用户名: 密码: 验证码:
混凝微滤工艺处理高砷水源水和低放废水的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝微滤工艺具有操作简单、能耗低、出水水质稳定、污泥产生量少等优点,在水处理领域有着良好的应用前景。本文研究了混凝微滤工艺处理高砷、高氟水源水的效果、影响因素以及产生的污泥处置,研制开发了车载式低水平放射性废水处理装置,并进行了冷试验验证,扩大了混凝微滤工艺的应用领域。
     烧杯试验和小试规模的混凝微滤膜反应器运行试验结果表明,以FeCl_3为混凝剂的混凝微滤工艺适用于各种水质的高砷水源水处理,在Fe~(3+)投加量4 mg/L时即可将高砷水源水中砷的浓度由100μg/L左右降低到10μg/L以下,出水平均浊度仅为0.05 NTU,pH值较原水提高0.48左右,Fe含量低于0.03 mg/L。当原水硅含量大于3.50 mg/L时,需增加适当的预处理措施。
     以Al_2(SO_4)_3为混凝剂的铝盐混凝微滤工艺在Al_2(SO_4)_3投加量为50 mg/L时,可以将高砷水源水中砷的浓度从100μg/L左右降低到10μg/L以下,Al_2(SO_4)_3投加量150 mg/L时可将氟的浓度从4 mg/L左右降低到1.0 mg/L以下,也可同时将砷的浓度从100μg/L左右降低到10μg/L以下,出水平均浊度为0.07 NTU,出水中铝、SO_4~(2-)浓度及其它指标均能很好地满足饮用水卫生标准,对比两种工艺的特点后发现,在处理高砷水源水时,应优先选择铁盐混凝微滤工艺,并采取一定的措施延缓膜比通量下降速度。对于氟同时超标的高砷水源水,只能采用铝盐混凝微滤工艺同时去除砷和氟。
     膜阻力计算结果表明,无机污染阻力所占比例很小,有机污染是铁盐混凝微滤工艺膜比通量下降的主要原因,铝盐工艺的不可逆污染较为严重,是膜污染的主要组成部分。
     关于污泥处置的试验表明,高砷水源水处理所产生的含砷污泥不属于具有浸出毒性的危险废物,水泥固化是降低含砷污泥浸出液中砷浓度的有效方法,固化体TCLP浸出液中砷的浓度仅为污泥的10%左右。掺入少量铁盐含砷污泥可使路用基材强度提高约10%,使含砷污泥得到了有效利用。
     采用(HNO_3+KMnO_4)氧化预处理+铁盐混凝(离子交换)+中空纤维微滤膜组合工艺的车载式低放废水处理装置设置两级结构和参数相同的膜分离反应器,均安装膜面积为20 m~2的主出水膜组件和膜面积为1.0 m~2的辅助膜组件,整个装置在PLC控制下自动运行,安装有在线自动监测设备,出水水质稳定,操作简单、安全可靠、结构紧凑、移动灵活。装置处理能力为500 L/h,冷试验结果表明,浓缩倍数可以达到1010。
Coagulation/microfiltration(C/MF) process is of good potential in water treatment application due to its advantages of simple operation, low energy consumption, excellent treated-water quality and less sludge production. The treatment of high arsenic and fluoride source water by C/MF process, its influence factors and its sludge disposal were studied. An on-board low-level liquid radioactive waste treatment device was developed and a cold experiment was conducted to verify the design. The application field of C/MF process was enlarged.
     The results of jar tests and lab-scale C/MF membrane reactor tests showed that C/MF process with ferric chloride as a coagulant could be used for treatment of high-arsenic source water with different source water quality. Arsenic removal to low level (<10μg/L) was achieved using a coagulant dose of 4 mg/L (calculated as Fe~(3+)) when the concentration of arsenic in raw water was about 100μg/L. The average turbidity of treated water was 0.05 NTU and the average concentration of total iron in treated water was 0.03 mg/L. pH value of treated water was increased about 0.48 compared with source water. Appropriate pretreatment was needed when the concentration of silicon in raw water was higher than 3.50 mg/L.
     Arsenic concentration of the treated water could also be lowered to less than 10μg/L from about 100μg/L by C/MF process with aluminium sulphate as a coagulant when coagulant dose was 50 mg/L. When coagulant dose was 150 mg/L, arsenic and fluoride were removed simultaneously by C/MF process with aluminium sulphate as a coagulant. The concentrations of aluminum and sulphate of the treated water were entirely satisfied the new Standards for Drinking Water Quality.
     Comparing the characteristics of two processes, it is concluded that C/MF process with ferric salt as a coagulant should be used preferentially when only high concentration arsenic existed in source water and appropriate measures to retard membrane fouling is needed. However, C/MF process with aluminum salt as a coagulant should be used to remove arsenic and fluoride simultaneously from high arsenic and high fluoride coexisted source water.
     The results of membrane resistance calculation indicated that inorganic fouling resistance occupied little proportion of the total resistance. Organic fouling was the main reason which induced the decrease of membrane flux of C/MF process with ferric salt as a coagulant. Irreversible membrane fouling of C/MF process with aluminium sulphate as a coagulant was much severe and was the main component of membrane fouling.
     The experimental results of sludge disposal showed that the arsenic-bearing sludge produced in the treatment of high-arsenic source water did not belong to the hazardous waste with leaching toxicity. When the arsenic-bearing sludge was solidified with cement, arsenic concentration in the leaching solution reduced about 90%. The compression strengths of road-application concretes were increased about 12% when minor part of ferric salt arsenic-bearing sludge was added. It provides a method for the efficient utilization of arsenic-bearing sludge. At the same time, the possible environmental problems are avoided.
