用户名: 密码: 验证码:
电脉冲技术在电凝聚法污水处理和微弧氧化领域的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的不断发展,各个学科的交叉研究变得尤为重要。二十一世纪,生物学与生物工程、材料学与材料工程、环境学与环境工程等三大学科的发展对人类的生存和发展、科技的进步及创新等都具有重要的意义。目前,环境问题日益突出,污水处理的研究变得迫切;同时,由于应用领域的扩展以及对材料各类性质的要求在不断提升,材料的表面改性也成为目前研究的热点。污水处理和材料表面改性这两个方向都涉及多个学科,研究难度较大。采用脉冲电凝聚法进行污水处理,以及针对阀金属进行脉冲微弧氧化处理,两者遵循的基本原理都属于电化学理论范畴,使用的设备方法是电力电子研究的领域,因而,两个方向都属于典型的交叉学科研究。
     本文针对脉冲电絮凝法印染污水处理和脉冲微弧氧化等两个特定的应用场合,在深入分析电解槽负载的基础上,得出电解槽负载的等效电路,自制了分别用于污水处理和微弧氧化场合的特种形变脉冲电源,在此基础上,进行了大量的实验研究,得出了一些有意义的结论。主要内容包括:
     (1)形变功率脉冲电源的设计和调试
     针对脉冲电絮凝法印染污水处理和脉冲微弧氧化等两个特定的应用,根据要求分别设计了脉冲电源。电源样机可以输出特定的电压波形,而且输出脉冲电压的幅值、频率和占空比等参数可以实现可编程数字调节。实验表明,电源样机可以满足污水处理及微弧氧化等实验的具体要求。通过功率脉冲电源的研制,为脉冲电凝聚法印染污水处理以及镁合金微弧氧化的实验研究奠定了基础。类似的形变功率电源在相关文献报道中并不多见,本文所设计的脉冲电源输出波形种类多,可以调节的参数多,参数调节方便,是这类形变电源的改进和提高。
     (2)电解槽负载特性的分析
     本文从电化学理论入手,分析了电凝聚过程中与负载工作特性相关的化学反应过程,在直流作用下的电解槽负载特性分析的基础上,对脉冲电源作用下的负载特性进行了分析。通过电化学领域使用的电化学阻抗谱(Electrochemicalimpedance spectroscopy,简称EIS)研究方法,对电解槽进行建模,得出定性和定量的模型,通过实验测量电压、电流曲线,进行参数拟合的方法,得出实际应用时负载的定量模型。深入分析了等效电路各个参数的具体意义,得出双电层电容等参数和污水处理效果的关系。通过改变电解槽的电极配置来实现改变等效电路各电容、电阻等参数的值,从而改变电解槽电流,最后得出了等效电路参数和电极配置的关系。
     本文针对电解槽负载特性进行定性、定量分析,得出其等效电路模型,并采用该模型解释、解决具体的问题,得出相关结论,这样的研究方法在文献中未见报道。该方法采用了EIS理论,并将电解槽的模型作为电化学电极反应和电路分析的桥梁。
     (3)脉冲电絮凝法污水处理的实验研究
     本文针对印染污水,利用自制电源进行了一系列污水处理实验和结果分析。得出了脉冲参数和净化效果、电能净化效率的关系。这些结论为脉冲电凝聚法印染污水处理中,脉冲形式和脉冲参数的选择提供了实验验证,具有借鉴意义。
     在负载特性分析的基础上,分别讨论了电压幅值、电解槽单元数目、极板间距、脉冲的频率及占空比等因素与视在功率、有功功率、电流有效值、电流峰值等因素的关系,分析了脉冲电凝聚法污水处理的功耗,得出功耗和脉冲参数的关系,这些结论及详细理论推导对于本方法的工程应用具有重要参考意义。在此基础上,讨论了污水处理中影响功耗的主要因素,通过计算和外推得出实际工业应用中该方法的能耗状况,为该方法的大规模推广应用提供参考。
     (4)脉冲微弧氧化的研究
     本文针对镁合金AZ91D,进行了脉冲微弧氧化的研究。本文首次从实验现象,极化曲线、X射线衍射图谱(XRD)、扫描电镜(SEM)结果等等方面全面分析比较了采用脉冲和传统的正弦交流进行微弧氧化的异同,通过分析,得出了脉冲微弧氧化可以改善膜层的结论。
     利用自制电源,改变脉冲参数,在不同条件下进行微弧氧化实验,通过分析,研究了脉冲参数对微弧氧化膜层的影响,得到了一些有意义的结论。这些分析和结论对脉冲微弧氧化的深入研究和推广应用都有重要意义。
With the development of science and technology, the study based on multiple subjects becomes especially important. Nowadays, wastewater treatment attracts lots of researchers due to the crisis of environment pollution. At the same time, surface modification of materials also becomes research hot point. However, both of them consist of several subjects and are hard to carry out. Water treatment using electrocoagulation and formation of coatings on valve metals by microarc oxidation (MAO) are typical multiple subjects studies. The main theory included in the two fields is electrochemistry and the equipments are pulse power supplies which belong to the field of power electronics technology.
