用户名: 密码: 验证码:
趋磁细菌对贵金属离子的选择性吸附行为及溶液中金的回收研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高新技术的迅猛发展,全世界对贵重金属的需求量越来越大,但其储量却十分有限。因此,含贵重金属废料的资源化和循环利用技术已成为国内外相关人士关注的焦点。本文对“选择吸附-高梯度磁分离”耦合工艺回收废水中金和铜的过程进行了系统的理论分析与实验研究。
     本文从污水处理厂活性污泥中筛选到一株趋磁性较强且对金属离子有较高吸附能力的菌株MTB-3,根据生理生化实验和16S rDNA测序结果,确定出该菌种为Stenotrophomonas sp.细菌,是该属一个具有趋磁特性的新菌种。
     实验确定了Stenotrophomonas sp. MTB-3在单元体系中对Au~(3+)、Cu~(2+)和Ni~(2+)的最佳吸附条件,进而考察了该菌在Au~(3+)-Cu~(2+)二元体系及Au~(3+)-Cu~(2+)-Ni~(2+)三元体系中的吸附特性,并通过等温吸附特性及吸附动力学特性研究获得相应的吸附参数,结果表明菌体对多元体系中的Au~(3+)具有优先选择吸附的能力。对菌体上金的脱附研究发现,0.8mol/L的硫脲对金的脱附率可达91.3%;在保证菌体再吸附率高于80%的前提下,菌体至少可以重复使用三次。
     以透射电镜(TEM)、傅立叶变换红外光谱仪(FTIR)、X射线衍射仪(XRD)、光电子能谱仪(XPS)等先进仪器为实验分析手段,并结合理论模型探讨了Stenotrophomonas sp. MTB-3对Au~(3+)、Cu~(2+)和Ni~(2+)的吸附机理,研究发现该菌吸附Cu~(2+)、Ni~(2+)的主要机理是静电引力和表面络合作用;而吸附Au~(3+)的主要机理是静电引力、表面络合作用及氧化还原作用。在此基础上得出MTB-3菌体吸附贵重金属离子的微观过程初步模型。
     通过对颗粒在磁场中受力和力矩作用分析,推导并建立了高梯度磁分离过程中菌体微粒在轴向饱和堆积的物理模型和数学模型,用以描述菌体微粒沿金属丝轴线方向运动时被捕集并堆积的情况;并采用现象学磁分离模型,描述并预测吸附贵重金属离子后的菌体在整个磁分离空间内被捕集的动力学特性。
     基于MTB-3菌较强的趋磁特性以及在多元体系中对Au~(3+)的可调节选择吸附能力,开发了“选择吸附-高梯度磁分离”耦合工艺,该工艺对于Au~(3+)-Cu~(2+)二元体系中金和铜的回收率可分别达到90.2%和81.0%,而且处理后的水满足国家对废水中Au~(3+)和Cu~(2+)的废水排放标准。
With the rapid development of novel technologies in industries,the demand of precious metal in the world is increasing. However, due to the limited reserves of precious metal, the recovery technology from precious metal contained wastes has drawn more attention recently. Therefore, the aim in the present study is to investigate the feasibility of applying the coupling technology, selective biosorption and HGMS (high gradient magnetic separation), into the gold recovery from industrial wastewater.
     A magnetotactic bacterial isolate (MTB-3) with a high biosorption capacity to metal ions was isolated and purified from the Jizhuangzi sewage treatment plant. By means of series of the physiological biochemical experiments and the 16S rDNA sequence analysis, this strain was identified as Stenotrophomonas sp.
     The optimal biosorption conditions of Stenotrophomonas sp. MTB-3 to Au(III), Cu(II) and Ni(II) in single, binary and ternary systems were investigated, and the results of kinetic and equilibrium studies indicated that MTB-3 showed a high selectivity to Au(III) in multi-systems. The results of the desorption experiments suggested that 91.3% Au adsorbed on the biomass could be recovered when the thiourea concentration was 0.8 M, and the biomass could be used more than three times with an essential prerequisite that the re-biosorption ratio was more than 80%.
     The biosorption mechanisms of MTB-3 in the removal of Au(III), Cu(II) and Ni(II) were investigated using theory models, combined with the chemical analysis, such as Transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and chemical modification experiments. The results indicated that the static attraction and surface complexation reactions were the main mechanisms as for the biosorption of Cu(II) and Ni(II), while adsorption together with bioreduction were the dominant mechanisms as for Au(III). The preliminary microcosmic model of biosorption of metal ions by MTB-3 was then developed on the basis of biosorption mechanisms.
     After analyzing the force and their moment acting on the metal loaded MTB-3 in the magnetic field, the axial saturation build-up model was established to describe the performance of the MTB-3 cells in the HGMS process. Combined with the phenomenology model, kinetic characteristic of the movement of the metal loaded cells in the whole magnetic separator was described and predicted.
     Based on the high magnetotaxis and the high selective biosorption capacity of Stenotrophomonas sp. biomass, a coupling technology“selective biosorption and HGMS”was put forward in this study to recover gold from wastewater. The results showed that the recovery ratio for gold and copper were 90.2% and 81.0%, respectively, and the discharged water could meet the national drainage standard for gold(III) and copper(II).
引文
[1] Sum E Y L, Recovery of metal from electronic scrap, JOM, 1991, 43(4): 53-61.
    [2]胡天觉,曾光明,袁兴中,从家用电器废物中回收贵金属,中国资源综合利用,2001(7): 12-15.
    [3]吴蜂,电子废弃物的环境管理与处理处置技术初探——国外现状综述,中国保产业,2001(2): 38-39.
    [4]上海市废气物管理处,上海电子废气物的情况调查和思考,2002,11.
    [5]钟韵江,电脑变成垃圾何去何从,大众电脑,2002(5): 9-10.
    [6]沈洪,大有发展前途的电脑垃圾,中国物资再生,1999(4): 30.