     Oxidation-C/MF hybrid process was employed by the on-board low-level liquid radioactive waste treatment device which contain two same membrane reactors. The main membrane module with effective filtration area of 20 m~2 and the auxiliary membrane module with effective area of 1.0 m~2 were installed in the two membrane reactors. The device with on-line monitoring equipments was run automatically under the control of a programmable logic controller. The device has the advantage of compact structure and can be removed flexibly and safely on the existing roads. The treatment capacity of the device is 500 L/h. The results of the cold test showed that the condensing factor could be reached to 1010.
引文
[1]高俊发.水环境工程学[M].北京:化学工业出版社,2003.
    [2] Igor A S.世界水资源评估(张改译)[J].水利技术监督,2000,8 (6):36-40.
    [3] New Water Poverty Index Defines World Water Crisis Country by Country, http://210.169.251.146/html/artic/en/next.1888.html, December 11, 2002.
    [4]新闻背景:世界水资源现状,新华网,http://big5.xinhuanet.com/gate/big5/news.xinhuanet.com/world/2003-03/16/content_780942.htm,2003年3月16日.
    [5]仇雁翎,陈玲,赵建夫.饮用水水质监测与分析[M].北京:化学工业出版社,2006.
    [6]张统,董春宏,王守中.中国水资源的可持续利用策略[J].水务世界,2006,(2):15-19.
    [7]张杰,熊必永.创建城市水系统健康循环促进水资源可持续利用[J].沈阳建筑工程学院学报(自然科学版),2004,20 (3):204-206.
    [8]王烨,朱琨.我国水资源现状与可持续利用方略[J].兰州交通大学学报(社会科学版),2005,24 (5):77-80.
    [9]武方慧.浅析我国水资源现状[J].国土资源科技管理,2005,22 (4):71-74.
    [10]李天章,李京京.我国水资源浪费和污染的现状及治理[J].河南大学学报(自然科学版),2003,43 (6):44-48.
    [11]孙殿民,张军.水资源可持续利用的探讨[J].黑龙江水专学报,2002,29 (4):44-45.
    [12] 2006年中国环境状况公告,中国国家环境保护总局,http://www.sepa.gov.cn/plan/zkgb/06hjzkgb /200706/P020070619274778023610.pdf,2007年6月4日
    [13]朱延美,许宁,张文平.我国饮用水安全性研究现状[J].北方环境,2004,29 (6):24-26.
    [14]赵乐诗.我国农村饮水安全现状及任务[J].中国水利,2005,19:20-22.
    [15]联合国环境规划署、国际劳工组织、世界卫生组织合编,姚佩佩、牛胜田译.砷的环境卫生标准[M].北京:人民卫生出版社,1985.
    [16]冯树屏.砷的分析化学[M].北京:中国环境科学出版社,1986.
    [17]解皓,李海涛,吴文娟,等.三氧化二砷治疗原发性肝癌的研究进展[J].河北医药,2006,18 (3):219-220.
    [18]江世强,葛宪民.砷及其化合物的水污染治理研究进展[J].医学文选,2004,23 (3):364-368.
    [19] Johnston R B,Singer P C.Solubility of symplesite (ferrous arsenate): Implications for reduced groundwaters and other geochemical environments[J].Soil Science Society of America Journal,2007,71 (1):101-107.
    [20]赵大顺,陈惠敏.水环境中砷的污染现状及毒害[J].辽宁城乡环境科技,2005,25 (4):55-56.
    [21]冯克亮.水质砷污染及除砷新技术[J].海洋环境科学,1994,13 (1):78-81.
    [22]康家琦,金银龙.砷对健康危害的研究进展[J].卫生研究,2004,33 (3):372-376.
    [23]赵素莲,王铃芬,梁京辉.饮用水中砷的危害及除砷措施[J].现代预防医学,2002,29 (5):651-652.
    [24] Zhu C S,Bai G L,Liu X L,et al. Screening high-fluoride and high-arsenic drinking waters and surveying endemic fluorosis and arsenism in Shanxi province in western China[J].Water Research,2006,40 (16):3015-3022.
    [25] Xu P,Huang S B,Wang Z J,et al.Daily intakes of copper, zinc and arsenic in drinking water by population of Shanghai, China[J].Science of the Total Environment,2006,362 (1-3):50-55.
    [26] Nicolli H B,Suriano J M,Peral M A,et al.Groundwater contamination with arsenic and other trace elements in an area of the Pampa, Province of Cordoba, Argentina[J].Environmental Geology Water Science,1989,14 (1):3-16.
    [27] Appleyard S J,Angeloni J,Watkins R.Arsenic-rich groundwater in an urban area experiencing drought and increasing population density, Perth, Australia[J].Applied Geochemistry,2006,21 (1):83-97.
    [28] Varsanyi I,Kovacs L O.Arsenic, iron and organic matter in sediments and groundwater in the Pannonian Basin, Hungary[J].Applied Geochemistry,2006,21 (6):949-963.
    [29] Karim M.Arsenic in groundwater and health problems in Bangladesh[J].Water Reserch,2000,34 (1):304-310.
    [30] Connor O,John T.Arsenic in drinking water. Part 3: Occurrence of arsenic in U.S. waters[J].Water Engineering Management,2002,149 (1):45-48.
