用户名: 密码: 验证码:
环境空气中总悬浮颗粒物无机组分源解析的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文通过物理化学手段相结合的方法,综合运用X射线荧光光谱法、电镜观测和分析、化学质量平衡受体模型等方法作为研究手段,分采暖期和非采暖期对吉林省典型城市环境空气中的总悬浮颗粒物的来源进行了全面、系统的比较研究。
     研究表明,总悬浮颗粒物中的主要无机元素为Si、Al、Fe、Ca、Mg、K、Na、Ti﹑P﹑Mn﹑Zn等,这11种元素的质量浓度总和在所采样的20个点位中有17个点位超过了23种元素质量浓度的95%,2个点位超过90%。Al、Na、K、Ni、Pb等元素主要显含在粗颗粒中,而Ca、Fe、Zn、Sr、Ba等元素主要显含在PM_(2.5)中。
     运用扫描电镜对大气总悬浮颗粒物进行微观形貌观测,初步分析扬尘、道路尘、土壤风沙尘、燃煤尘、建筑尘是四个城市大气总悬浮颗粒物的主要来源。扫描电镜分析可以作为大气颗粒物源解析的辅助手段,效果直观。
     利用CMB8.2受体模型对城市环境空气中总悬浮颗粒物进行源解析,结果表明多数城市的道路尘、扬尘和土壤风沙尘对TSP的贡献较大,而燃煤尘对TSP的影响不明显。
Total suspended particulates are the primary pollutants influencing on the quality of ambient air. The inorganic component is an important part of TSP. In this paper, the different source and the contribution of TSP have been decided through analyzing TSP’s content and source of inorganic component, which provides a solid theoretical basis for further research on the harmfulness to the environment made by atmospheric particulates and the way to improve ambient air environment.
     The mathematical model of analyzing environmental pollutant source can be broadly divided into receptor model and proliferation model. The receptor model has been used widely because it does not relay on source of emission, weather, terrain and other data and dose not track particulates’moving process, which means that it avoids the difficulties of calculating in proliferation model. Chemistry-statistical method and microscopic method are two main research methods in receptor model. This paper analyzes and compares the preconditions, advantages and disadvantages of different method, chooses the applied Chemical Mass Balance (CMB) accepter model and the scanning electron microscope (SEM) in microscopic method, and applies to study the typical atmospheric particulates in four cities of JiLin province.
     CMB receptor model focuses on researching emission source’s contributions to receptor without considering chemical changes and chemistry reaction dynamics results in the particulates transmission process between emission source and receptor, but by determining directly chemical component of samples ,which comes out from receptor, to infer the kinds of emission source. This way is recommended as an important method to recognize atmospheric particulates by United State and China mainland environmental protection because its clear theory and applied calculation. Good research results have been achieved by applying CMB to many cities. However, since in most cases the study focused in one city, no comparison has been made in different cities. This research aims at carrying out comparative study on TSP. It is different from citys and times by doing research in four cities in the same region. According to geographical features and characteristics of cities in JiLin Province, JiLin, BaiCheng, TongHua, SiPing and Changchun have been chosen to conduct our research.
     This study collected the source and receptor samples of TSP. It is distinguish between heating period(February 2005) and non-heating period (September 2005) in JiLin, BaiCheng, SiPing and TongHua The points of receptor samples in each city are selected mainly from state-controlled atmosphere monitoring stations. JiLin selects four sampling points and other cities select two points each one, therefore ten sampling points in total. Here 156 samples are research objectives of dust, road dust , construction dust, coal dust and soil dust. Collected samples were analyzed by X-ray fluorescence spectroscopy to identify inorganic component in the receptor samples. According to related documents and pollutant characteristics in this study, we analyzed about 23 kinds of elements ,such as Al, As, Ba, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Nb, Ni, P, Pb, Rb, Si, Sr, Ti, V, Zn and Zr. The result proves that main inorganic elements of TSP is such as Si, Al, Fe, Ca, Mg, K, Na, Ti, P, Mn, Zn. For the mass concentration sum of the 11 kinds of elements, there are 17 PT over 20 kinds of elements for 95%. Also, there are 2 PT over 20 kinds of elements for 90%. By analyzing Elements spectra of the source and the receptor in these four cities. it is obvious that content of Si is higher than other inorganic elements. Si is the primary element that constitutes the soil particles and pozzuolana, and raising dust is mainly contributed by soil particles. So, it can be justified that raising dust and soil dust are the major source of TSP in these four cities. Northeast locates in Songliao plain, because the winter is long, cold and dry, the wind is strong and the short period of vegetation, the content of Si in source and receptor specimen remains high. It can be known that the geographical characteristic has a great effect on TSP.