     The research work in this paper consists of wastewater treatment and MAO using a pulse power. Based on the analysis of the electrolytic bath, the equivalent circuit model is got. Meanwhile, two pulse power supplies are implemented for the experiments of wastewater treatment and MAO. Lots of experiments are carried out and a series of conclusions are obtained.
     The research contents of this paper include four aspects:
     1. The design and debugging of the pulse power supply.
     The model machines are designed based on the experimental demand. The power supplies can output several kinds of pulses and the parameters of the pulse (such as voltage amplitude, frequency and duty cycle) could be set independently. The waveforms and the parameters are set by an accessorial keyboard and displayed by LEDs. The method of the design is discussed in detail.
     2. Load characterristics of electrobath.
     On the basis of the electrochemical theory, academic and the equivalent circuit models of electrobath are obtained by the methods of electrochemical impedance spectroscopy (EIS). Quantitative analysis is carried out through measuring and curve fitting. Further more, the existence and effects of the double layer capacitor in the equivalent circuit are analysed. The relationships between the double layer capacitor and the parameters of the voltage pulse are investigated. In the application of wastewater treatment using a pulse power supply, the basic principle is got on how to choose the appropriate power parameters. Based on the equivalent circuit model, the relationships between the equivalent model of electrobath in wastewater treatment and arrangement of the electrodes are disscused. Statistical theory is used to verify the relationships obtained above. At the same time, some reasonable explanations are proposed to describe the mechanism of such relationships.
     3. The pulse power supply is practically used in the water treatment.
     Dye wastewater purified by electrocoagulation with pulse power supply is carried out. Some relationships are got between the parameters and the result of the water treatment. The basic principle is discussed on how to choose the appropriate power parameters. Furthermore, based on the equivalent circuit of electrobath, the power consumption is discussed. The relationships between the power consumption and the parameters and between the power consumption and the arrangement of electrodes are investigated at the same time. Some conclusions are got based on the experimental results and analysis.
     4. The pulse power supply is practically used in the MAO.
     Ceramic coatings are fabricated on AZ91D magnesium alloy in alkaline borate solution by MAO using pulse and AC power supply. The results show: when the pulse power is selected, the anode dissolving can be restrained effectively, the performance of corrosion resistance may be improved and at the same time, the pulse MAO process is good for forming coating.
     A series of MAO experiments are carried out using the pulse power with different parameters, such as amplitude, frequency and duty cycle, etc. The relationship between the parameters and the performance of the coatings are discussed and some meaningful conclusions are obtained at last.
引文
[1]贾孟秋,杨文胜.应用电化学.北京:高等教育出版社.2004.
    [2]徐德鸿,电力电子系统建模及控制.北京:机械工业出版社.2005.
    [3]杨辉,卢文庆.应用电化学.北京:科学出版社.2001.
    [4]田昭武,周绍民,林祖赓.电化学实验方法进展.厦门:厦门大学出版社.1988.
    [5]郭鹤桐,覃奇贤.电化学教程.天津:天津大学出版社.2000.
    [6]Young Sun Mok,In-Sik Nam.Positive pulsed corona discharge process for simultaneous removal of SO_2 and NO_x from iron-ore sintering flue gas[J].Plasma Science,IEEE Transactions on,1999,27(4):1188-1196.