    [31] Welch A H,Westjohn D B,Helsel D R,et al.Arsenic in ground water of the United States: occurrence and geochemistry[J].Ground Water,2000,38 (4):589-604.
    [32] Sancha A M . Removal of arsenic from drinking water supplies: Chile experience[J].Water Science and Technology:Water Supply,2000,18 (1):621-625.
    [33]李永敏,郭华明,王焰新,等.地方性水砷中毒成因、防治和研究现状[J].环境保护,2001,(6):44-46.
    [34] Welch A H,Lico M S.Factors controlling As and U in shallow ground water, s outhern Carson Desert, Nevada[J].Applied Geochemistry,1998,13 (4):521-539.
    [35]王敬华.山阴与应县地区高砷高氟水的形成环境研究[J].内蒙古预防医学,1997,22 (4):145-147.
    [36]金银龙,梁超轲,何公理,等.中国地方性砷中毒分布调查(总报告)[J].卫生研究,2003,32 (6):519-540.
    [37] Jain C K,Ali I.Arsenic: occurrence, toxicity and speciation techniques[J].Water Research,2000,34 (17):4304-4312.
    [38] Brima E I,Haris P I,Jenkins R O,et al.Understanding arsenic metabolism t hrough a comparative study of arsenic levels in the urine, hair and fingernails of healthy volunteers from three unexposed ethnic groups in the United Kingdom[J].Toxicology and Applied Pharmacology,2006,216 (1):122-130.
    [39]刘强,王晓昌,李世俊,等.美国现行饮用水水质标准简介[J].给水排水,2006,32 (11):106-111.
    [40]苑宝玲,李坤林,邢核,等.饮用水砷污染治理研究进展[J].环境保护科学,2006,32 (1):17-20.
    [41]袁涛,曾欣,罗启芳.对混凝沉淀法分散式饮水除砷的研究[J].卫生研究,1999,28 (6):331-333.
    [42] Edwarda M.Chemistry of arsenic removal during coagulation and Fe-Mn oxidation[J].Journal of the American Water Works Association,1994,86 (9):64-78.
    [43] Hering J G,Chen P Y,Wilkie J A,et al.Arsenic removal from drinking water during coagulation[J].Journal of Environmental Engineering,1997,123 (8):800-807.
    [44] Sancha A M.Review of coagulation technology for removal of arsenic:case of Chile[J].Journal of Health Population and Nutrition,2006,24 (3):267-272.
    [45] Gregor J.Arsenic removal during conventional aluminium-based drinking-water treatment[J].Water Research,2001,35 (7):1659-1664.
    [46] Shen Y S.Study of arsenic removal from drinking water[J].Journal of the American Water Works Association,1973,65 (8):543-548.
    [47]袁涛,罗启芳.分散式饮水中三价砷的去除[J].卫生研究,2001,30 (2):70-72.
    [48]苑宝玲,李坤林,邓临莉,等.多功能高铁酸盐去除饮用水中砷的研究[J].环境科学,2006,27 (2):281-284.
    [49] Lee Y,Um I H,Yoon J.Arsenic(III) oxidation by iron(VI) (Ferrate) and subsequent removal of arsenic(V) by iron(III) coagulation[J].Environmental Science and Technology,2003,37 (24):5750-5756.
    [50]袁涛,罗启芳.影响混凝沉淀除砷剂效果的若干因素及除砷机理探讨[J].卫生研究,2001,30 (3):152-154.
    [51] Meng Z G,Korfiatis G P,Christodoulatos C,et al.Treatment of arsenic in Bangladesh well water using a household co-precipitation and filtration system[J].Water Research,2001,35 (12):2805-2810.
    [52] Song S,Lopez-Valdivieso A,Hernandez-Campos D J,et al.Arsenic removal from high-arsenic water by enhanced coagulation with ferric ions and coarse calcite[J].Water Research,2006,40 (2):364-372.
    [53]马文成,孙靖,刘晓化,等.饮水除砷方法的研究进展[J].中国地方病防治杂志,2004,19 (5):284-285.
    [54]黄清霄,张青喜,成金山,等.饮水除砷剂除砷效果的探讨[J].山西预防医学杂志,1997,6 (2):133-134.
    [55]李树猷,何淑敏.活性氧化铝吸附法饮水陈砷研究[J].卫生研究,1990,19 (3):13-16.
    [56]凌波,李树猷,朱琦平,等.强化饮水除砷剂的研制[J].卫生研究,2001,30 (3):155-157.
    [57]樊荣涛,闫惠珍,岳银玲,等.改进型除砷剂的研究[J].中国卫生检验杂志,2005,15 (9):1128-1129.
    [58]孙忠,侯晓勇.改型沸石在饮水净化中的应用研究[J].非金属矿,2002,25 (2):49-51.
    [59]张晖,周明达,张利民,等.改性沸石处理水中砷的研究[J].贵州化工,2006,31 (2):7-9.
    [60] Singh T S,Pant K K.Experimental and modeling studies on fixed bed adsorption of As(III) ions from aqueous solution[J].Separation and Purification Technology,2006,48 (3):288-296.
    [61]姜浩,廖立兵,王素萍.低聚合羟基铁离子—蒙脱石复合体吸附砷的实验研究[J].2002,31 (6):593-601.
    [62]张昱,杨敏,王桂燕,等.利用稀土基无机合成材料去除饮用水中砷的研究[J].环境化学,2001,20 (1):70-75.