     The 20 samples collected from four cites show that 10 points mass concentration of TSP exceed the third class national standard, the PT take 50 percentage of total observation points. About 30 percentage of observation points, there are 6 PT exceed the second class national standard. There are only 20 percentages of observation points below the second class national standard. The study presents those four cites’serious air condition, which need to take effective control measure.
     Using CMB8.2 receptor model to analyze the source of TSP in ambient air, the result indicates that:
     1. In heating term, pollution sources contributed to TSP in Jilin from large to small is as follows: blowing dust, soil karaburan, and coal burning dust; pollution sources contributed to TSP in Bai Cheng, from large to small is as follows: soil karaburan, coal burning dust and construction dust, the most TSP contribution in Tong Hua are blowing dust, coal burning dust and soil karaburan, and blowing dust is main pollution source; The main sources in Si Ping are blowing dust and road dust. According to analysis results, it states that in heating time most of cities’road dust, blowing dust, and soil karaburan make the bigger contribution on TSP, but it’s unobvious that the effects of construction dust and burning coal dust on TSP. They state that these cities’transportation and soil exposedness should be improved. Comparing Bai Cheng which is located in flat area with Tong Hua which is located in mountainous area, the different level contributions of their soil karaburan make on TSP, they relate with two places’geography positions and the differences of weather conditions. Burning coal source hasn’t been main source in heating term; it states that the controlment and management of burning coal pollution has got enough efforts. Many burning coal corporations improve production techniques, decrease amount of coal use, boilers smoking has reached emission level, so they cause that the effects burning coal dust on atmosphere is decreased. The influences construction dust for TSP contribution is unobvious, because there are few constructions in north cities, and also refers to urban infrastructure construction condition and urban development situation.
     2. In Jilin City, various types of pollution which contribute to TSP during non-heating period in terms of descending order are construction dust, soil dust, road dust, raising dust and burning coal dust. The three sources of pollution that make the greatest contribution in Baicheng City are: soil dust, road dust and rising dust. among which the soil dust is main pollution source. The three types of pollution that contribute the greatest to TSP in Tonghua City are: road dust, burnt coal dust and soil dust. The main sources of pollution in Siping City are: rising dust, construction dust and soil dust. According to the analysis above, we see that the construction dust in Jilin City during a non-heating period makes the greatest contribution to TSP and has something to do with the status of the city’s infrastructure and its development. That the soil dust in Baicheng City, the road dust in Tonghua City and the rising dust in Siping City contribute the greatest to TSP showing that it is closely related to the natural environment, climate and geographical location of these cities. The soil dust problem has an important climatic impact on all of these cities due to the strong sand storms and droughts every autumn. Besides, the low ratio of vegetation coverage is also a reason. Over-cultivation, deforestation, and soil-erosion in these regions have helped to increase the amount of dust in the atmosphere.
     3. The results are the same after the analysis of the whole year TSP for the four cities during heating and non-heating periods. The soil dust contributes more to TSP in Jilin and Baicheng, the road dust contributes more to its air pollution in Tonghua and the rising dust of SiPing has more effect on its TSP. Meanwhile, it shouldn’t be ignored that the road dust in Jilin as well as the burnt coal dust in Baicheng and Tonghua have a strong affect on their air quality. However, the construction dust of the four cities apparently doesn’t affect TSP.
     Through the research and analysis we see geographical characteristic plays a dominant part in TSP parse. But, the dominant industries in different regions contribute to the share ratio of TSP to some extent.
     Results of source analysis also indicate that different pollution types and sources in different cities contribute differently to TSP, and their characteristics are different too. Even in the same city the pollution sources in different seasons contribute differently to TSP. Thus, different emphasis and measures should be chosen in reducing and controlling air pollution. So as to improve thoroughly the air quality, more human and financial resources should be invested in dealing with those sources of emission which seriously pollute the environment and contribute more to the suspended dust particulates in the air. The analysis indicates that many types of human activity increase the degree of air pollution.