    [7]Puchkarev V,Kharlov A,Gundersen M,Roth G.Application of pulsed corona discharge to diesel exhaust remediation[C].Pulsed Power Conference,1999.Digest of Technical Papers.12th IEEE International,27-30 June 1999,1:511-514.
    [8]Pokryvailo A,Yankelevich Y,Bomshtein A,Shpitainik R,Shviro E.Investigation of electrical parameters and chemical activity of high-power short pulsed corona discharge[C].Pulsed Power Conference,1999.Digest of Technical Papers.12th IEEE International,2:1349-1355.
    [9]胡红利,于敏,申忠如,等.几种基于高电压技术的燃煤热电厂烟气处理方法[J].高压电器,2002,38(1):31-38.
    [10]Akiyama M,Minami K,Watanabe M,et al.De-NO_x by bidirectional pulse corona discharge[C].Plasma Science,2000,ICOPS.IEEE Conference Record-Abstracts.The 27th IEEE International Conference on,4-7 June 2000:107.
    [11]孙明,赵小明,许德玄.水放电极雾化净水技术[J].高电压技术,2000,26(4):36-37.
    [12]Sun Y.Demonstration of flue gas cleaning by positive pulsed corona discharge process[C].Industry Applications Conference,1999.Thirty-Fourth IAS Annual Meeting.Conference Record of the 1999 IEEE,3-7 Oct.1999,1:20-27.
    [13]K.J.Pratt,S.K.W.,and B.E.Jarell,Enhanced adherence of human adult endothelial cells to plasma discharge modified polyethylene terephtalate.J.Biomed.Mater.Res.,1989.23(10):p.1131-1147.
    [14]Kabashima,H.,H.Einaga,and S.Futamura,Hydrogen generation from water,methane,and methanol with nonthermal plasma.Industry Applications,IEEE Transactions on,2003.39(2):p.340-345.
    [15]Masuda,S.,et al.,Surface treatment of plastic material by pulse corona induced plasma chemical process-PPCP.Industry Applications,IEEE Transactions on,1994.30(2):p.377-380.
    [16]王亚明,蒋百灵,雷廷权,郭立新,曹跃平.电参数对Ti6A14V合金微弧氧化陶瓷膜结构特性的影响[J].无机材料学报,2003,11:1325-1330.
    [17]C.S.Wu,Z.Zhang,F.H.Cao,L.J.Zhang,J.Q.Zhang,C.N.Cao.Study on the anodizing of AZ31 magnesium alloys in alkaline borate solutions.Applied Surface Science 253(2007)3893-3898.
    [18]Mordike B L,Ebert T.Magnesium:properties- application- potential[J].Material Science &Engineering,2001(A302):37-45.
    [19]小久见善八编著,郭成言译.电化学.北京:科学出版社.2002
    [20]张生炎,王玉宾.污水治理技术及新进展概述[J].矿产与地质,2003,1:65-70.
    [21]Guohua Chen,Electrochemical technologies in wastewater treatment.Separation and purification technology.2004,38:11-41.
    [22]李亚新,国外印染废水的电化学处理.给水排水.1999,17:42-44.
    [23]Yousuf M,Molah A,Robert Schennach.Electrocoagulation(EC)—science and applications[J].J.of Hazardous Materials B84,2001:29-41.
    [24]Churchley J H.Removal of dyewaste color from sewage effluent the use of a full-scacle ozone plant[J].Water science technology.,1994,24:789-790.
    [25]Jiang J Q,Fraham,J D.Enhanced coagulation using Al/Fe coagulants:effect of coagulant chemistry on the removal of color-causing NOM.Environment technology,1996,17:232-239.
    [26]Lin S H,Peng C F.Continuous treatment of textile wastewater by combined coagulation,electrochemical oxidation and activated sludge[J].Water research.,1996,30:587-592.
    [27]Morais L C,Freitas O M,Goncalves E P.Reactive dyes removal from wastewaters by adsorption on eucalyptus bard:variables that define the process[J].Water research,1999,33:979-988.
    [28]Mohammad Y.A.Mollah,Paul Morkovsky,et al.Fundamentals,present and future perpectives of electrocoagulation.Journal of Hazardous Materials B114,2004:199-210.