    [7]曹人平,肖士民,废旧手机中金钯银的回收,贵金属,2005,26(2): 13-15.
    [8] Gloe K, Muehl P, Knothe M, Recovery of precious metals from electronic scrap in particular from waste products of the thick-layer technique, Hydrometallurgy, 1990, 25: 99-110.
    [9]国家环保总局危险废物培训管理与技术转让中心,废旧手机回收必要性及处理处置方法,http://www.sina.com.cn,2003-10-12.
    [10]朱喆,李登新,钟非文等,硫代硫酸盐从废弃印刷线路板中浸金实验研究,矿冶工程,2006,26(5): 50-52.
    [11]王淑玲,贵金属资源及供需形势,中国矿业,2003,12(4): 10-14.
    [12]李哲浩,宋玉国,发展循环经济、走矿产合理开发和资源综合利用之路,黄金科技,2007-11-08.
    [13]柴晓兰,曹亦俊,王春彦等,机械处理废弃印刷线路板,中国资源综合利用,2003(02): 23-26.
    [14]黎鼎鑫,贵金属提取与精炼,长沙:中南大学出版社,2003.
    [15] Duyvesteyn W D C, Liu H Y, Duyvesteyn S, Dissolution of platinum group metals from materials containing said metals, US Patent, 5304359, 1994-04-19.
    [16]周全法,尚通明,废电脑及配件与材料的回收利用,北京:化学工业出版社材料科学与工程出版中心,2003,1,157.
    [17] Hubicki Z, Leszczynska M, Lodyga B, et al., Palladium(II) removal from chloride and chloride–nitrate solutions by chelating ion-exchangers containing N-donor atoms, Minerals Engineering, 2006, 19(13): 1341-1347.
    [18]丁明,曾桓兴,铁氧体工艺处理含重金属污水研究现状及展望,环境科学,1992,13(2): 59-67.
    [19] Clàudia F, Victòria S, Manuela H, Selective enrichment of palladium from spent automotive catalysts by using a liquid membrane system. Journal of Membrane Science, 2003, 223(1-2): 39-48.
    [20]杨骏,秦涨峰,陈戎英,活性碳吸附水中铅离子的动态研究,环境科学,1997,16(5): 423-427.
    [21] Tobin J M, Cooper D G, Neufeld A G, Investigation of the mechanism of metal uptake by denatured Rhizopus arrizus biomass, Enzyme and Microbial Technology, 1990, 12(8): 591-595.
    [22] Bahaj A S, Ellwood D C, Watson H P, Extraction of heavy medals using microorganisms and high gradient magnetic separation, IEEE Transactions on Magnetics, 1991, 27(6): 5371-5374.
    [23] Veglio F, Beolchini F, Removal of metals by biosorption: a review, Hydrometallurgy, 1997, 44(3): 301-316.
    [24]马贺伟,廖学品,王茹等,皮胶原纤维固化单宁膜的制备及其对水溶液中铅和汞的吸附,化工学报,2005,56(10): 1907-1911.
    [25]温志良,毛友发,陈桂珠,重金属污染生物恢复技术研究,环境科学动态,1999,3: 15-17.
    [26]刘月英,李仁忠,张秀丽等,固定化地衣芽抱杆菌R08吸附Pd2+的研究,微生物学报,2002,42(6): 700-705.
    [27] Lioyd J R, Harding C L, Macaskie L E. Tc(VII) reduction and accumulation by immobilized cells of Escherichia coli, Biotechnology and Bioengineering, 1997, 53(3): 505-509.
    [28]吴乾替,李听,李福德等,微生物治理电镀废水的研究,环境科学,1997, 18 (5): 47-50.
    [29] Merroun M L, Ben O N, Gonzalez M T, et al., Myxococcus xanthus biomass as biosorbent for lead. Journal of Applied Microbiology, 1998, 84: 63-67.
    [30]刘恒,王建龙,文湘华,啤酒酵母吸附重金属离子铅的研究,环境科学研究,2002,15(2): 26-29.
    [31] Volesky, Biosorption of heavy metals by Saccharomyces cerevisiae, Applied Microbiology and Biotechnology, 1995, 42: 797-806.
    [32]吴涓,李清彪,邓旭等,白腐真菌吸附铅的研究,微生物学报,1999,39(1): 87-90.
    [33]屠娟,张利,赵力,非活性黑根霉对废水中重金属离子的吸附,环境科学,1995,16(1): 12-15.
    [34]张利,俞耀庭,发酵废渣黑根霉对铅离子的吸附作用,离子交换与吸附,1995,11(6): 545-549.
    [35]陈勇生,孙启俊,陈钧等,重金属的生物吸附技术研究,环境科学进展,1997,5(6): 34-42.
    [36]张利,孔德领,屠娟等,发酵废渣黑根霉菌对铅离子吸附机理的研究,离子交换与吸附,1996,12(4): 317-323.
    [37]汤岳琴,牛慧,林军等,产黄青霉废菌体对铅的吸附机理研究,四川大学学报,2001,33(3): 50-54.
    [38] Kuyucak N, Volesky B, Accumulation of cobalt by marine algae, Biotechnology Bioengineering, 1989, 33(7): 809-814.
    [39] Cetinkaya G D, Aksu Z, Ozturk A, et al., A comparative study on heavy metal biosorption characteristics of some algae, Process Biochemistry, 1999, 34: 885-892.
    [40] Greene B, Interaction of gold(I) and gold(II) complexes with algat biomass, Environmental Science and Technology, 1986, 20: 627-632.
    [41] Gardea-Torresdey J R, Tiemann K J, Parsons J G, et al., XAS investigations into the mechanism(s) of Au(III) binding and reduction by alfalfa biomass, Microchemical Journal, 2002, 71(2-3): 193-204.