    [63]肖亚兵,钱沙华,黄淦泉,等.纳米二氧化钛对砷(Ⅲ)和砷(Ⅴ)吸附性能的研究[J].分析科学学报,2003,19 (2):172-174.
    [64]佟建冬,卢振明,张旭丰,等.蛇纹石饮水除砷效果实验研究[J].中国地方病防治杂志,2003,18 (2):81-83.
    [65]李曼尼,杨睿媛,吴瑞凤,等.微波法磷改性斜发沸石的结构及水中除砷的研究[J].环境化学,2003,22 (6):591-595.
    [66]张贞发,蒋柏泉,陈敬军.一种新型砷吸附剂的制备与性能研究[J].江西化工,2006,(2):40-42.
    [67] Pereira A L,Dutra J B,Martins A H.Adsorptive removal of arsenic from river waters using pisolite[J].Minerals Engineering,2007,20 (1):52-59.
    [68] Maji S K,Pal A,Pal T.Arsenic removal from aqueous solutions by adsorption on laterite soil[J] . Journal of Environmental Science and Health: Part A-Toxic/Hazardous Substances and Environmental Engineering,2007,42 (4):453-462.
    [69] Kundu S,Kavalakatt S S,Pal A,et al.Removal of arsenic using hardened paste of Portland cement: batch adsorption and column study[J].Water Research,2004,38 (17):3780-3790.
    [70] Altundogan H S,Altundogan S,Tumen F,et al.Arsenic adsorption from aqueous solutions by activated red mud [J].Waste Management,2002,22 (3):357-363.
    [71] Halter W E, Pfeifer H R.Arsenic(V) adsorption ontoα-Al2O3 between 25 and 70°C[J].Applied Geochemistry,2001,16 (7-8):793-802.
    [72] Raichur A M,Panvekar V.Removal of As(V) by adsorption onto mixed rare earth oxides[J].Separation Science and Technology,2002,37 (5):1095-1108.
    [76]欧阳通.稀土材料氢氧化铈吸附水中亚砷酸与砷酸阴离子的特性效果[J].环境科学,2004,25 (6):43-47.
    [74]张昱,杨敏,高迎新,等.用于地下水中砷去除的铈铁复合材料的制备和作用机制[J].中国科学(B)辑,2003,33 (2):127-132.
    [75] Zhang Y,Yang M,Huang X.Arsenic(V) removal with a Ce(IV)-doped iron oxide adsorbent[J].Chemosphere,2003,51 (9):945-952.
    [76] Shigeru M,Akira O,Shunsuke S,et al.Iron(III) hydroxide-loaded coral limestone as an adsorbent for arsenic(III) and arsenic(V)[J].Separation Science and Technology,1992,27 (5):681-689.
    [77]丁亮,黄承斌.地下水用含铁锰矿石除砷[J].中国卫生工程学,2003,2 (3):184-185.
    [78]叶瑛,季珊珊,邬黛黛,等.针铁矿及其前体吸附亚砷酸根离子的反应及预处理方法的影响[J].岩石矿物学杂志,2005,24 (6):551-555.
    [79] Gimenez J,Martinez M,de Pablo J,et al.Arsenic sorption onto natural hematite, magnetite, and goethite[J].Jounal of Hazardous Materials,2007,141 (3):575-580.
    [80] Ko I,Davis A P,Kim J Y,et al.Effect of contact order on the adsorption of inorganic arsenic species[J].Jounal of Hazardous Materials,2007,141 (1):53-60.
    [81] Guo H M,Doris S,Zolt B.Removal of arsenic from aqueous solution by natural siderite and hematite[J].Applied Geochemistry,2007,22 (5):1039-1051.
    [82] Chakravarty S,Dureja V,Bhattacharyya G,et al.Removal of arsenic from groundwater using low cost ferruginous manganese ore[J].Water Research,2002,36 (3):625-632.
    [83] Dixit S,Hering J G.Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility[J].Environmental Science and Technology,2003,37 (18):4182-4189.
    [84] Mayo J T,Yavuz C,Yean S,et al.The effect of nanocrystalline magnetite size on arsenic removal[J].Science and Technology of Advanced Materials,2007,8 (1-2):71-75.
    [85]梁慧锋,马子川,刘占牛.新生态二氧化锰的性质及pH值影响除砷效果的研究[J].无机化学学报,2006,22 (4):743-747.
    [86]梁慧锋,马子川,张杰,等.新生态二氧化锰对水中三价砷去除作用的研究[J].环境污染与防治,2005,27 (3):168-171.
    [87]梁慧锋,刘占牛,马子川.新生态二氧化锰悬浊液的制备及对三价砷氧化吸附机理的探讨[J].河北大学学报(自然科学版),2005,25 (5):515-519.
    [88] Nikolaidis N P,Dobbs G M,Lackovic J A.Arsenic removal by zero-valent iron: field, laboratory and modeling studies[J].Water Research,2003,37 (6):1417-1425.
    [89] Bang S,Johnson M D,Korfiatis G P,et al.Chemical reactions between arsenic and zero-valent iron in water[J].Water Research,2005,39 (5):763-770.
    [90] Leupin O X,Hug S J.Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron[J].Water Research,2005,39 (9):1729-1740.
    [91] Bang S,Korfiatis G P,Meng X G.Removal of arsenic from water by zero-valent iron[J].Jounal of Hazardous Materials,2005,121 (1-3):61-67.