     Considering the representative and similar features of the cities’geographical location and climate in the research we have selected one point site in Changchun City to collect samples of TSP, PM_(10), PM_(2.5), and analyzed the contents of inorganic elements in those samples by means of ICP-MS. As a result we have detected the fourteen elements such as Na, Mg, Al, K, Ca, Mn, Fe, Co, Ni, Cu, Zn, Sr, Ba and Pb. According to the results of the analysis, the concentration of particulates is mostly composed of the following six elements Al, Ca, K, Mg, Fe and Na. The daily average concentration of the six elements in TSP and PM_(25) approaches, or even surpasses the 1μg/m~3 level, and the concentration of these elements in PM_(10) approaches or surpasses the 10μg/m~3 level. The total concentration of these six elements is found to account for 95.3%, 91.6% and 90.6% of the fourteen elements in TSP, PM_(10), and PM_(2.5) respectively. The elements of Al, Na, K, Ni, Pb mainly exist as large particulates while Ca, Fe, Zn, Sr, Ba are mostly contained in PM_(25). By analyzing Elements spectra of Inorganic in different radius’particles, Elements spectra of Inorganic in TSP and PM_(10) have nothing in difference, but TSP is different from PM_(2.5).Via the correlative analysis and t test, we can see that the relativity of the elements contained in TSP and PM_(10) are the best, followed by PM_(2.5) and PM_(10). So in pollution monitoring in Changchun, we can obtain the relative contents of the various elements in PM_(25) through the analysis of the elements content in PM_(10), and get a better understanding of PM_(2.5) pollution so as to protect our health more effectively.
     SEM is applicable to analyzing dust aerosol which has a clear configuration, and can observe in detail information of the particulates directly. Also the particulates can be processed with semi-quantitative and qualitative analysis. Via SEM, we can observe that the TSP have following shapes: Spherical, filament, strip, flocculation, massive and other irregular shapes. The preliminary analysis indicates that rising dust, road dust, soil dust and construction dust are main sources of TSP in the air of the four cities. Dust aerosols play a major role in the global radiation changes. The variable effects of dust aerosol change the energy input to the climate and cause an uneven distribution of warming and cooling effects. Very little documentation is available about atmospheric dust aerosol and studies have been unable to prove that it has increased since the onset of the industrial age. In our present research the visual analysis by SEM serves to assist the particle source apportionment and it verifies the analysis results of CMB receptor model. It has been shown to be the most effective research method for particle source semi-quantitative analysis.
引文
[1]柯昌华,金文刚,钟秦.环境空气中大气颗粒物源解析的研究进展[J].重庆环境科学,2002,24(3):55-59.
    [2]朱广一.大气可吸入颗粒物研究进展[J].环境保护科学,2002,28(113):3-5.
    [3]刘泽常,王志强,李敏,等.大气可吸入颗粒物研究进展[J].山东科技大学学报(自然科学版),2004,23(4):97-100.
    [4]张大年.城市大气可吸入颗粒物的研究[J].上海环境科学,1999,18(4):154~157.
    [5]常逸,刘乐君.大气颗粒物污染源解析技术与发展[J].企业技术开发,2008,27(4):114-117.
    [6] Costa C J. Marques A P, Freitas M C, et al. A comparative study for results obtained using biomonitors and PM10 collectors in sado estuary[J]. Environmental Pollution, 2002(120):97-106.
    [7]李文波,翟贵华,苏红时,等.长春市城区大气污染特征研究[J].地理科学,1998 ,18 (1) :80-87.
    [8]王平利,戴春雷,张成江等.城市大气中颗粒物的研究现状及健康效应[J].中国环境监测,2005,21(1):83-87.
    [9] Ragosta M, Caggiano R, Emilio M D, et al.Source origin and parameters influencing levels of heavy metals in TSP,in an industrial background area of Southern Italy[J]. Atmospheric Environment.2002 (36):3071-3087.
    [10] Dockery D W, Pope C A. Annual Review Public Health[R], 1994, 15:107-132.
    [11] Tural?og?lu F S, Nuhog?lu A, Bayraktar H. Impacts of some meteorological parameters on SO2 and TSP concentrations in Erzurum, Turkey[J]. Chemosphere. 2005(59): 1633-1642.
    [12] Wang Y, Zhuang G S, Zhang X Y, et al. The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai[J]. Atmospheric Environment. 2005(40):2935-2952.
    [13] Fang G C, Wu Y S, Chen J C, et al. Concentrations of ambient air particulates (TSP, PM2.5 and PM2.5–10) and ionic species at offshore areas near Taiwan Strait[J]. Journal of Hazardous Materials. 2006 (B132):269-276.