    [42] Hosea M, Greene B, McPherson R, et al., Accumulation of elemental gold on the alga Chlorella vulgaris, Inorganica Chimica Acta, 1986, 123: 253-261.
    [43] Savvaidis I, Recovery of gold from thiourea solutions using microorganism, Biometal, 1998, 11(2): 145-151.
    [44] Niu H, Volesky, Characteristics of gold biosorption from cyanide solution, Journal of Chemical Technology and Biotechnology, 1999, 74(8): 778-784.
    [45] Niu H, Volesky, Gold-cyanide biosorption with L-cysteine, Journal of Chemical Technology and Biotechnology, 2000, 75(6): 436-442.
    [46] Liu Y Y, Fu J K, Luo X F, et al., Transmission electron microscopic observation of Au3+ biosorption by Saccharomyces cerevisiae, Journal of Chinese Electron Microscopy Society, 2000, 19(5): 695-698.
    [47]刘月英,傅锦坤,胡洪波等,金霉素链霉菌废菌丝体吸附金(Au3+)特性的表征,科学通报,2001,46(14): 1179-1182.
    [48]黄淑惠,吸附金(Au3+)的真菌筛选,微生物学通报,1991,18(1): 11-13.
    [49] Akthar N, Sastry S, Mohan M, Biosorption of silver ions by processed Aspergillus niger biomass, Biotechnology Letter, 1995, 17(5): 551-556.
    [50] Korenevskii A A, Khamidova K, Avakyan Z A, et al., Silver biosorption by micromycetes, Microbiology, 1999, 68(2): 139-145.
    [51]傅锦坤,刘月英,古萍英等,乳酸杆菌A09吸附还原Ag(I)特性的谱学表征,物理化学学报,2000,16(9): 779-782.
    [52]刘月英,傅锦坤,陈平等,巨大芽抱杆菌D01吸附金的研究,微生物学报,2000,40(4): 88-92.
    [53] Liu Y Y, Fu J K, Zhou Z H, et al., Study of Pt4+ adsorption and reduction by Bacillus megaterium D01, Chemical Research in Chinese Universities, 2000, 16(3): 1-4.
    [54]胡洪波,细菌吸附Pt4+的研究:[硕士学位论文],厦门:厦门大学,2002.
    [55]李仁忠,细菌吸附Pd2+的研究:[硕士学位论文],厦门:厦门大学,2000.
    [56] Darnall W D, Greene B, Selection recovery of gold and other metal ions from an algal biomass, Environmental Science Technology, 1986, 20: 206-208.
    [57] Ozer D, Aksu Z, Kustal T, et al., Adsorption isotherms of lead(II) and chromium(VI) on Cladophora crispate, Environmental Technology, 1994, 15: 439-488.
    [58] Ting Y P, Lawson F, Uptake of cadmium and zinc by the alga Chlorella vulgaris: I. Individual ion species, Biotechnology and Bioengineering, 1989, 34: 990-999.
    [59] Ting Y P, Lawson F, Uptake of cadmium and zinc by the alga Chlorella vulgaris: II. Multi-ion situation, Biotechnology and Bioengineering, 1991, 37: 445-455.
    [60] Matheickal J T, Yu Q M, Biosorption of lead(II) and copper(II)from aqueous solutions by pre-treated biomass of Australian marine algae, Bioresource Technology, 1999, 69: 223-229.
    [61] Ho Y S, McKay G,. Pseudo-second order model for sorption processes, Process Biochemistry, 1999, 34: 451-465.
    [62]陈勇生,水和废水监测分析方法(第3版),北京:中国环境科学出版社,1989.
    [63]杨芬,藻类对重金属的生物吸附技术研究及其进展,曲靖师范学院学报,2002,21(3): 47-49.
    [64] Kuyucak N, Volesky B, Biosorbents for recovery of metals from industrial solutions, Biotechnology Letters, 1988, 10: 137-142.
    [65] Terashima M, Oka N, Sei T, et al., Adsorption of cadmium ion and gallium ion to immobilized metallothionein fusion protein, Biotechnology Progress, 2002, 18(6): 1318-1323.
    [66] Guibal E, Roulph C, Uranium biosorption by a filamentous fungus Mucor miehel pH effect on mechanism and performances of uptake, Water Research, 1992, 26(8): 1139-1145.
    [67] Tsezos M, Biosorption of metals: the experience accumulated and the outlook for technology development, Hydrometallurgy, 2001, 59: 241-243.
    [68] Brady J M, Tobin J M, Binding of hard and soft metal ions to Rhizopus arrhizus biomass, Enzyme and Microbial Technology, 1995, 17(9): 791-796.
    [69] Simmons P, Singleton I, A method to increase silver biosorption by an industrial strain of Saccharomyces cerevisiae, Applied Microbiology and Biotechnology, 1996, 45(1-2): 278-285.
    [70] Watkins J W, Elder R C, Greene B, et al., Determination of gold bind in the algal biomass using EXAFS and XANES spectroscopes, Inorganic Chemistry,1987, 26: 143-147.
    [71] Hosea M, Greene B, McPherson R, et al., Accumulation of elemental gold on the alga chlorella- vulgaris. Inorganica Chimica Acta, 1986, 123(3): 161-165.
    [72] Gamez G K, Dokken K J, Tiemann I, et al., Spectroscopic studies of gold(III) binding to alfalfa biomass, Proceedings of the 2000 Conference on Hazardous Water Research: Gateway to Environmental Solutions, Manhattan, KS, 2000, 78-90.
    [73] Lloyd J R, Ping Y, Lynne E M, Enzymatic recovery of element palladium by using Sulfate-reducing bacteria, Applied and Environmental Microbiology, 1998, 64(11): 4607-4609.
    [74] Volesky B, May H, Cadmium biosorption by Saccharomyces cerevisiae, Biotechnology and Bioengineering, 1993, 41: 826-829.
