用户名: 密码: 验证码:
Zn-杂多酸盐纳米管催化氧化难降解制药废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以我国北方某大型合成制药企业的高浓度难降解废水为研究对象,开展了制药废水处理联合工艺的研究,取得了较好的效果,可以保证高浓度难降解制药废水经本文所提工艺处理后,达到国家达标排放的标准(GB8978-1996)的要求。
     自主设计、首次合成了新型的纳米级金属杂多酸盐催化剂——Zn_(1.5)PW_(12)O_(40)纳米管。实验证明Zn_(1.5)PW_(12)O_(40)纳米管催化活性好、耐水性能好、易于与水分离。
     通过GC/MS检测中间产物与文献报道自由基降解产物对比结合文献提供的羟基自由基机理,对Zn_(1.5)PW_(12)O_(40)紫外光降解苯酚和Zn_(1.5)PW_(12)O_(40)臭氧催化氧化降解苯胺的机理进行了探讨。Zn_(1.5)PW_(12)O_(40)紫外光降解苯酚和Zn_(1.5)PW_(12)O_(40)臭氧催化氧化降解苯胺时,·OH自由基起主导作用,并由自由基引发一系列的化学反应对复杂有机物进行了有效的降解。
     研究了Zn_(1.5)PW_(12)O_(40)纳米管在紫外、空气及臭氧体系中对难降解制药废水的催化氧化,获取了最佳操作条件。
     通过对Zn_(1.5)PW_(12)O_(40)纳米管在三个体系中的经济性和可操作性比较分析,确定了Zn_(1.5)PW_(12)O_(40)/ O3体系为难降解制药废水预处理工艺。该体系能将废水的B/C值由0.05提高到0.6,有利于后续的生物处理。采用GC/MS对制药废水中的难降解的硝基苯类、吡啶类等有机物经该工艺处理后的组成进行了测定,定量说明了硝基苯等难降解类有机物的去除效率。
     采用UNITANK-BAF组合工艺处理Zn_(1.5)PW_(12)O_(40)催化臭氧氧化后废水,出水清澈透明,COD浓度小于500mg/L,符合国家达标排放的标准的要求。为难降解制药废水的有效处理提供了一种新方法和新催化剂。
With the swift progress and develop of the medicine industry in recent years, medicine industry rise year by year in specific gravity in national economy. However, pharmacy waste water also becomes main pollution sources to many water bodies, which was a hotspot problem of the environment protection field. Cause of the shifty water quality, large flow, and great amount and species of the non-biodegradable organic in it, the Pharmacy waste water could not be treated by ordinary sewage treatment technology solely. The high thickness and non-biodegradable pharmacy waste water is the investigate subject in this study, started with to promote water biodegradability, the pharmacy waste water combined treatment handicraft has been investigated, and has got fairly good effect. The treated outflow quality from this processes can accord with the national discharge standard(GB 8978-1996).
     According to the peculiar characteristic of pharmacy waste water and metal polyoxometalates, with the stencil of natural material (filter paper), a new stype nanoscale metal polyoxometalates catalyst, Zn_(1.5)PW_(12)O_(40) nanotubes, had been designed and composed autonomously during this study, which adopted the sol and gel method. Zn_(1.5)PW_(12)O_(40) nanotubes has good water resistance and easy to be separated from water. A routine represent method for polyoxometalates has been adopted to the Zn_(1.5)PW_(12)O_(40) nanotubes. Observed by transmission electron microscope, the crystal grain conformation is hollow nanotubes, tubes length between 200-900nm, the tubes diameter is 70 nm, the hollow tubes inside diameter is 20 nm about. Adopted the element analysis approach, the Zn_(1.5)PW_(12)O_(40) nanotubes catalyst compositions has been confirmed. The study result was that: Zn_(1.5)PW_(12)O_(40) nanotubes polyanion still maintain the initial Keggin type structure, in which Infrared Spectrum and X-ray powder diffraction (XRD) and 31P magnetic resonance (31P MAS NMR) methods had been used.
     Through the common use method in the world, the Zn_(1.5)PW_(12)O_(40) nanotubes has been evaluated, which was used to evaluate the catalysis activity of polyoxometalates at present.In the study Safranine T was taken as the characteristic material, which has the similar constructure to Rhodamine B, but more difficult to be biodegraded. The catalysis activity of Zn_(1.5)PW_(12)O_(40) nanotubes has been investigated by degraded the Safranine T, included photocatalysis activity and chemistry catalyzing the result indicated that: Zn_(1.5)PW_(12)O_(40) nanotubes catalysis activity is fair good.
     In three catalytic oxidation systems, which include ultraviolet radiation system, air oxidation system and ozone catalyzes oxidation system, Zn_(1.5)PW_(12)O_(40) nanotubes catalysis effect to non-biodegradable pharmacy waste water had been studied systematically. Only in the USA and Japan etc., polyoxometalates (POM) was applied in photocatalysis chemistry field now, and the studying were mainly carried on the purely-organics, the practical apply study is still few.