    [14] Wang Y, Zhuang G S, Tang A H, et al. The evolution of chemical components of aerosols at five monitoring sites of China during dust storms[J]. Atmospheric Environment. 2007(41):1091-1106.
    [15]王淑兰,柴发合,杨天行.北京市不同尺度大气颗粒物元素组成的特征分析[J].环境科学研究, 2002,15(04):10-12.
    [16]李金娟,肖正辉,杨书申,等.北京和部分奥运城市可吸入颗粒物污染特征分析[J].环境科学动态,2004(3):26-28.
    [17]张晶,陈宗良,王玮.北京市大气小颗粒物的污染源解析[J].环境科学学报,1998,18(1):62-67.
    [18]宋宇,唐孝炎,方晨,等.北京市大气细粒子的来源解析[J].环境科学,2002,23(6):11-16.
    [19]魏复盛,胡伟,吴国平,等.空气污染对儿童肺功能指标影响的初步分析[J].中国环境监测,2001 (增刊) :61~66.
    [20]王帅杰,朱坦.大气颗粒物源解析技术研究进展[J].环境污染治理技术及设备,2002,3(8):8-12.
    [21] Miller M S,Friedlander S K,Hidy G M. Journal of Colloid Interface Science[J]. 1972,39(2):165-176.
    [22] Gordon G E. Receptor Models[J]. Environtal Science Technology. 1988, 22(10): 1132~1142.
    [23] Gordon G E. Receptor Models[J]. Environtal Science Technology. 1980, 14(7): 792~800.
    [24] Henry R C. Review of Receptor Model Fundamentals[J]. Atmospheric Environment. 1984, 18(8):1507~1515.
    [25]赵德山,王明星,等.煤烟型污染大气气溶胶[J].中国环境科学.1991:305-400.
    [26]戴树桂,朱坦,白志鹏.受体模型在大气颗粒物源解析中的应用进展[J].中国环境科学,1995,15(4):252-257.
    [27]中国国家环境保护总局.2005中国环境状况公报[R].北京:环境保护,2006:17~18.
    [28]戴树桂.环境化学进展[M].化学工业出版社,2005年8月,第一版,32~34.
    [29]王平利,戴春雷,张成江.城市大气中颗粒物的研究现状及健康效应[J].中国环境监测,2005,21(1):83-87.
    [30]史捍民,仲良喜.北京市大气污染物排放总量控制[J].环境保护,2006(5B):31-35.
    [31]史红香,王毓军,胡筱敏.城市大气污染物总量测试研究[J].环境保护科学,2006,(1):11-13,23.
    [32]尹振东.气象条件对可吸入颗粒物浓度的影响[J].环境科学与管理,2005,30(3):46-47.
    [33]长春市环境空气TSP源解析[R].长春市环境监测中心站.2003.
    [34]谢骅,王庚辰,任丽新,等.北京市大气细粒态气溶胶的化学成分研究[J].中国环境科学,2001,(5):432-435.
    [35]朱光华,吕位秀,张小曳.PIXE分析与受体模型应用于大气气溶胶源解析[J].北京师范大学学报,1994,30(4):473-478.
    [36]郭璇华,高瑞英,黄瑞毅,等.大气颗粒物中无机元素特性的研究[J].环境科学与技术,2006,29(6):49-52.
    [37]陈宗良,葛苏,张晶.北京大气气溶胶小颗粒的测量与解析[J].环境科学研究,1994,7(3) : 1-9.
    [38]周斌斌,徐家骝,胡广宇.上海市大气颗粒物中金属元素特征[J].上海环境科学,1994,13(9):21-26.
    [39] Watson J C, Chow J C, Fujita E M. Review of volatile organic compound source apportionment by chemical mass balance[J]. Atomospheric Environment.2001,35: 1567-1584.
    [40] Srivastava A. Source apportionment of ambient VOCS in Mumbai city[J]. Atomospheric Environment.2004,38:6829-6843.
    [41]周巧琴,蔡传荣,李耕.大气悬浮颗粒物的粒径观察[J].电子显微学报,2004,21(5):804-805.
    [42]张红,侯涛,范文标.晋城市大气颗粒物的电镜分析及来源鉴别[J].山西大学学报(自然科学版),2000,23(2):182-185.