    [92] Su C M,Puls R W.Arsenate and arsenite removal by zero valent iron: kinetics, redox, transformation, and implications for in situ ground water remediation[J].Environmental Science and Technology,2001,35 (7):1487-1492.
    [93] Farrell J,Wang J P,Conklin M.Electrochemical and spectroscopic study of arsenate removal from water using zero-valent iron media[J].Environmental Science and Technology,2001,35 (10):2026-2032.
    [94] Lackovic J A,Nikolaidis N P,Dobbs G M.Inorganic arsenic removal by zero-valent iron[J].Environmental Engineering Science,2000,17 (1):29-40.
    [95] Vaughan R L,Reed B E,Smith E H.Modeling As(Ⅴ) removal in iron oxide impregnated activated carbon columns[J].Journal of Environmental Engineering,2007,133 (1):121-124.
    [96] Chang Y Y,Kim K S,Jung J H,et al.Application of iron-coated sand and manganese-coated on the treatment of both As(Ⅲ) and As(Ⅴ)[J].Water Science and Technology,2007,55 (1-2):69-75.
    [97] Dhiman A K,Chaudhuri M.Iron and manganese amended activated alumina- A medium for adsorption/oxidation of arsenic from water[J].Journal of Water Supply: Research and Technology - AQUA,2007,56 (1):69-74.
    [98] Sylvester P,Westerhoff P,M?ller T,et al.A hybrid sorbent utilizing nanoparticles of hydrous iron oxide for arsenic removal from drinking water[J].Environmental Engineering Science,2007,24 (1):104-112.
    [99]赵安珍,徐仁扣.包铁黄砂去除水中砷的研究[J].环境科学与管理,2006,31 (1):116-117.
    [100]袁涛,罗启芳.运用涂铁砂粒进行分散式饮水除砷的效果[J].环境科学,2001,22 (3):25-29.
    [101] Katsoyiannis I A,Zouboulis A I.Removal of arsenic from contaminated water sources by sorption onto iron-oxide-coated polymeric materials[J] . Water Research,2002,36 (20):5141-5155.
    [102] Ayoob S,Gupta A K,Bhakat P B.Analysis of breakthrough developments and modeling of fixed bed adsorption system for As(V) removal from water by modified calcined bauxite (MCB)[J].Separation and Purification Technology,2007,52 (3):430-438.
    [103] Bhakat P B,Gupta A K,Ayoob S.Feasibility analysis of As(III) removal in a continuous flow fixed bed system by modified calcined bauxite (MCB)[J].Journal of Hazardous Materials,2007,139 (2):286-292.
    [104] Ayoob S,Gupta A K,Bhakat P B.Performance evaluation of modified calcined bauxite in the sorptive removal of arsenic(III) from aqueous environment[J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2007,293 (1-3):247-254.
    [105] Daus B,Wennrich R,Weiss H.Sorption materials for arsenic removal from water: a comparative study[J].Water Research,2004,38 (12):2948-2954.
    [106]梁美娜,刘海玲,朱义年,等.复合铁铝氢氧化物的制备及其对水中砷(Ⅴ)的去除[J].环境科学学报,2006,26 (3):438-446.
    [107]赵雅萍,王军锋,尹静,等.载Fe(Ⅲ)和La(Ⅲ)—氨基膦酸型螯合树脂选择性吸附痕量砷(V)[J].南开大学学报(自然科学),2002,35 (4):85-89.
    [108]郭学军,陈甫华.载铁棉纤维素吸附剂固定床去除地下水砷[J].化工学报,2005,56 (9):1757-1764.
    [109] Manju GN,Raji C,Anirudhan T S.Evaluation of coconut husk carbon for the removal of arsenic from water[J].Water Research,1998,32 (10):3062-3070.
    [110] Singh T S,Pant K K.Equilibrium, kinetics and thermodynamic studies for adsorption of As(III) on activated alumina[J]. Separation and Purification Technology,2004,36 (2):139-147.
    [111]赵月朝,陈亚妍,林少彬,等.负载金属饮水除砷材料的研究[J].卫生研究,2004,33 (5):550-552.
    [112] Zeng L.A method for preparing silica-containing iron(III) oxide adsorbents for arsenic removal[J].Water Research,2003,37 (18):4351-4358.
    [113] DeMarco M J,Sengupta A K,Greenleaf J E.Arsenic removal using a polymeric/inorganic hybrid sorbent[J].Water Research,2003,37 (1):164-176.
    [114] Balaji T,Yokoyama T,Matsunaga H.Adsorption and removal of As(V) and As(III) using Zr-loaded lysine diacetic acid chelating resin[J].Chemosphere,2005,59 (8):1169-1174.
    [115] Ramaswami A,Tawachsupa S,Isleyen M.Batch-mixed iron treatment of high arsenic waters[J].Water Resaearch,2001, 35 (18):4474-4479.
    [116] Kim J,Benjamin M M.Modeling a novel ion exchange process for arsenic and nitrate removal[J].Water Research,2004,38 (8):2053–2062.
    [117]刘瑞霞,王亚雄,汤鸿霄.新型离子交换纤维去除水中砷酸根离子的研究[J].环境科学,2002,23 (5):88-91.
    [118] Liu R X,Guo J L,Tang H X.Adsorption of fluoride, phosphate, and arsenate ions on a new type of ion exchange fiber[J].Journal of Colloid and Interface Science,2002,248 (2):268-274.
    [119] Rajakovi L V,Mitrovi M M.Arsenic removal from water by chemisorption filters[J].Environmental Pollution,1992,75 (3):279-287.