     The optimum operate condition of Zn_(1.5)PW_(12)O_(40) nanotubes catalyzes oxidation for the pharmacy waste water in ultraviolet radiation system, air oxidation system and ozone catalyzes oxidation system has been got in this research. The particular results as follow:
     (1)Takes the promotion of bio-degradability and remove rate of COD as the index, the optimum operation condition of Zn_(1.5)PW_(12)O_(40) nanotubes catalyzing oxidation treats the non-biodegradable pharmacy waste water under room temperature and pressure air system has been obtained. The results is that: air flow rate is 4.5L/h, and temperature is 50℃, and initial pH is above 9, and catalyst amounts is 30g/L, and reaction time 24 hours. There are three influent factors within above, which are air flow rate and catalyst amount and reaction time, which took the remarkable effect to the experiment results. Under the optimum operation condition, the B/C of pharmacy waste water can be promoted from 0.05 to 0.3, which can be propitious to follow bio-process.
     (2)The experiment of Zn_(1.5)PW_(12)O_(40) nanotubes/ O3 Catalyzes Oxidation treated non-biodegradable pharmacy waste water has been carried out, the results indicated that: Zn_(1.5)PW_(12)O_(40) nanotubes catalyst have the very good adsorption and high surface activity. It was able to accelerate ozone decomposition generating the Hydroxyl Radical·OH, that makes the difficult to degrade organic by ozone (for instance nitrobenzene and pyrrolidinone etc.) can be degraded under O3/Zn_(1.5)PW_(12)O_(40) handicraft process, at the same time, can shorten the reaction residence time, and accelerate oxide reaction speed, cut down the sources of energy consumption and treatment cost. With this process, the B/C of pharmacy waste water can be promoted from 0.05 to 0.6, which can be propitious to follow bio-process. The obtained optimum operation condition of O3/Zn_(1.5)PW_(12)O_(40) nanotubes is that: catalyst amounts is 2g/L, and Ozone liquid phase thickness is above 0.3mg/L, initial pH between 7.5~9, reaction time is more than 10 minutes. Within those influent factors, the reaction time and ozone thickness made the great effect to the experiment results. On the COD remove rate, it was 46% when ozone thickness was 0.1mg/L, but it can reach 85% when ozone thickness was 0.3mg/L.
     By way of comparison and analyses the economy and maneuverability of O3/Zn_(1.5)PW_(12)O_(40) nanotubes catalytic oxidation system and air oxidation system and ultraviolet radiation system, the practical pretreatment process was confirmed to be O3/Zn_(1.5)PW_(12)O_(40) nanotubes catalytic oxidation system. This system can promote the bio-degradability of waste water, and can make the COD remove rate above 74% at the same time.
     The mechanism of Zn_(1.5)PW_(12)O_(40) ultraviolet radiation degrade phenol and O3/Zn_(1.5)PW_(12)O_(40) nanotubes catalytic oxidation degrade aniline has been studied on. Through detect the intermediate product by way of GC/MS to conclude the mechanism of Zn_(1.5)PW_(12)O_(40) ultraviolet radiation degrade phenol and O3/Zn_(1.5)PW_(12)O_(40) nanotubes catalytic oxidation degrade aniline:·OH free radical plays the leading role, and a series of chemical reaction has carried out effective degradation on complicated organic from free radical initiation.
     Using GC/MS, the inflow and outflow waste water component from the O3/Zn_(1.5)PW_(12)O_(40) nanotubes catalytic oxidation system have been mensurated and analyzed. Result indicates: under a certain process condition, the 44 kinds organic in the raw waste water, include some non-biodegradable organic such as nitrobenzene and aniline and pyridine and pyrimidine, transformed to alcohol and carboxylic acids and aldehyde and ester and alkane after treated by O3/Zn_(1.5)PW_(12)O_(40) system. Bio-toxicity of Waste water reduces obviously, but the bio-degradability improves obviously.
     Adopt UNITANK-BAF combined process treat the waste water, which treated by Zn_(1.5)PW_(12)O_(40)/ Ozone Catalyzes Oxidation, and had obtained the optimum operation condition. This process can reduced the raw waste water COD thickness from 4000~5000mg/L to 500mg/L below. The obtained optimum operation condition of UNITANK-BAF combined process treat the out flow waste water from Zn_(1.5)PW_(12)O_(40)/Ozone Catalyzes Oxidation as follow:○1 UNITANK: sludge thickness is 5000~6000mg/L, and DO 2~4 mg/L, and ratio of gas and liquid is above 100:1, and inflow COD thickness 4000~5000mg/L, BOD 2400~3000mg/L, pH is 6, and BOD:N: P=100: 5:1,and HRT is more than 60 hours, room temperature 20~30℃.○2 BAF: pH 6-7, ratio of gas and liquid is above 15:1, and HRT is more than 6 hours, and room temperature 20~30℃. Under this operation condition, the average COD remove rate of UNITANK-BAF combined process can reach 91.4%.