    [75] Ulberg Z R, Karamushka V I, Vidybida A K, et al., Interaction of energized bacteria cell with particles of colloidal gold: peculiarities and kinetic model of the process, Biochimica et Biophysica Acta, 1992, 1134: 89-95.
    [76] Ohnuki T, Ozaki T, Yoshida T, et al., Mechanisms of uranium mineralization by the yeast Saccharomyces cerevisiae, Geochimica et Cosmochimica Acta, 2005, 69(22): 5307-5316.
    [77] Lopez A, Lazaro N, Morales S, et al., Nickel biosorption by free and immobilized cells of Pseudomonas fluorescens 4F39: A comparative study. Water, Air, Soil Pollut, 2002, 135: 157-172.
    [78] Bai R S, Abraham T E, Studies on chromium(VI) adsorption-desorption using. immobilized fungal biomass, Bioresource Technology, 2003, 87: 17-26.
    [79] Akhtar N, Iqbal J, Iqbal M, Removal and recovery of nickel(II) from aqueous solution by loofa sponge-immobilized biomass of Chlorella sorokiniana: characterization studies, Journal of Hazardous materials, 2004, 108: 85-94.
    [80] Blakemore R P, Magnetotactic bacteria, Science, 1975, 190(2): 377-379.
    [81] Blakemore R P, Frankel R B, Kalmijn A J, et al., South-seeking magnetotactic bacteria in the southern hemisphere, Nature, 1980, 236: 384-385.
    [82] Simmons S L, Bazylinski D A, Edwards K J, South-seeking magnetotactic bacteria in the Northern Hemisphere, Science, 2006; 311: 371-374.
    [83] Bazylinski D A, Frankel R B, Anaerobic magnetite production by a marine, magnetotactic bacterium, Nature, 1988, 334: 518-519.
    [84] Frankel R B, Blakemore R P, Tomes F F, et al., Magnetotactic bacteria at the geomagnetic equator, Science, 1981, 212: 1269-1270.
    [85] Matsunaga T, Sakaguchi T, Tadokoro F, Magnetite formation by a magnetic bacterium capable of growing aerobically, Applied and Microbiology Biotechnology, 1991, 35: 651-655.
    [86] Sparks N H C, Loyd T L, Board R G, Salt marsh ponds a preferred habitat for magnetotactic bacteria, Letter in Applied Microbiology, 1989, 8: 109-111.
    [87] Frankel R B, Blakemore R P, Wolfe R S, Magnetite in Freshwater Magnetotactic Bacteria, Science, 1979, 203: 1355-1356.
    [88] Sparks N H C, Courtaux L, Mann S, et al., Magnetotactic bacteria are widely distributed in sediments in the UK, Fems Microbiology Letters, 1986; 37: 305-308.
    [89] Matsunaga T, Kamiya S, Use of magnetite particles isolated from magnetotatic bacteria for enzyme immobilization, Applied and Environmental Microbiology, 1987, 26(4): 328-332.
    [90] Kannapiran E, Purushothaman A, Magneto bacteria from estuarine, mangrove and coral reef environs in Gulf of Mannar, Indian Journal of Marine Sciences, 1999, 28 (3): 332-334.
    [91] Petermann H, Bleil U, Detection of live magnetotactic bacteria in South Atlantic deep-sea sediments, Planetary Science Letters, 1993, 117: 223-228.
    [92] Sparks N H C, Mann S, Structure and morphology of magnetite annaerobically produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium, Earth and Planetary Science Letters, 1990, 98: 14-22.
    [93] Farina M, Eesqutvel D M S, Magnetic iron-sulphur crystals from a magnetotactic microorganism, Nature, 1990, 343: 256-258.
    [94] Fassbinder J W E, Stanjek H, Vali H, Occurrence of magnetic bacteria in soil, Nature, 1990.
    [95]彭先芝,贾蓉芬,李荣森等,黄土-古土壤序列中趋磁细菌分布和磁小体形成的古环境研究,科学通报,2000,45: 2710-2715.
    [96] Hakho L, Alfreda M P, Vincent C, et al., Controlled assembly of magnetic nanoparticles from magnetotactic bacteria using microelectromagnets arrays, Nano Letters, 2004, 4(5): 995-998.
    [97] Farina M, Kachar B, Lins, et al., The observation of large magnetite crystals from magnetotactic bacteria by electron and atomic force microscopy, Journal of Microscopy, 1994,173: 1-8.
    [98] Moskowitz B M, Biomineralization of magnetic minerals, Reviews of Geophysics, 1995, 33: 123-128.
    [99] Bazylinski D A, Frankel R B, Magnetosome formation in prokaryotes, Nature Reviews Microbiology, 2004, 2(3): 217-230.
    [100] Scheffel A, Gruska M, Faivre D, et al., An acidic protein aligns magnetosomes along a filamentous structure in magnetotactic bacteria, Nature, 2006, 440: 110-114.
    [101] Blakemore R P, Magnetotactic bacteria, Annual Review of Microbiology, 1982, 36: 217-238.
    [102] Matsunaga T, Application of Bacterial Magnets, Tibtech-March, 1991, 9: 91-95.
    [103]松永呈,于光林编译,生物传感器,上海:上海远东出版社,1992,468-475.
    [104] Berquo T S, Thompson R, Partiti C S M, Magnetic study of Brazilian peals from Sao Paulo state, Geoderma, 2004, 118: 233-243.
    [105] Egli R, Characterization of individual rock magnetic components by analysis of remanence curves: 2. Fundamental properties of coercivity distributions, Physics and Chemistry of the Earrh, 2004, 29: 851-867.
    [106] Kumar A A, Rao V P, Patil S K, et al., Rock magnetic records of the sediments of the eastern Arabian Sea: Evidence for late quaternary climatic change, Marine Geology, 2005, 220: 59-82.
    [107] Safarik I, Safarikova M, Magnetic nanoparticles and biosciences, Monatshefte fur Chemie, 2002, 133: 737-759.