    [43]刘咸德,贾红,齐建兵,等.青岛大气颗粒物的扫描电镜研究和污染源识别[J].环境科学研究,1994,7(3):10-17.
    [44]董树屏,刘涛,孙大勇等.用扫描电镜技术识别广州市大气颗粒物主要种类[J].岩矿测试,2001,20(3):202-207.
    [45] Liu X D,Espen P V,Adams F,et al. Biomass Burning in Southern Africa:Individual Particle Characterization of Atmospheric Aerosols and Savanna Fire Samples[J]. Journal of Atmospheric Chemistry,2000,36:135-155.
    [46]刘文菁,黄世鸿,刘小红等.南京市总悬浮颗粒物(TSP)及地面积尘来源解析[J].气象科学,2001,3(21),87-94.
    [47]陈明华,陈静森,李德.上海市大气颗粒物高浓度区污染物的源解析[J].上海环境科学,1997,16(10):15-17.
    [48]朱建新,周蓉.CMB法应用及对乌鲁木齐市大气TSP来源解析[J].新疆环境保护,1996,18(1):29-38.
    [49] Mikio K,Choi K C,Takahashi K J. Source contribution of atmospheric aerosols in Japan by chemical mass balance method[J]. Atmospheric Environment.1990, 24A(3): 457-466
    [50] Gorden G E. Receptor models[J]. Environment Scientist Technology.1988, 22(10):1132-1142.
    [51]周来东.成都市春季大气飘尘目标变换因子分析[J].四川环境,1995,14(3):12-15.
    [52] Malm W C,Gebhart K A. Source apportionment of organic and light-absorbing carbon using receptor modeling techniques[J]. Atomospheric Environment.1996, 30(6):843-855.
    [53]梁金友,王文兴.区域源解析模式的建立[J].环境科学学报,1990,10(1):17-25.
    [54]王文兴,梁金友,陈延智.南方地区气溶胶区域源解析[J].中国环境科学,1992,12(1):1-8.
    [55]胥晓瑜,傅立新,马永亮,周中平.化学质量平衡模型在香港污染源解析中的应用[J].四川环境,2000,19(4):12-15.
    [56]胥晓瑜,马永亮,傅立新,等.应用化学质量平衡模型解析烟台市污染源的排放贡献率[J].环境污染与防治,2001,23(5):262-264.
    [57]胥晓瑜,马永亮,傅立新,等.应用化学质量平衡模型解析烟台市污染源的排放贡献率[J].环境污染与防治,2001,10(23):262-264.
    [58]周来东,王志渊.化学质量平衡模式的复共线性问题及岭回归分析[J].四川环境,1994 (13):56-59.
    [59]李祚泳,丁恒康.BP网络应用于大气颗粒物的源解析[J].中国环境监测,2005,4(21):74-77.
    [60]李祚泳,丁恒康,丁晶.大气颗粒物源解析的BP网络权重分析模型[J].四川大学学报(自然科学版),2004,41(5):1026-1029.
    [61]李祚泳,丁晶,张欣莉.成都市大气颗粒物源解析的PPR法[J].环境科学研究,2000,13(5):38-40.
    [62]朱坦,白志鹏,朱先磊,等.源解析技术在环境评价中的应用──区域大气污染物总量控制[J].中国环境科学,2000(S1):2-6.
    [63]李祚泳,彭荔红.基于遗传算法的大气颗粒物的源解析[J].环境科学研究,2000,13(6):19-21.
    [64]冯银厂,白志鹏,朱坦.大气颗粒物二重源解析技术原理与应用[J].环境科学,2002,23(增刊):106-108.
    [65]黄国兰,萧航,陈春江.化学质量平衡法在水体污染物源解析中的应用[J].环境科学,1999,20(6):14-17.
    [66]李祚泳,彭荔红.基于粗集理论的大气颗粒物的排放源的重要性评价[J].环境科学学报,2003,23(3):142-144.
    [67]周来东.成都市春季大气飘尘目标变换因子分析[J].四川环境,1995,14(3):12-15.
    [68] Artaxo P, Marta L C. Nuclear microbe analysis and source apportionment of individual atmospheric aerosol particulates[J]. Nuclear Instruments and Methods in Physics Research,1993(B75):521-525.
    [69] Chan Y C,Simpson R W,et al. Source apportionment of PM2.5 and PM10 aerosols in Brisbane(Australia) by receptor modellin[J]. Atmospheric Environment.1999(33): 3251-3268.