     The out flow is limpidity and lucent, COD thickness lower than 500 mg/L, accord with the national waste water discharge standard. Prove that: That Zn_(1.5)PW_(12)O_(40)/ Ozone Catalyzes Oxidation is an effective pretreatment process to the high concentration non-biodegradable pharmacy waste water. Zn_(1.5)PW_(12)O_(40)/O3 Catalyzes Oxidation -UNITANK-BAF allying unite process is the suitable handicraft for the high concentration non-biodegradable pharmacy waste water.
     Non-biodegradable pharmacy waste water treated by Zn_(1.5)PW_(12)O_(40)/O3 Catalyzes Oxidation -UNITANK-BAF allying unite process had been detected with GC/MS, results indicated: after treated by Zn_(1.5)PW_(12)O_(40)/O3 Catalyzes Oxidation-UNITANK-BAF allying unite process, the organic detected in Non-biodegradable pharmacy waste water out flow were small molecule carboxylic acid and alcohol, bio-toxity was less, and the out flow is limpidity and lucent, COD thickness was below 500mg/L, which can accord with the national discharge standard(GB 8978-1996).
     This study a new style catalyst, Zn_(1.5)PW_(12)O_(40) ultraviolet, has been achieved to exploited. Used with ozone Oxidation, this catalyst can promoted the sewage biodegradability observably, and then the non-biodegradable pharmacy waste water treated continually by UNITANK-BAF combined process can accord with the national discharge standard(GB 8978-1996). The results have important theory meaning and guide function, as well as significance applying value, to the waste water contain non-biodegradable organics.
引文
[1]聂仲文主编.现代污水设施建设标准与设备监测维护及污水处理新技术、新工艺实务全书[M].北京:当代中国音像出版社,2005, 1293-1294.
    [2]徐扣珍,陆文雄,宋平等.焚烧法处理氯霉素生产废水[J].环境科学1998, 19 (4):69-71.
    [3]徐锡彪,褚宏伟,孙建中.高浓度有机化工废水处理新技术—催化氧化[J].江苏环境科技,2001,14(1):14-16.
    [4]马承愚,彭英利.高浓度难降解有机废水的治理与控制[M].北京:化学工业出版社,2006.
    [5]董维芳,姜庆利,谭砂砾.苯酚在负载型ZnO/TiO2复合催化剂上光致降解的研究[J].山东轻工业学院学报,2004,18(3):63-68.
    [6] Hoffmann M R,Martin S,Choi W,etal.Environmental applications of semiconductor photocatalysis[J]. Chem Rev ,1995 ,95(1):69-96.
    [7]金振兴,刘守新.Ag/ TiO2对几种难降解有机污染物的光催化降解[J].环境科学与技术,2004,27(6):16-17.
    [8]余政哲,孙德智,郭宝珠,李长海,史鹏飞.均相化学催化氧化法处理废碱液中硫化物的研究.西安石油大学学报(自然科学版),2004,19(1):63-65
    [9]谢磊,杨润昌,周书天.高浓度甲基橙溶液的低压湿式催化氧化处理[J].环境工程,1999,17(6):69-71.
    [10]韦朝海,胡成生,杨波,吴超飞.催化剂对甲醛废水湿式氧化的增效作用[J].环境科学,2003, 22(5): 459-463.
    [11] Krajne M, Levec J.Catalytic oxidation of toxic organics in supercritical water[J].Appl Catal B : Environ. 1994 , (3) :101.
    [12]时桂杰.光催化氧化处理污染物的现状及发展趋向[J].环境科学与技术,1998,82(3):1-4.
    [13]陈宜菲,陈少瑾.光催化氧化法降解含氯有机物的研究进展[J].河北化工,2008,31(1):25-28
    [14]王成国,邓兵.纳米TiO2光催化氧化降解活性染料研究[J].毛纺科技,2008,2:23-25
    [15]孙尚梅,康振晋,魏志仿. TiO2膜太阳光催化氧化法处理毛纺染整废水[J].化工环保,2000,20 (1):11-14.
    [16]耿春香,张秀霞.苯胺、硝基苯废水的吸附-双催化氧化降解[J].环境科学与技术,2004,7(2):64-65.
    [17] Sun Y , Pignatello J J . Evidence for a surface dual hole2radical mechanism in the TiO2 photo catalytic oxidation of 2 ,4-2dichlorophenoxyacetic acid[J].Environ Sci Technol , 1995 , 29 (8) : 2065 - 2072.