    [108] Bazylinski D A, Schlezinger D R, Howes BH, et al., Occurrence and distribution of diverse populations of magnetic protists in a chemically stratified coastal salt pond, Chemical Geology, 2000, 169: 319-328.
    [109] Verosub K L, Roberts A P, Environmental Magnetism: past, present and future, Journal of Geophysical Research: Solid Earth, 1995, 100: 2175-2192.
    [110] Bahaj A S, James P A B, Characterization of magnetotactic bacteria using image processing techniques, IEEE Transactions on Magnetics,1993, 29(6): 3358-3360.
    [111] Matsunaga T, Applications of bacterial magnets, Trends in Biotechnology, 1991, 9: 91-95.
    [112] Takeyama H, Yamazawa A, Nakamura C, et al., Application of bacterial magnetic particles as novel DNA carriers for ballistic transformation of a marine cyanobacterium, Biotechnology Techniques, 1995, 9(5): 355-360.
    [113] Sakaguchi T, Burgess J G., Matsunaga T, Magnetite formation by a sulphate-reducing bacterium, Nature, 1993, 365: 47-49.
    [114] Matsunaga, T, Sakaguchi T, Tadokoro, et al., Magnetite formation by a magnetic bacterium capable of growing aerobically, Applied Microbiology and Biotechnology, 1991, 35: 651-655.
    [115] Matsunaga T, Sakaguchi T, Tadokoro F, Magnetite formation by a magnetic bacterium capable of growing aerobically, Applied Microbiology and Biotechnology, 1993, 39: 368-371.
    [116] Schuler D, Kuhler M, The isolation of a new magnetic spirillum, Zentrakbk mikrobiol, 1992, 147: 150-151.
    [117] Watson J H P, Bahaj A S, Vortex capture in high gradient magnetic separation at moderate reynolds number,IEEE Transaction on magnetics, 1989, 25(5): 3803-3805.
    [118] Bahaj A S, James P A B, Metal uptake and separation using magnetic bacteria, IEEE Transaction on magnetics, 1994, 30(6): 4707-4709.
    [119] Bahaj A S, James P A B, Continuous cultivation and recovery of magnttotactic bacteria, IEEE Transaction on magnetics, 1997, 33(5): 4263-4265.
    [120]陈明杰,卫扬保,趋磁细菌及磁小体研究的回顾和展望,微生物学杂志,1994,15: 53-57.
    [121]卫扬保,姜伟,张洪霞,趋磁细菌WD-1生理生化特性研究,武汉大学学报(自然科学版),1994: 121-127.
    [122]卫扬保,张洪霞,姜伟,趋磁细菌研究I.武昌东湖水体中趋磁细菌WD-1的分离,武汉大学学报(自然科学版),1994,(6): 115-120.
    [123]李挥文,卫扬保,趋磁细菌研究—唬拍酸脱氢酶、呼吸抑制剂、解偶联剂对WD-1生长与磁小体合成的影响,武汉大学学报(自然科学版),1996,42: 481-486.
    [124]陈明杰,卫扬保,铁(III)对趋磁细菌WD-1菌株分泌铁鳌合物活性的影响,武汉大学学报(自然科学版),1998,44: 474-476.
    [125]姜伟,卫扬保,趋磁细菌WD-1的超微结构及批量培养方法,微生物学通报,2001,28: 75-77.
    [126]高梅影,戴顺英,刘艳丽等,从武汉印染厂废水淤泥中分离出的趋磁细菌的生长与磁小体形成过程,应用于环境生物学报,2004,10: 194-196.
    [127]范国昌,李荣森,李小刚等,我国趋磁细菌的分布及其磁小体的研究,科学通报,1996; 41: 349-352.
    [128]范国昌,钱凯先,李荣森等,磁杆菌HMB-1的磁小体特性及其合成条件的研究.生物学杂志,1998,15: 11-14.
    [129]贾蓉芬,颜备战,李荣森等,陕西段家坡黄土剖面中趋磁细菌特征与环境意义,中国科学(D),1996,25: 410-416.
    [130]李荣森,范国昌,贾蓉芬等,黄土剖面中趋磁细菌及其磁小体的初步研究,地球化学,1996,25: 251-254.
    [131]吴小玲,都有为,一株趋磁弧菌及其磁小体特性的研究,南京大学学报(自然科学),1999,35(6): 745-749.
    [132]吴小玲,钟伟,都有为,一株G-球形趋磁细菌的发现与表征,南京大学学报(自然科学),1999,35: 430-435.
    [133]高峻,肖天,孙松等,新型海洋趋磁细菌YSC-1的分离及其特异性磁性纳米材料磁小体的研究,高技术通讯,2004,14: 44-47.
    [134]高峻,宋涛,潘红苗等,新型海洋趋磁细菌YSC-I的磁性能分析,高技术通讯,2005,15: 107-110.
    [135] Pan Y X, Petersen N, Davila A F, et al., The detection of bacterial magnetite in recent sediments of Lake Chiemsee (Southern Germany), Earth and Planetary Science Letters, 2005, 232:109-123.
    [136] Pan Y X, Deng C L, Liu Q S, et al., Biomineralization and magnetism of bacterial magnetosomes, Chinese Science Bulletin, 2004, 49: 2563-2568.
    [137] Pan Y X, Petersen N, Winklhofer M, et al., Rock magnetic properties of uncultured magnetotactic bacteria, Earth and Planetary Science Letters, 2005, 237: 311-325.
    [138] Birnbaum M J, Clem R J, Miller L K, et al., An apoptosis-inhibiting gene from a nuclear polyhedrosis virus encoding a polypeptide with Cys/His sequence motifs, Journal of Virology, 1994, 68: 2521-2528.
    [139] Meldrum F C, Mann S, Heywood B R, et al., Electron microscopy study of magnetosomes in two cultures vibroid magnetotactic bacterium, Proceedings of the Royal Society of London, Series B: Biological sciences, 1993, 251: 237-242.