    [120] Korngold E,Belayev N,Aronov L.Removal of arsenic from drinking water by anion exchangers[J].Desalination,2001,141 (1):81-84.
    [121] Anirudhan T S,Unnithan M R.Arsenic(V) removal from aqueous solutions using an anion exchanger derived from coconut coir pith and its recovery[J].Chemosphere,2007,66 (1):60-66.
    [122] Deng S,Ting Y P.Removal of As(V) and As(III) from water with a PEI-modified fungal biomass[J].Water Science and Technology,2007,55 (1-2):177-185.
    [123] Pokhrel D,Viraraghavan T.Arsenic removal from an aqueous solution by a modified fungal biomass[J].Water Research,2006,40 (3):549-552.
    [124] Murugesan G S,Sathishkumar M,Swaminathan K.Arsenic removal from groundwater by pretreated waste tea fungal biomass[J].Bioresource Technology,2006,97 (3):483-487.
    [125] Katsoyiannis I A,Zouboulis A I.Application of biological processes for the removal of arsenic from groundwaters[J].Water Research,2004,38 (1):17-26.
    [126]郑凤英,李顺兴,韩爱琴,等.超富集植物蜈蚣草对水中As(Ⅲ)吸附行为的研究[J].分析科学学报,2006,22 (4):401-405.
    [127] Elless M P,Poynton C Y,Willms C A,et al.Pilot-scale demonstration of phytofiltration for treatment of arsenic in New Mexico drinking water[J].Water Research,2005,39 (16):3863-3872.
    [128] Kamala C T,Chu K H,Chary N S,et al.Removal of arsenic(III) from aqueous solutions using fresh and immobilized plant biomass[J].Water Research,2005,9 (13):2815-2826.
    [129] Takeuchi M,Kawahata H,Gupta L P,et al.Arsenic resistance and removal by marine and non-marine bacteria[J].Journal of Biotechnology,2007,127 (3):434-442.
    [130] Gomes A G,Daida P,Kesmez M,et al.Arsenic removal by electrocoagulation using combined Al-Fe electrode system and characterization of products[J].Journal of Hazardous Materials,2007,139 (2):220-231.
    [131] Hansen H K,Nunez P,Raboy D,et al.Electrocoagulation in wastewater containing arsenic: Comparing different process designs[J].Electrochimica Acta,2007,52 (10):3464-3470.
    [132] Parga J R,Cocke D L,Valenzuela J L,et al.Arsenic removal via electrocoagulation from heavy metal contaminated groundwater in La Comarca Lagunera Mexico[J].Journal of Hazardous Materials,2005,124 (1-3):247-254.
    [133]许保玖,龙腾锐.当代给水与废水处理原理[M].北京:高等教育出版社,2000.
    [134]邵刚.膜法水处理技术及工程实例[M].北京:化学工业出版社,2000.
    [135]王湛.膜分离技术基础[M].北京:化学工业出版社,2000.
    [136]许振良.膜法水处理技术[M].北京:化学工业出版社,2001.
    [137]周云,何义亮.微污染水源净水技术及工程实例[M].北京:化学工业出版社,2003.
    [138] Jang H N,Lee D S,Park M K,et al.Effects of the filtration flux and pre-treatments on the performance of a microfiltration drinking water treatment system[J].Water Science and Technology:Water Supply,2006,6 (4):81-87.
    [139]李晓波,胡保安,顾平.压力驱动膜技术在饮用水除砷中的应用[J].卫生研究,2007,36 (3):395-398.
    [140] Clifford D,Subramonian S,Sorg T.Water treatment processes. III. Removing dissolved inorganic contaminants from water[J].Environmental Science and Technology,1986,20 (11):1072-1080.
    [141] Fox K L.Field experience with point-of-use treatment systems for arsenic removal[J].Journal of the American Water Works Association,1989,81 (2):94-101.
    [142] Waypa J J,Elimelech M,Hering J G.Arsenic removal by RO and NF membranes[J]. Journal of the American Water Works Association,1997,89 (10):102-114.
    [143] Koch Membrane Systems Inc.Reverse osmosis membranes remove arsenic and salt from water supplies[J].Membrane Technology,2001,140 (1):10-11.
    [144] Amy G L,Edwards M,Brandhuber P,et al.Arsenic treatability options and evaluation of residual management issues[R].AWWARF,1998.
    [145] Oh J I,Yamamoto K,Kitawaki H,et al.Application of low-pressure nanofiltration coupled with a bicycle pump for the treatment of arsenic-contaminated groundwater[J].Desalination, 2000,132 (1-3):307-314.
    [146] Ko?utic K,Furac L,Sipos L,et al.Removal of arsenic and pesticides from drinking water by nanofiltration membranes[J].Separation and Purification Technology,2005,42 (2):137-144.
    [147] Vrijenhoek E M,Waypa J J.Arsenic removal from drinking water by a“loose”nanofiltration membrane[J].Desalination,2000,130 (3):265-277.
    [148] Seidel A,Waypa J J,Elimelech M.Role of charge (Donnan) exclusion in removal of arsenic from water by a negatively charged porous nanofiltration membrane[J].Environmental Engineering Science,2001,8 (2):105-113.
    [149] Xia S J,Dong B Z,Zhang Q L,et al.Study of arsenic removal by nanofiltration and its application in China[J].Desalination,2007,204 (1-3):374-379.