    [29]陈翼升,胡斌.气浮净水技术的研究与应用[M].上海:上海科学技术出版社,1991:39-41.
    [30]Tak-Hyun Kim,Chulhwan Park,Eung-Bai Shin,et al.Decolorization of disperse and reactive dyes by continuous electrocoagulation process.Desalination.2002,150:165-175.
    [31]Mahmut Bayramoglu,Mehmet Kobya,OrhanTanerCan,et al.Operating cost analysis of electrocoagulation of textile dye wastewater.Separation purification technology.2004,37:117-125.
    [32]Kobya Mehmet,Can Orhan Taner,Bayramoglu Mahrnut.Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes[J].Journal of Harzardous Materials,2003,100(1-3):163-178.
    [33]杨岳平.电凝聚—电气浮废水处理实验研究及装置设计[D].浙江杭州:浙江大学,1999:58-59.
    [34]邓皓,王蓉妙,肖遥.钻井废水电凝聚浮选处理研究[J].水处理技术,1997,23(4):245-248.
    [35]Ahmet G,Mehmet Y,Cetin D.Electrocoagulation of some reactive dyes:a statistical investigation of some electrochemical variables[J].Waste Management,2002,22:491-449.
    [36]Mameri N,Yeddou A R,Lounici H.Dufluoridation of septentrional sahara water of north Africa by electrocoagulation process using bipolar aluminum electrodes[J].Wat.Res.,1998,32(5):1604-1612.
    [37]王蓉沙,邓皓,肖遥,等.电絮凝法处理油田污水[J].环境科学实验研究工作,2000,12(4):20-30.
    [38]黄纵雷.功率脉冲电源的优化设计—在电凝聚处理污水中的应用[D].杭州:浙江大学,1997.
    [39]丁忠浩,卢寿慈.电凝聚法去除味精废水中悬浮物的机理及数学模型[J].中国粉体技术,2000,6:231-234.
    [40]Savas Koparal A.Removal of nitrate from water by electroreduction and electrocoagulation[J].Jomal of Hazadous Materials B89,2002:83-94.
    [41]王三反,王文琴,刘义安.电凝聚除氟条件的研究[J].水处理技术,1990,16(4),298-304.
    [42]李家珍.染料、染色工业废水处理[M].北京:化学工业出版社,1997:74-75.
    [43]熊方文,余蜀灵.脉冲电解处理工业污水技术[J].工业水处理,1990,10(2):10-16.
    [44]詹伯君.植绒印花废水脉冲电解处理[J].污染防治技术,1997,10(3):167-172.
    [45]黄清文.高压脉冲在污水处理中的应用[J].电子世界,1994,(1):10-11.
    [46]高良进,程岩法.高压脉冲电凝聚上浮法处理印染废水[J].环境污染与防治,1992,14(5):10-13.
    [47]贺雷鸣,张新胜,陈银生.脉冲电解处理废水的研究进展[J].河南化工,2003,(5):4-6.
    [48]阚小华,赵济强.高压脉冲电凝聚法处理电镀混合废水[J].电镀与环保,2003,(1):30-32.
    [49]Long W P.Uniflox EM dash a machine employing the method of electroflocculation for enhanced soap separation[C].TAPPI Alkaline Pulping Conference Preprint Nov.7-10,1977,347-354.
    [50]Svetashova,Dobrevskij.Effect of electric current pulse shape on efficiency of electrochemical treatment of waters containing petroleum products[J].Khimiya I Technologiya Vody,1992:856-859.
    [51]Goncharov A.Activated coagulation of wastewater efffluents[J].Kozh.Obuvn.Prom-st(2),2000:35-29.
    [52]Labyak O V,Kostin N A.Extraction of nickel from rinsing water from galvanic plants using pulse elecrolysis[J].Khimiya I Technologiya Vody,1996:392-399.
    [53]Dikusar Zajdman.Anodic dissolution during electrochemical water purification from heavy metal ions[J].Electronnyaya Obrabotka Materivalovn,1993:27-31.
    [54]Cora-Hemandez,Mario Gerardo Rosendo.Electrocoagulation/flotation(ECF) technology used in the treatment of wastewater containing variable concentrations of heavy metals and organic pollutants[D].Cleveland:Cleveland State University,2002
    [55]张立.脉冲镀和脉冲焊电源[M].北京:机械工业出版社,1988.