    [140]贾蓉芬,彭先芝,高梅影,中国黄土剖面趋磁细菌的组成特征与生态意义,岩石矿物学杂志,2001,20(4): 428-432.
    [141] Barylinski D A, Garratt-Reed A J, Frankel R B, Electron microscopic studies of magnetosomes in magnetotactic bacteria, Microscopy Research Technology, 1994, 27: 389-401.
    [142] Balkwill D L, Maratea D, Blakemore R P, Ultrastructure of a magnetotactic spirillum, The Journal of Bacteriology, 1980, 141: 1399-1408.
    [143] Mann S, Sparks N H C, Frankel R B, et al., Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium, Nature, 1990, 343: 258-260.
    [144] Mann S, Frankel R B, Blakemore R. P, Structure, morphology and crystal growth of bacterial magnetite, Nature, 1984, 310: 405-407.
    [145] Frankel R B, Blake R P, Magnetite and magneto-taxis in microorganisms, Bioelectromagnetics, 1989,10: 223-237.
    [146] Schuler D, The biomineralization of magnetosomes in magnetospirillum gryphiswaldense, International Microbiology, 2002, 5: 209-214.
    [147] Schuler D, Formation of magnetosomes in magnetotactic bacteria, Journal of Molecular Microbiology and Biotechnology, 1999, 1: 79-86.
    [148] Kolm H H, Oberteuffer J A, Kelland D R, High gradient magnetic separation, Scientific American, 1975, 223(5): 47-54.
    [149] Oberteuffer J A, Magnetic Separation: A review of principles, device and applications, IEEE Transactions on Applied Superconductivity, 1974, 10(2): 223-238.
    [150]郑必胜,郭祀远,应用高梯度磁分离技术处理糖蜜酒精废水,环境科学报,1999, 19(3): 252-255.
    [151]陈国华,高梯度磁净化在污水处理方面的应用,环境科学,1980,(5): 71.
    [152]宋金璞,王大志,郑学玉等,高梯度磁滤法除菌的研究,给水排水,1997, 23(1): 16.
    [153] Booker N A, Keir D, Priestley A, et al., Sewage clarification with magnetic particles, Water Science and Technology, 1991, 23(12): 1703-1712.
    [154] Watson J H P, Ellwood D C. Biomagnetic separation and extraction process, IEEE Transactions on Magnetics, 1987, 23(5): 3751-3752.
    [155]宋金璞,杨镇国,大梯度磁滤器对饮用水中有害物质的去除,中国给水排水,1997, 13(2): 4-7.
    [156]彭伟功,高梯度磁净化除尘的理论及实验研究:[硕士学位论文],武汉:武汉科技大学,2004.
    [157]顾夏生,水处理工程,北京:清华大学出版社,1985: 17-20.
    [158] Zebel G., Deposition of aerosol flowing past a cylindrical fiber in a uniform electric field, Journal of Colloid and Interface Science, 1965, 20: 522.
    [159] Watson J H P, Magnetic filtration, Journal of Applied Physics, 1973, 44(9): 4209-4213.
    [160] Watson J H P. Theory of capture of particles in magnetic high-intensity filters. IEEE Transactions on Magnetics, 1975, 11(5): 1597-1599.
    [161] Hayashi K, Uchiyama S, On particle trajectory and capture efficiency around many wires, IEEE Transactions on Magnetics, 1980, 16(5): 827-829.
    [162] Greiner H, Reger G, Hoffmann H, The (comparative) performance of HGMS Filters with a strictly ordered wire matrix in the axial and transverse configuration, IEEE Transactions on Magnetics, 1984, 20(5): 1171-1173.
    [163] Birss R R, Gerber R; Parker M, Theory and performance of axial magnetic filters in laminar flow conditions, IEEE Transactions on Magnetics, 1978, 14(5): 389-392.
    [164] Birss R R, Gerber R, Parker M, Laminar flow model of particle capture of axial magnetic filters, IEEE Transactions on Magnetics, 1978, 14(6): 1165-1169.
    [165] Luborsky F E, Drummond B J, High gradient magnetic separation theory versus experiment, IEEE Transactions on Magnetics, 1976, 11(6): 1696-1705.
    [166] Cowen C, Friedlaender F J, Jaluria R, Single wire model of high gradient magnetic separation process I, IEEE Transactions on Magnetics, 1976, 12(5): 466-470.
    [167] Friedlaender F J, Studies of single wire parallel stream type HGMS, IEEE Transactions on Magnetics, 1978, 14(5): 404-407.
    [168] Nesset J E, Todd I, Aloading equation for high gradient magnetic separation, IEEE Transactions on Magnetics, 1980, 1(5): 833-835.
    [169] Nesset J E, Finch J A, The static (buildup) model of particle accumulation on single wires in high gradient magnetic separation experimental confirmation, IEEE Transactions on Magnetics, 1981, 17(4): 1506-1509.
    [170] Bahaj A S, James P B, Moeschler F D, Low magnetic field separation system for metal-loaded magnetotactic bacteria, Journal of Magnetism and Magnetic Materials, 1998, 177-181.
    [171] Davies L P, Gerber R, 2-D simulation of ultra-fine particle capture by a single-wire magnetic collector, IEEE Transactions on Magnetics, 1990, 26(5): 1867-1869.
    [172] Cowen C, Friedlaender F J, Jaluria R, High gradient magnetic field particle capture on a single wire, IEEE Transactions on Magnetics, 1975, 11(5): 1600-1602.
    [173] Watson J H P, Approximate solution of the magnetic separator equations, IEEE Transactions on Magnetics, 1978, 14(4): 240-243.
    [174] Watson J H P, Theoretical and single wire studies of vortex magnetic separation, Minerals Engineering, 1992, 5(10-12): 1147-1165.