    [70] Khalili N R ,Scheff P A,et al. PAH source fingerprints for coke ovens,diesel and gasoline engines,highway tunnels,and wood combustion emissions[J]. Atomospheric Environment.1995(29):533-542.
    [71] Venkataraman C,Friedlander S K. Source resolution of fine particulate polycyclicaromatic hydrocarbons using a receptor model modified for reactixity.J[J]. Air & Waste Management Association.1994(44):1103-1108.
    [72] Anonymous. Atmospheric Environment; Study findings from A.K. Sudheer et al provide new insights into atmospheric environment[R]. Ecology, Environment & Conservation. Atlanta Aug 18.2008. pg. 302.
    [73]张冰,郭春鹏.牡丹江市大气颗粒物源解析研究[J].黑龙江环境通报,2008,32(2):26-29.
    [74]顾达萨,邵敏,陆思华.城市大气中甲醛来源分析的示踪技术[J].北京大学学报,2008,44(2):317-322.
    [75]杨忠平,卢文喜,辛欣.长春市城市土壤铅同位素组成特征及其来源解析[J].吉林大学学报(地球科学版),2008,38(4):663-669.
    [76]李卫军,邵龙义,时宗波.城市雾天单个矿物颗粒物理和化学特征[J].环境科学,2008,29(1):253-258
    [77] U.S. Environmental Protection Agency. Receptor Model Technical Series, VolumeⅢ(1989 Revision). CMB7 User’s Manual[R]. Report No. EPA-450/2-90-004, U.S. EPA, Research Triangle Park, NC, 1990.
    [78] Hopke P K. Receptor Modeling in Environmental Chemistry[M].ohn Wiley & Sons, New York, 1985.
    [79]朱坦,白志鹏,陈威.化学质量平衡受体模型新技术的应用——TEDA大气颗粒物来源解析分析实例[J].城市环境与城市生态,1996,1(9):9-14.
    [80]朱健新.CMB法应用及对乌鲁木齐市大气TSP来源解析[J].新疆环境保护,1996,3(13):29-36.
    [81] Zhang W,Guo J H ,Sun Y L ,et al. Source apportionment for urban PM10 and PM2.5 in the BeiJing area[J].Chinese Science Bulletin,2007,52(5):608-615.
    [82]姬亚芹,朱坦,白志鹏,等.大气颗粒物源解析土壤风沙尘成分谱研究进展[J].城市环境与城市生态,2005,18(5):3-5
    [83]张蓓,叶新,井鹏.城市大气颗粒物源解析技术的研究进展[J].能源与环境,2008(3):130-133.
    [84]金蕾,华蕾.大气颗粒物源解析受体模型应用研究及发展现状[J].中国环境监测,2007,23(1):38-41.
    [85]戴树桂,曾幼生.目标识别因子分析及其在空气污染研究中的应用[J].环境科学学报,1986,6(2):123-130.
    [86]姬亚芹,冯银厂,吴建会,等.天津市TSP中元素分布特征及其来源分析[J].中国环境监测,2006,22(3):75-79.
    [87]王起超,李东侠,方凤满.长春市空气中总悬浮微粒分布规律及来源的探讨[J].地理科学,2002,22(3):355-358.
    [88]刘风英,郭光焕.X—射线荧光光谱法测定道路扬尘中21种元素[J].城市环境与城市生态,1996,9(1):45~47.
    [89]车亚非,昝晓辉.成都市大气飘尘中主要排放源成份谱研究[J].城乡生态环境,1994,18(2):21~27.
    [90]单美,王训,亓华.泰安市城区环境空气可吸入颗粒物源解析研究[J].泰山学院学报,2004,11(26):90-95.
    [91]温玉璞,徐晓斌,汤洁等.青海瓦里关大气气溶胶元素伏击特征及其来源[J].应用气象学报,2001,12(4):400-408.
    [92] Poon W S J. A Compact Pogrous-metal Denuder for Atomspheric Sampling of Inorganic Atomspheric Sampling of Inorganic Aerosols[J]. Aerosol Science,1994,(25): 923-934.
    [93]吕玄文,陈春瑜,黄如林,党志.大气颗粒物中重金属的形态分析及迁移[J].华南理工大学学报,2005.33(1):75-78.
    [94]谢华林,张萍,贺惠,等.大气颗粒物中重金属元素在不同粒径上的形态分布[J].环境工程,2002,20(6):55-57.