    [56]詹伯君,王化能.电解净水机GTR脉冲电源的研制[J].电力电子技术,1995,(1):32-35.
    [57]赵豪民,江俊灵.铝合金微弧氧化陶瓷膜性能及其影响因素探讨.材料保护.2005,7:61-63.
    [58]Gray J.E,Luan B.Protective coatings on magnesium and its alloys—a critical review[J].Journal of Alloys and compunds,2002,336(1-2):88-113.
    [59]Mathieu S,Papin C,Hazanj,et al.Corrosion behaviour of high pressure die-cast and semi-solid cast AZ91D alloys[J].Corrosion Science,2002,44(12):2737-2756.
    [60]李全军,吴汉华,等.脉冲频率对纯钛微弧氧化膜生长特性的影响.无机材料学报.2006,3:488-492.
    [61]郭洪飞,安茂忠,徐莘,霍彗彬.镁合金微弧氧化工艺条件对陶瓷膜耐蚀性的影响.材料工程.2006,3:29-32.
    [62]Yerokin A L,Nie X,Leyland A,et al.Plasma electrolysis for surface engineering[J].Surface and Coating Technology,1999,122,73-93.
    [63]蒋百灵,张先锋,朱静.铝合金镁合金微弧氧化陶瓷层的形成机理及性能.西安理工大学学报.2003.19:297-302.
    [64]P.I.Butyagin,Ye.V.Khokhryakov,A.I.Mamaev.Microplasma systems for creating coatins on aluminium alloys.Materials letters.2003,57,1748-1751.
    [65]卢立红,沈德久,王玉林.微弧氧化陶瓷膜层的性能及其应用.材料保护.2001,1,17-19.
    [66]S.V.Gnedenkov,O.A.Khrisanfova,A.G.Zavidnaya,et al.Composition and adhesion of protective coatings on aluminum.Surface and coatings technology.2001,145:146-151.
    [67]A.V.Apelfeld,O.V.Bespalova,A.M.Borisov,et al.Appllcaiont of the particle backscattering methods for the study of new oxide protective coatings at the surface of A1 and Mg alloys.Nuclear instruments and methods in physics research B.2000,161-163:553-557.
    [68]Tongbo Wei,Fengyuan Yan,Jun Tian.Characterization and wear-and corrision-resistance of microarc oxidation ceramic coatings on aluminum alloy.Journal of alloys and compounds.2005,389:169-176.
    [69]Wenbin Xue,Xiuling Shi,Ming Hua,Yongliang Li.Preparation of anti-corrision films by microarc oxidation on an A1-Si alloy.Applied surface science.2007,253:6118-6124.
    [70]Hanhua Wu,Jianbo Wang,Beiyu Long,et al.Ultra-hard ceramic coatings fabricated through microarc oxidation on aluminium alloy.Applied surface science.2005,252:1545-1552.
    [71]Y.Q.Wang,M.Y.Zheng,K.Wu,Microarc oxidation coating formed on SiCw/AZ91magnesium matrix composite and its corrosion resistance.Materials letters.2005,59:1727-1731.
    [72]Wenbin Xue,Zhiwei Deng,Ruyi Chert,Tonghe Zhang.Growth regularity of ceramic coatings formed by microarc oxidation on AI-Cu-Mg alloy.Thin solid films.2000,372:114-117.
    [73]Qizhou Cai,Lishi Wang,Bokang Wei,Quanxin Liu.Electrochemical performance of microarc oxidation films formed on AZ91D magnesium alloy in silicate and phosphate electrolytes.Surface and Coaling Technology,2006,200,3727-3733.
    [74]Y.Q.Wang,K.Wu,M.Y.Zheng.Effects of reinforcement phases in magnesium matrix composites on microarc discharge behavior and characteristics ofmicroarc oxidation coatings.Surface and Coating Technology,2006,201,353-360.
    [75]K.Wu,Y.Q.Wang,M.Y.Zheng.Effects of microarc oxidation surface treatment on the mechanical propertied of Mg alloy and Mg matrix composites.Materials science and engineering A.2007,447:227-232.
