egert C M.Advanced matrix-based algorithm for ion beam milling of optical component.Proc.SPIE,1992,1752:54-62
    [71]李全胜,成晔,蔡复之等.计算机控制光学表面成形驻留时间算法研究.光学技术,No.3,1999(5)
    [72]Shanbhag P M,Feinberg M R,Sandri G.Ion-beam machining of millimeter scale optics.Applied Optics,2000,39(4):599-611
    [73]Lee H,Yang M Y.Dwell time algorithm for computer-controlled polishing of small axis-symmetrical aspherical lens mold.Optical Engineering,2001,40(9):1936-1943
    [74]万勇建,袁家虎,杨力.一种新型数控抛光加工模型——模糊控制模型.光电工程,2002,29(6):5-8
    [75]王贵林,戴一帆,郑子文.光学表面的分形结构和表征算法.计量学报,2004,25(4):97-99
    [76]杨智,戴一帆,王贵林.小波在基于功率谱密度特征曲线评价中的应用.激光技术,将在2008年第1期发表
    [77]Cordero-Davila A,Gonzalez-Garcia J,Pedrayes-Lopez M,et al.Edge effects with the preston equation for a circular tool and workpiece.Applied Optics,2004,43(6):1250-1254
    [78]Luna-Aguilar E,Cordero-Davila A,Gonzalez-Garcia J,et al.Edge effects with Preston equation.Proc.SPIE,2003,4840:598-603
    [79]Zhang X J,Yu J C and Sun X F.Theoretical method for edge figuring in computer controlled polishing of optical surface.Proc.SPIE,1994,1994:239-246
    [80]Shorey A,Jones A,Dumas P,et al.Improved edge performance in magnetorheological finishing(MRF).Talk for NASA Technology Days 2004(http://optics.nasa.gov/tech_days/)
    [81]周旭升,戴一帆,李圣怡等.非球面加工机床的设计.制造技术与机床,2004,5:55-57
    [82]范镝.大口径碳化硅质反射镜数控光学加工的研究:学位论文.长春:中国科学院长春光机所,2004
    [83]戴一帆,尚文锦,周旭升.计算机控制小工具抛光技术中磨盘材料对去除函数的影响.国防科技大学学报,2006,28(2):97-101
    [84]Randi J A,Lambropoulos J C,Jacobs S D.Subsurface damage in some single crystalline optical materials.Applied Optics,2005,44(12):2241-2249
    [85]Lambropoulos J C,Jacobs S D,Ruckman J.Material removal mechanisms from grinding to polishing.Ceramic Transactions,1999,102:113-128
    [86]Chang Y P,Hashimura M,Dornfeld D A.An investigation of material removal mechanisms in lapping with grain size transition.Journal of Manufacturing Science and Engineering,2000,122:413-419
    [87]Lawn B R,Evans A G,Marshall D B.Elastic/plastic indentation damage in ceramics:the median/radial crack system.Journal of American Ceramic Society,1982,63(9-10):574-581
    [88]David B M,Brian L,Anthony G E.Elastic/plastic indentation damage in ceramics:the laterial crack system.Journal of American Ceramic Society,1982,65(11):561-566
    [89]Alex V H,Wigbert J S,Alexander M R,et al.Engineered defects for investigation of laser-induced damage of fused silica at 355nm.Proc.SPIE,2002,4679:96-107
    [90]Genin F Y,Salleo A,Pistor T V,et al.Role of light intensification by cracks in optical breakdown on surfaces.Journal of the Optical Society of America,2001,18(10):2607-2616
    [91]王权陡.计算机控制离轴非球面制造技术研究:学位论文.长春:中国科学院长春光机所,2001
    [92]张云.光学非球面数控磁流变抛光技术的研究:学位论文.北京:清华大学,2003
    [93]Elson J M and Bennett J M.Calculation of the power spectral density from surface profile data.Applied Optics,1995,34(1):201-208
    [94]Aikens D M.Origin and evolution of the optics specifications for the National Ignition Facility.Proc.SPIE,1995,2536:2-12
    [95]Lawson J K,Wolfe C R,Manes K R,et al.Specification of optical components using the power spectral density function.Proc.SPIE,1995,2536:38-50
    [96]杨建东,田春林.高速研磨技术.北京:国防工业出版社,2003
    [97]陈建军,曹一波,段宝岩.结构信息熵与极大熵原理.应用力学学报,1998,15(4):116-121
    [98]丁丰,袁保宗.一种基于最大熵原理的汉语实体提取方法.铁道学报,2001,23(5):34-37
    [99]曹力,史忠科.基于最大熵原理的多阈值自动选取新方法.中国图象图形学报,2002,7(5):461-465
    [100]俞礼军,严海,严宝杰.最大熵原理在交通流统计分布模型中的应用.交通运输工程学报,2001,1(3):91-94
    [101]Zhou X S,Li S Y.Application of maximum entropy principle in plane lapping.Proc.SPIE,2006,6034:60340K-1~60340K-8
    [102]吴乃龙,袁素云.最大熵方法.长沙:湖南科学技术出版社,1991
    [103]孟庆生.信息论.西安:西安交通大学出版社,1986
    [104]汪浩.高等数学(上册).长沙:国防科技大学出版社,1988
    [105]Shang W J,Dai Y F,Zhou X S.The amendment of the removal function model in edge effect.Proc.SPIE,2006,6149:614931-1~614931-7
    [106]潘君骅.光学非球面的设计、加工与检验.北京:科学出版社,1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700