    [95]李杨,曹军骥,张小曳,等. 2003年秋季西安大气中黑碳气溶胶的演化特征及其来源解析[J].气候与环境研究,2005,10(2):229-237.
    [96]贺斌,张志军.大气颗粒物组分解析[J].辽宁城乡环境科技,2005,25(1):14-15.
    [97]刘风英,郭光焕.X—射线荧光光谱法测定道路扬尘中21种元素[J].城市环境与城市生态,1996,9(1):45~47.
    [98]杨建军,武忠诚,马亚萍.大气中不同粒径颗粒物的重金属元素分析及其卖弄一度性研究[J].海南医学院学报,2003.9(4):198-201.
    [99]吴国平,胡伟.四城市空气粗、细颗粒物元素质量谱及富集特征[J].中国环境监测,2001,17(7) :7~10.
    [100]朱先磊,张远航,曾立民,等.北京市大气细颗粒物PM_2_5的来源研究[J].环境科学研究,2005,18(5):1-5.
    [101]滕恩江,胡伟,吴国平,等.中国四城市空气中粗细颗粒物元素组成特征[J].中国环境科学,1999,19(3):238~242.
    [102]王萍,程晓伟.大气总悬浮颗粒物污染趋势预测及防治措施研究[J].北方环境,2005,2(30):31-32.
    [103]刘昌岭,宋苏顷,夏宁.青岛市区大气颗粒物中重金属的浓度及其来源研究[J].青岛大学学报,1998,11(3):42-46.
    [104]朱坦,孙韧,张林,等.大港地区大气颗粒物中多环芳烃分布及污染源识别的研究[J].中国环境科学,1998,18(4):289-292.
    [105]鲁兴,吴贤涛.北京市采暖期大气中PM_10和PM_2_5质量浓度变化分析[J].焦作工学院学报,2004,23(6):488-490.
    [106] Allen A G, Nemitz E, Shi J P, et al.Size distributions of trace metals in atmospheric aerosols in the united kingdom[J]. Atmospheric Environment, 2001,35(27): 4581-4591.
    [107] Schauer J J. Cass G R.Source apportionment of wintertime gas-phase and particle phase air pollutants using organic compounds as traces [J].Environmental Science Technology.2000,34:1821-1832.
    [108] Pakkanen T A, Kerminen V M, Korhonen C H, et al. Use of atmospheric elemental size distributions in estimating aerosol source in the Helsinki area[J]. Atmospheric Environment.2001,35(32):5537-5551.
    [109] Fang G C, Wu Y S, Chen J C, et al. Concentrations of ambient air particulates (TSP, PM2.5 and PM2.5–10) and ionic species at offshore areas near Taiwan Strait[J]. Journal of Hazardous Materials.2006 (B132):269-276.
    [110] Costa C J, Marques A P, Freitas M C,et al.Oliveiva A comparative study for results obtained using biomonitors and PM10 collectors in sado estuary[J]. Environmental Pollution. 2002(120):97-106.
    [111] Chan Y C,Simpson R W,Mcatinsh G H,et al..Source apportionment of visibility degradation problems in Brisbane(Australia)using the multiple linear regression techniques[J]. Atmospheric Environment.1999,33(19):3237-3250.
    [112] Office of Air and Radiation, Office of Air Quality Planning and Standards,US Eniveronmental Protection Agency. Protocol for applying and validating the CMB model[M]. USEPA Research Triangle Park,NC:1987.
    [113] Chan Y C,Simpson R W,et al..Source apportionment of PM2.5 and PM10 aerosols in Brisbane(Australia) by receptor model[J]. Atmospheric Environment.1999,33: 3251-3268.
    [114]李先国,范莹,冯丽娟.化学质量平衡受体模型及其在大气颗粒物源解析中的应用[J].中国海洋大学学报,2006(2):225-228.
    [115]林治卿,袭著革,杨丹凤,等.采暖期大气中不同粒径颗粒物污染及其重金属分布状况[J].环境与健康杂志,2005,22(1):33-34.
    [116]张冬.朔州市区采暖期大气总悬浮颗粒物的源解析研究[J].山西化工,2006,6(26):61-63.
    [117]奚晓霞,邓张胤,黄建国,等.兰州市城关区冬季春季大气气溶胶与大气污染[J].兰州大学学报(自然科学版),1994, (03):145-149.
    [118]刘文菁,黄世鸿,刘小红,等.南京市总悬浮颗粒物(TSP)及地面积尘来源解析[J].气象科学,2001,3(21),87-94.