    [175] Cowen C, kokkala M, Ritvos A, Analysis of magnetic filter experiments with polydisperse partical susperfsions, IEEE Transactions on Magnetics, 1979, 15(6): 1529-1531.
    [176] Akoto I Y, Mathematical modelling of high-gradient magnetic separation devices, IEEE Transactions on Magnetics, 1977, 13: 1486-1489.
    [177]王卫星,随机过程在流膜选矿中的应用,北京:科学出版社出版,1995.
    [178] Birss R R, Gerber R, Parker M R, Theory and design of axially ordered filters for high intensity magnetic separation. IEEE Transactions on Magnetics, 1976, 12(5): 892-894.
    [179] Birss R R, Gerber R, High gradient magnetic separation, John Wiley and Son Ltd, Chichester: Research Studies Press, 1983.
    [180] Luborsky F E, Drummond B J, Build-up of particles on fibers in a high field-high gradient separator, IEEE Transactions on Magnetics, 1976, 12(5): 463-465.
    [181] Nesset S E, Finch J A, A static model of high gradient magnetic separation based on forces within the fluid boundary layer: Industrial applications of magnetic separation, New York: IEEE Publication, No.78CH1447-2, 1978-5.
    [182] McNeese W H, Theoretical and experimental single wire studies in high gradient magnetic separation: [PhD Thesis], West Lafayette: Purdue University, 1980.
    [183] McNeese W H, Wankat P C, Emulsion separation by single wire HGMS, IEEE Transactions on Magnetics, 1980, 16(5): 840.
    [184] McNeese W H, Wankat P C, Friedlaender F J, et al., Viscosity effects in single wire HGMS studies, IEEE Transactions on Magnetics, 1979, 15(6): 520.
    [185]王艳红,磁场-趋磁细菌处理重金属离子废水:[硕士学位论文],天津:天津大学,2005.
    [186] Blakemore, R P, Maratea D, Wolfe R S, Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium, The Journal of Bacteriology, 1979, 140(2): 720-729.
    [187]高峻,一株好氧海洋磁性细菌YSC-1的分离及其特性研究:[博士学位论文],北京:中国科学院海洋研究所,2004.
    [188]李金华,趋磁细菌研究方法及模式菌AMB-1生理特性研究:[硕士学位论文],济南:山东大学,2006.
    [189]孙津生,磁场-趋磁细菌复合工艺处理含重金属离子废水:[博士学位论文],天津:天津大学,2005.
    [190] Wolfe R S, Thauer R K, Pfennig N, A capillary racetrack method for isolation of magnetotactic bacteria, FEMS Microbiology Ecology, 1987, 45(1): 31-36.
    [191] Thornhill R H, Burgess J G, Sakaguchi T, et al., A morphological classification of bacteria containing bullet-shaped magnetic particles, Fems Micobiology Letters, 1994, 115: 169-176.
    [192] Schuler D, Spring S, Bazylinski D A, Improved technique for the isolation of magnetotactic spirilla from a freshwater sediment and their phylogenetic characterization, Systematic and Applied Microbiology, 1999, 22: 466-471.
    [193] Ulysses L, Flavia F, Carolina N K, et al., Simple homemade apparatus for harvesting uncultured magnetotactic microorganisms, Brailian Journal of Microbiology, 2003, 34: 111-118.
    [194]刘艳丽,趋磁细菌的分离与培养和磁小体钝化技术研究:[硕士学位论文],北京:中国科学院,2005.
    [195]沈萍,范秀容,李广武,微生物学实验(第三版),北京:高等教育出版社,1999,28-31.
    [196]米琴,鲍敏,KOH-Test方法快速判定菌株的革兰氏染色反应,青海师专学报(教育科学),2005(4): 70-71.
    [197]朱一民,微生物对水相中重金属离子的吸附研究:[博士学位论文],哈尔滨:东北大学,2003.
    [198]刘慧君,极大螺旋藻对几种金属离子生物吸附的研究:[硕士学位论文],福州:福建师范大学,2004.
    [199] Chen L D, Wang X, Xu L R, et al., Thermodynamic analysis of heavy metals biosorption by two macroalgae, Marine Science Bulletin, 2004, 6(1): 47-52.
    [200]黄富荣,尹华,彭辉等,红螺菌吸附铜的动力学与脱附研究,2004,23(1): 35-37.
    [201]蔡艳荣,黄宏志,P510树脂从含金氰化溶液中吸附金和解吸金的性能研究,选矿与冶炼,2005,2(26): 34-37.
    [202] Lin Z Y, Wu J M, Xue R, et al., Spectroscopic characterization of Au3+ biosorption by waste biomass of Saccharomyces cerevisiae, Spectrochimica Acta Part A, 2005, 61: 761-765.
    [203]薛茹,林种玉,郑建红等,Ag+生物吸附的谱学研究,高等化学学报,2006,3(27): 553-555.
    [204] Fassbinder J W E, Stanjek H, Vali H, Occurrence of magnetic bacteria in soil, Nature, 1990, 343: 161-163.
    [205]章勇良,卫扬保,杨清香,趋磁细菌研究IV:好氧趋磁细菌HM-1的分离及生物学特性研究,武汉大学学报(自然科学版),1997,43(6): 775-780.
    [206] Gamez G., Gardea-Torresdey J L, Tiemann K J, et al., Recovery of gold(III) from multi-elemental solutions by alfalfa biomass, Advances in Environmental Research, 2003, 7(2): 563-571.
    [207] Canan E D, Kadir T, G?ksel A, et al., Biosorption of Au(III) and Cu(II) from aqueous solution by a non-living Cetraria islandica(L.) Ach, Annali di Chimica, 2006, 96(3-4): 229-236.
    [208] Pethkar A V, Kulkarni S K, Paknikar K M, Comparative studies on metal biosorption by two strains of Cladosporium cladosporioides, Bioresource Technology, 2001, 80(3): 211-215.