    [150] Urase T,Oh J,Yamamoto K,et al.Effect of pH on rejection of different species of arsenic by nanofiltration[J].Desalination,1998,117 (1-3):11-18.
    [151] Oh J I,Lee S H,Yamamoto K.Relationship between molar volume and rejection of arsenic species in groundwater by low-pressure nanofiltration process [J].Journal of Membrane Science,2004,234 (1-2):167-175.
    [152] Hugo S,Mercedes C,Soledad C,et al.Effect of operating conditions in removal of arsenic from water by nanofiltration membrane[J].Desalination,2005,172 (2):173- 180.
    [153] Sato Y,Kang M,Kamei T,et al.Performance of nanofiltration for arsenic removal[J].Water Reserach,2002,36 (13):3371-3377.
    [154] Gecol H,Ergican E,Fuchs A.Molecular level separation of arsenic (V) from water using cationic surfactant micelles and ultrafiltration membrane[J].Journal of Membrane Science,2004,241 (1):105-109.
    [155] Brandhuber P,Amy G.Arsenic removal by a charged ultrafiltration membrane - influences of membrane operating conditions and water quality on arsenic rejection[J].Desalination,2001,140 (1):1-14.
    [156] Erdogan E,Hatice G,Alan F.The effect of co-occurring inorganic solutes on the removal of arsenic (V) from water using cationic surfactant micelles and an ultrafiltration membrane[J].Desalination,2005,181 (1-3):9-26.
    [157] Meng X G,Bang S B,Korfiatis G P.Effects of silicate, sulfate, and carbonate on arsenic removal by ferric chloride[J].Water Research,2000,34 (4):1255-1261.
    [158]王宝贞.放射性废水处理(上册)[M].北京:科学出版社,1979.
    [159]国家环境保护总局科技标准司.环境标准实施指南-污水综合排放标准分册[M].长春:吉林科学技术出版社,1999.
    [160]刘德敏,刘翔峰,王世联,等.1-苯基-3-甲基-4-氰硫基-5-吡唑酮的合成及其对镅和铕的萃取研究[J].核化学与放射化学,2004,26 (1):53-55.
    [161] Ensor D D,Jarvinen G D,Smith B F.The use of soft donor ligands, 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione and 4,7- diphenyl- 1,10-phenanthroline, for improved separation of trivalent Americium and Europium[J].Solvent Extract and Ion Exchange,1988,6 (3):439-445.
    [162]刘德敏,刘翔峰,杨裕生.5,7二溴-8-羟基喹啉与含N协配体对镅和铕的萃取研究[J].核化学与放射化学,1997,19 (3):12-17.
    [163] Siddall T H.Bidentate organophosphorus compounds as extractants I. extraction of cerium, ptomethium and americium nitrates[J].Journal of Inorganic Nuclear Chemistry,1963,25 (7):883-892.
    [164] Ansari S A,Mohapatra P K,Prabhu D R,et al.Transport of Americium (III) through a supported liquid membrane containing N,N,N',N'-tetraoctyl-3-oxapentane, diamide (TODGA) in n-dodecane as the carrier [J].Journal of Membrane Science,2006,282 (1-2):133-141.
    [165]陈靖,焦荣洲.镅与镧系元素分离研究的新进展[J].原子能科学技术,1998,32 (5):472-475.
    [166]韩宾兵,吴秋林.TRPO-TBP/煤油体系对高放废液中镅、铀、钚和锝等的萃取和反萃[J].辐射防护,2001,21 (2):93-97.
    [167]王建晨,王秋萍,陈靖,等.用TRPO从模拟高放废液中去除钕和镅的实验[J].清华大学学报(自然科学版),2000,40 (12):21-24.
    [168]叶国安,何建玉,姜永青.酰胺荚醚对Am(Ⅲ)和Eu(Ⅲ)的萃取行为研究Ⅰ.萃取机理研究[J].核化学与放射化学,2000,22 (2):65-71.
    [169]张东,王艳,谭昭怡,等.交联聚乙烯醇磷酸酯的制备及对Eu3+和Am3+的吸附研究[J].四川大学学报(自然科学版),2003,40 (6):1143-1147.
    [170] Navratil J D.Pre-analysis separation and concentration of actinides in groundwater using a magnetic filtration/sorption method[J] . Journal of Radioanalytical and Nuclear Chemistry,2001,248 (3):571-574.
    [171] Inoue H,Kagoshima M.Removal of 125I from radioactive experimental waste with an anion exchange paper membrane[J].Applied Radiation and Isotopes,2000,52 (6):1407-1412.
    [172] Gordon D,Purdy G M,Smith B F,et al.Treatment of liquid wastes[J].Los Alamos Science,2000,26 (2):452-457.
    [173] Smith B F,Robison T W, Jarvinen G D.Water-soluble metal-binding polymers with ultrafiltration[A].In:ACS Symp. Ser., 716(Metal-Ion Separation and Preconcentration)[C].American:American Chemical Society, 1999:294-330.
    [174] Gao Y,Zhao J,Zhang G H,et al.Treatment of the wastewater containing low-level 241Am using flocculation-microfiltration process[J].Separation and Purification Technology,2004,40 (2):183-189.
    [175] Buckley L P,Slade J A,Vijayan S,et al.Microfiltration of radioactive contaminants[R].Canada:Atomic Energy of Canada Limited,1993.
    [176] Neville M D,Jones C P,Turner A D.The EIX process for radioactive waste treatment[J].Progress in Nuclear Energy,1998,32 (3-4):397-401.