    [119]王帅杰,朱坦,冯银厂,等.改变城市下垫面类型及控制道路尘环境效益评估方法[J].安全与环境学报,2004(05):54-55.
    [120]张军营,魏凤,赵永椿,等.PM_2_5和PM_10排放的一维炉煤燃烧实验研究[J].工程热物理学报,2005,26(增刊):257-260.
    [121]袁九毅,张武,史月琴.兰州西固地区汽车道路污染及分担率[J].甘肃科学学报,1997,9 (02):27-29.
    [122] Birch G, Taylor S. Source of heavy meatals in sediments of the port Jackson estuary,Australia[J].The Science of the Total Environment.1999 (227):123-138.
    [123] Lau O W, Luk S F.Leaves of Bauhinia blakeana as indicators of atmospheric pollution in HongKong[J].Atmospheric Environment.2001 (35):3113-3120.
    [124]吴国平,胡伟,滕恩江,等.我国四城市空气中PM_2_5和PM_10的污染水平[J].中国环境科学,1999,19(2):133-137.
    [125]邱洪斌,祝丽玲,张凤梅.城市街道大气颗粒物污染特征及影响因素的研究[J].黑龙江医药科学,2002,25(03):3-4.
    [126]胥晓瑜,马永亮,傅立新,等.应用化学质量平衡模型解析烟台市污染源的排放贡献率[J].环境污染与防治,2001(5):262-264.
    [127]李学惠.集中供热——缓解乌鲁木齐大气污染的有效途经[J].新疆环境保护,2005,27(3):19-21.
    [128]常锦会,李茂静,王军林.唐山市大气颗粒物污染及防治对策[J].能源环境保护,2004,18(1):52-54.
    [129]姬亚芹,朱坦,白志鹏,等.大气颗粒物源解析土壤风沙尘成分谱研究进展[J].城市环境与城市生态,2005,12(18):3-5.
    [130]柴发和,薛志刚,等.北京市大气污染控制措施效果分析[J].环境保护,2006(7A):49-52.
    [131]王青,邹骥,王磊.基于几个系统思想的几个大气污染控制策略研究[J].污染控制,2006(2B):54-56.
    [132]黄叶丹.北京四城区大气污染控制对策[J].环境保护,2006(5B):43-45.
    [133]薛志钢,郝吉明,陈复,等.国外大气污染控制经验[J].重庆环境科学,2003,25(11):159-161.
    [134]贺克斌,余学春,陆永祺,等.城市大气污染物来源特征[J].城市环境与城市生态, 2003,16(06):269-271.
    [135] Oprea P M, A case study of knowledge modelling in an air pollution control decision support system[J].Binding Environmental Sciences and AI.2005,18(4):293-303.
    [136]杨文敏,吴炳耀,杨建军.大气颗粒物表面特征分析[J].中国公共卫生学报,1994,13(05):275-277.
    [137]杭维琦,黄世鸿.南京市城区环境空气中总悬浮颗粒物的源解析[J].环境监测管理与技术,2000,8(12):18-21.
    [138]胡军,王玉南.大气污染物总量控制研究与应用[J].城市管理与科技,2004, 6(03):101-105.
    [139]魏光华,黄震,谢拯.城市街道机动车污染扩散模型研究动态[J].上海环境科学, 2001(3):131-133.
    [140]陈建华,王玮,刘红杰,等.北京市交通路口大气颗粒物污染特征研究(Ⅰ)——大气颗粒物污染特征及其影响因素[J].环境科学研究,2005,18(02):34-38.
    [141]王玮,叶慧海,金大善,等.交通来源颗粒物及其无机成分污染特征的研究[J].环境科学研究,2001,(04):29-31.
    [142]徐光.辽宁省三城市大气颗粒物来源解析研究[J].中国环境监测,2007,23(3):57-61.
    [143] Breysse P N, Williams D L, Herbstman J B, et al. Asbestos Exposures to Truck Drivers During World Trade Center Cleanup Operations[J]. Journal of Occupational and Environmental Hygiene.2005, 2(08):400
    [144]李仪芳,杨冠玲,李丰果,喻雷寿.大气PM2_5显微图像的处理与分析[J].光电工程,2005,32(11):54-58.
    [145]仇志军,等.基于质子微探针研究的大气气溶胶单颗粒源解析[J].环境科学,2001,22(2):51-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700