    [209] Kapoor A, Viraraghavan T, Fungal biosorption-an alternative treatment option for heavy metal bearing wastewaters: a review, Bioresource Technology, 1995, 53(3): 195-206.
    [210] Mack C, Wilhelmi B, Duncan J R, et al., Biosorption of precious metals, Biotechnology Advances, 2007, 25(3): 264-271.
    [211] Ayla ?, Dursun ?, Hìbrahim E, The equilibrium and kinetic modelling of the biosorption of copper(II) ions on Cladoghora crispate, Adsorption, 2005, 10(4): 317-326.
    [212] Ye?im S, Burak A, Tülin K, Ternary biosorption equilibria of chromium(VI), copper(II) and cadmium(II) on Rhizopus arrhizus, Separation Science and Technology, 2002, 37(2): 279-309.
    [213] http://research.stowers-institute.org/wiw/external/Technology/FCS/index.htm.
    [214] Dean J A, Lange's Handbook of Chemistry(15th Edition), New York: McGraw-Hill, 1999.
    [215] Ye?im S, Burak A, Tülin K, Evaluation, interpretation, and representation of three-metal biosorption equilibria using a fungal biosorbent, Process Biochemistry, 2001, 37: 35-50.
    [216] Zümriye A, Hanife G, Binary biosorption of iron(III) and iron(III)-cyanide complex ions on Rhizopus arrhizus: modeling of synergistic interaction, Process Biochemistry, 2002, 38: 161-173.
    [217] López M L, Gardea-Torresdey J L, Peralta-Videa J R, et al., Gold binding by native and chemically modified hops biomasses, Bioinorganic Chemistry and Applications, 2005, 3(1-2): 29-41.
    [218] Pethkar, AV, Paknikar, K.M., Recovery of gold from solutions using Cladosporium cladosporioides biomass beads. Journal of Biotechnology, 1998, 63: 121-136.
    [219] Jeremy B F, Christopher J D, Nathan Y, et al., A chemical equilibrium model for metal adsorption onto bacterial surface, Geochimica et Cosmochimica Acta, 1997, 61(16): 3319-3328.
    [220] Liane G, Benning V R, Phoenix N Y, et al., Molecular characterization of cyanobacterial silicification using synchrotron infrared micro-spectroscopy, Geochimica et Cosmochimica Acta, 2004, 68(4): 729-741.
    [221] Naja G, Mustin C, Volesky B, et al., A high resolution titrator: a new approach to studying binding sites of microbial biosorbents, Water Research, 2005, 39: 579-588.
    [222] Priyabrata M, Satyajyoti S, Deendayal M, et al., Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum, ChemBioChem, 2002, 3(5): 461-463.
    [223] Fourest E, Volesky B, Contribution of sulfonate groups and alginate to of Sargssum fluitans, Environmental Science and Technology, 1996, 30: 277-282.
    [224] Beveridge T J, Murray R G E, Sites of metal deposition in the cell wall of Bacillus subtilis, Journal of Bacteriology, 1980, 141: 876-887.
    [225] Seki H, Suzuki A, Mitsueda S I, Biosorption of heavy metal ions on Rhodobacter sphaeroides and Alcaligenes eutr. phush16, Journal of Colloid and Interface Science, 1994, 197(2): 185-190.
    [226] Yun Y S, Volesky B, Modeling of lithium interference in cadmium biosorption, Environmental Science and Technology, 2003, 37(16): 3601-3608.
    [227] Volesky B, Sorption and Biosorption, Quebec, Canada: BV-Sorbex Inc., St. Lambert, 2003, 41.
    [228] Yee N, Benning L G, Phoenix V R, et al., Characterization of infrared spectroscopic investigation, Environmental Science and Technology, 2004, 38: 775-782.
    [229] Markai S, Andres Y, Montavon G, et al., Study of the interaction between Europium(III) and Bacillus subtilis: fixation sites biosorption modeling and reversibility, Journal of Colloid and Interface Science, 2003, 262: 351-361.
    [230]王镜岩,朱圣庚,徐长发等,生物化学(第三版),北京:高等教育出版社,2002,131.
    [231] Gardea-Torresdey J L, Tiemann K J, Gamez G, et al., Reduction and accumulation of gold(III) by Medicago sativa alfalfa biomass: X-ray absorption spectroscopy, pH and temperature dependence, Environmental Science and Technology, 2000, 34: 4392-4396.
    [232] Torres E, Mata Y N, Blazquez A L, et al., Gold and silver uptake and nanoprecipitation on calcium alginate beads, Langmuir, 2005, 21: 7951-7958.
    [233] Ogata T, Nakano Y, Mechanisms of gold recovery from aqueous solutions using a novel tannin gel adsorbent synthesized from natural condensed tannin, Water Research, 2005, 39: 4281-4286.
    [234] Hosea M, Greene B, McPherson R, et al., Accumulation of elemental gold on the alga chlorella vulgaris, Inorganica Chimica Acta, 1986, 123(3): 161-165.
    [235]郑必胜,高梯度磁净化机理及应用技术的研究:[博士学位论文],广州:华南理工大学轻化研究所,1997.
    [236] O’Neill M E, A sphere in contact with a plane wall in slow linear flow, Chemical Engineering Science, 1968, 23: 1293.
    [237]彭先芝,黄土剖面中微生物与有机质的古气候记录—趋磁细菌对磁化率的贡献及其特征生物标志物研究:[博士学位论文],广州:中国科学院广州地球化学研究所,2000.
    [238] Watson, Approximate solutions of the magnetic separator equations, IEEE transactions on magnetics, 1978, 14(4): 240-245.
    [239]谭言毅,罗意,高梯度磁分离的过滤性能计算,四川环境,1997,16(2): 1-8.
    [240]黎鼎鑫,贵金属提取与精炼,上海:中南大学出版社,2003.
    [241] GB8978,污水综合排放标准,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700