    [177] Tomaszewska M,Gryta M,Morawski A W.Study on the concentration of acids by membrane distillation[J].Journal of Membrane Science, 1995,102 (1-2):113-122.
    [178] Zakrzewska-Trznadel G,Harasimowicz M,Chmielewski A G.Concentration of radioactive components in liquid low-level radioactive waste by membrane distillation[J].Journal of Membrane Science,1999,163 (2):257-264.
    [179]国家环保局《水和废水监测分析方法》编委会(第四版).水和废水监测分析方法[M].北京:中国环境科学出版社,2002.
    [180]王华东,郝春曦,王建.环境中的砷—行为·影响·控制[M].北京:中国环境科学出版社,1992.
    [181]汤鸿霄.用水废水化学基础[M].北京:中国建筑工业出版社,1979.
    [182] Duan J M,Gregory J.Coagulation by hydrolysing metal salts[J].Advances in Colloid and Interface Science,2003,100-102:475-502.
    [183]杨淑霞,刘晶.给水排水化学基础[M].北京:中国建筑工业出版社,2001.
    [184]大连理工大学无机化学教研室.无机化学[M].北京:高等教育出版社,2006.
    [185]袁洪福,褚小立,王艳斌,等译.水分析手册[M].北京:中国石化出版社,2005.
    [186] Robinson B,Reed G D,Frazier B,et al.Iron and manganese sequestration facilities using sodium silicate[J] . Journal of the American Water Works Association,1992,84 (2):77-82.
    [187]王占生,刘文君.微污染水源饮用水处理[M].北京:中国建筑工业出版社,1999.
    [188]蒋绍阶,刘宗源.UV254作为水处理中有机物控制指标的意义[J].重庆建筑大学学报,2002,24 (2):61-65.
    [189] Andersen D O, Alberts J J, Takacs M.Nature of natural organic matter (NOM) in acidified and limed surface waters[J].Water Research,2000,34 (1):266-278.
    [190] Huang J Y,Takizawa S,Fujita K.Pilot-plant study of a high recovery membrane filtration process for drinking water treatment[J].Desalination,2000,41 (10):77-84.
    [191] Glucina K, Alvarez A, Laine J M.Assessment of an integrated membrane system for surface water treatment[J].Desalination,2000,132 (1-3):73-82.
    [192]高永.去除水中有害金属离子的膜化学反应器研制及其机理研究[D].天津:天津大学,2007.
    [193]王志红,崔福义,张霄宇.饮用水过滤中的除铝实验研究[J].工业用水与废水,2001,32 (5):7-9.
    [194]王琳,王宝贞,杨鲁豫.城市饮用水膜处理技术[J].膜科学与技术,2001,21 (3):53-56.
    [195]蔡隆九.氟污染及其控制方法[J].包钢科技,2001,27 (1):56-60.
    [196]张强国,谢果.氟危害及重庆氟污染的对策[J].重庆科技学院学报(自然科学版),2005,7 (4):17-27.
    [197] Das N,Pattanaik P,Das R.Defluoridation of drinking water using activated titanium rich bauxite[J].Journal of Colloid and Interface Science,2005,292 (1):1-10.
    [198] Wang Y X,Reardon E J.Activation and regeneration of a soil sorbent for d efluoridation of drinking water[J].Applied Geochemistry,2001,16 (5):531-539.
    [199] Srimurali M,Pragathi A,Karthikeyan J.A study on removal of fluorides from drinking water by adsorption onto low-cost materials[J] . Environmental Pollution,1998,99 (2):285-289.
    [200]田文,王希斌,郝静.饮用水除氟除砷的方法简介[J].内蒙古科技与经济,2005,(7):141-143.
    [201]德里木拉提,刘贵安,阿不来提,等.乌苏市高砷和高氟水区分布范围与规律的调查分析[J].中国地方病学杂志,2006,25 (1):61-63.
    [202]王敬华.山阴与应县地区高砷高氟水的形成环境研究[J].内蒙古预防医学,1997,22 (4):145-147.
    [203]卢建杭,刘维屏,郑巍.铝盐混凝去除氟离子的作用机理探讨[J].环境科学学报,2000,20 (6):709-713.
    [204] Mulder M.膜技术基本原理(第三版李琳译)[M].北京:清华大学出版社,1999.
    [205] Shimizu Y,Okuno Y,Uryu K,et al.Filtration characteristics of hollow fiber microfiltration membranes used in membrane bioreactor for domestic wastewater treatment[J].Water Research,1996,30 (10):2285-2392.
    [206]吴持恭.水力学(第二版)[M].北京:高等教育出版社,1980.
    [207]何纯提.净水厂排泥水处理[M].北京:中国建筑工业出版社,2006.
    [208]漆睿,戎永华.X射线衍射与电子显微镜分析[M].上海:上海交通大学出版社,1992.
    [209] Leist M.,Casey R J,Caridi D.The management of arsenic wastes:problems and prospects[J].Journal of Hazardous Materials,2000,76 (1):125-138.
    [210]李磊,朱伟,林城.骨架构建法进行污泥固化处理的试验研究[J].中国给水排水,2005,21 (6):41-43.
    [211]冯吉利,屈撑囤,麻妙锋.水泥基材固化含油污泥的析出性能[J].能源环境保护,2005,19 (1):40-42.
    [212]赵乐军,戴树桂,辜显华.污泥填埋技术应用进展[J].中国给水排水,2004,20 (4):27-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700