    [76]G.Sundararajan,L.Rama Krishna.Mechanisms underlying the formation of thick alumina coatings through the MAO coating technology.Surface and Coating Technology,2003,167,269-277.
    [77]Hongfei Guo,Maozhong An,Shen Xu,Huibin Huo.Microarc oxidation of corrosion resistant ceramic coating on a magnesium alloy.Materials letters.2006,60:1538-1541.
    [78]王立世,蔡启舟,魏伯康,刘全心.镁合金双脉冲微弧氧化表面膜层的形成及结构分析.特种铸造及有色合金.2005,3,187-191.
    [79]邓姝皓,易丹青,娄嘉,周玲伶.镁合金脉冲阳极氧化工艺.电镀与涂饰,2006,2:32-35.
    [80]刘元刚,张巍,李久青,申磊.AZ91D铸造镁合金交流脉冲双极微弧电沉积陶瓷膜.北京科技大学学报.2004,2:73-77.
    [81]王亚明,蒋百灵,雷廷权,郭立新,曹跃平.电参数对Ti6A14V合金微弧氧化陶瓷膜结构性能的影响.无机材料学报.2003,11:1325-1330.
    [82]李健学,张玉梅,憨勇.占空比和脉冲频率对钛微弧氧化表面处理后与瓷结合强度的影响.实用口腔医学杂志.2007,23:19-22.
    [83]田昭武,电化学研究方法.北京:科学出版社.1984.
    [84]高军.UPS逆变器数字化控制技术的研究[D].西安:西安交通大学,博士学位论文,2002.
    [85]胡敏,李冬黎,何湘宁.污水处理用非规则脉冲功率电源的研究.2005台达电力电子研讨会论文集.2005,134-140.
    [86]林渭勋.现代电力电子电路.杭州:浙江大学出版社.2002.
    [87]刘和平,等.TMS320LF240xDSP结构、原理及应用.北京航空航天大学出版社[M],2002.
    [88]曹楚南,张鉴清,电化学阻抗谱导论,北京:科学出版社.2002.
    [89]胡敏,何湘宁.脉冲电源印染污水处理的负载特性分析[J].电工技术学报,2007,22(6):89-93.
    [90]X.Chen,G.Chert,and P.L.Yue,Investigation on the electrolysis voltage of electrocoagulation,Chemical Engineering Science.2002,57:2445-2449.
    [91]R.S.Bejankiwar,Electrochemical treatment of cigarette industry wastewater feasibility study,Water Research.2002,36:4386-4390.
    [92]J.Q.Jiantuan Ge,Pengju Lei,Huijuan Liu,New bipolar electrocoagulation electroflotation process for the treatment of laundry wastewater.Separation and Purification Technology,2003,36:33-39.
    [93]O.T.C.Mehmet Kobya,Mahmut Bayramoglu.Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes.Journal of Hazardous Materials,2003,5:163-178.
    [94]H.A.-S.N.Daneshvar,A.Tizpar.Decolorization of orange Ⅱ by electrocoagulation method.Separation and Purification Technology.2003,31:153-162.
    [95]李冬黎,何湘宁.直流电源作用下电凝聚法净化染色工业废水的负载特性分析[J].电工技术学报,2005,20(7):106-110.
    [96]胡敏,何湘宁.脉冲电源印染污水处理的双电层电容效应分析[J].电工技术学报,2007,22(11):130-134.
    [97]吴浩青,李永舫.电化学动力学.北京:高等教育出版社,1998.
    [98]向国朴.脉冲电镀的理论与应用[M].天津:天津科学技术出版社,1989.
    [99]宋诗哲,腐蚀电化学研究方法,北京:化学工业出版社,1988.
    [100]盛骤,谢式千,潘承毅.概率论与数理统计(第二版)[M].北京:高等教育出版社,1989.
    [101]周庭阳,江维澄.电路原理[M].杭州:浙江大学出版社,1994.
    [102]憨勇,徐可为.微弧氧化生成含钙磷氧化钛生物薄膜的结构无机材料学报.2001,16(5):951-956.
    [103]Yerokhin A L,Nie X,Leyland A,et al.J Plasma Electrolysis for Surface Engineering [J].Surf Coat Technol.1999,122:73-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700