    [18] Vogel R,Hoyer P.Weller H.Quantum-sized PbS,CdS,Ag2S,SbS3 and Bi2S3 particles as sensitizers for various Nanoporous wide-bandgap semiconductors[J]. Phys Chem,1994,98(12):3183-3188.
    [19] T Watanabe, E Kojima, K Norimoto, et al. A comparison of the effectiveness of TiO2 photocatalysis and UVA photolysis for the destruction of three pathogenic micro- organisms [J]. Fourth Euro Ceramics, 1995,11(2): 175- 180.
    [20] U MShahed, MA Khan, B I William. Efficient photochemical water splitting by a chemically modified n - TiO2 [J] . Science,2002, 297( 9) : 2243- 2245.
    [21] S Shanmugasundaram,K Horst.Daylight photocatalysis by carbonmodified titanium dioxide [J]. Angewandte Chemie International Edition,2003,42(4):4908- 4911.
    [22] R Asahi,TMorikawa,T Ohwaki,et al. Visible- light photocatalysis in nitrogen- doped titanium oxides [J].Science,2001,293(7): 269- 271.
    [23] G R Angela,P Cesar. Bactericidal action of illuminated TiO2 onpure escherichia coli and natural bacterial consortia: post -irradiation events in the dark and assessment of the effective disinfection time [J]. Applied Catalysis B: Environmental,2004,49(2): 99- 112.
    [24] Hiroshi I,Yuka W,Kazuhito H.Nitrogen–concentration dependence on photocatalytic activity of TiO2 - xNx powders [J].J Phys ChemB,2003,107(23):5483-5486.
    [25] J Yu,W K Ho,J G Yu,et al.Efficient visible- light- induced photocatalytic disinfection on sulfur - doped nanocrystalline titania [J].Environ Sci Technol,2005,39(4):1175- 1179.
    [26]杜飞鹏,余影,曾艳.纳米TiO2光催化氧化技术进展[J].环境科学与技术2004,27(2):94-97.
    [27]邹东雷.高浓度难生物降解有机废水处理技术及工艺研究[D].长春:吉林大学环境与资源学院,2006.
    [28]杜鸿章,戴锡海,王斌,王小兵,杨民,王贤高,吴鸣,孙承林.催化湿式氧化法治理一酸母液废水的研究[J].工业水处理,24(9):25-27.
    [29]付冬梅,陈吉平,梁鑫淼.湿式氧化法处理苯酚、苯胺和硝基苯废水的研究[J].精细化工,2004,21(10): 772-774.
    [30]周红艺,徐明仙,袁细宁,林春绵.超临界水催化氧化降解有机污染物的研究[J].浙江工业大学学报,2001,29(3):279-284.
    [31]代莎莎,刘建广,宋武昌,王丽丽.臭氧氧化法在深度处理难降解有机废水中的应用[J].水科学与工程技术.2007,2:24-26.
    [32] Fernando J. Beltra著.周云瑞译.水和废水的臭氧反应动力学[M].北京:中国建筑工业出版社,2007.
    [33]黄辉,艾飞虎,马淳安,张文魁,甘永平.催化氧化法处理含难降解有机物废水研究进展[J].浙江工业大学学报,2002,30(5):470-474.
    [34]朱雅杰,汪战林.催化氧化法在工业废水处理中的应用[J].兰化科技,1997,15(1):63-68.
    [35]林仁漳,陈玉成,魏世强.高浓度难降解有机废水的催化氧化技术及其进展[J].环境污染治理技术与设备,2002,3(5):49-54.
    [36]杨润昌,周书天.高浓度难降解有机废水低压湿式催化氧化处理[J].环境科学,1997,18(5):71-76
    [37]徐锡彪,褚宏伟,孙建中.高浓度有机化工废水处理新技术—催化氧化[J].江苏环境科技,2001,14 (1):14-16.
    [38]李启良,陈建林.催化氧化法处理有机废水催化剂的选择应用[J].污染防治技术,2003,16(2):34-36.
    [39] Alaton, I. Arslan; Ferry, J.L. Merits of polyoxotungstates as environmental remediation catalysts: A novel wet oxidation technology for refractory industrial pollutants[就]. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering,2003,38, (10):2435-2445.
    [40] Friesen,DuaneA.,Headley,JohnV.,Langford,CooperH.Photooxidative degradation of N-methylpyrro- lidinone in the presence of Cs3PW12O40 and TiO2 colloid photocatalysts. Environmental Science and Technology, 1999, 33(18):3193-3198.
    [41] Yu Xiaodan,Guo Yingna,Xu Leilei,Yang Xia,Guo Yihang.A novel preparation of mesoporous CsxH3-xPW12O40/TiO2 nanocomposites with enhanced photocatalytic activity.Colloids andSurfaces A: Physicochemical and Engineering Aspects. 2008, 316(1-3):110-118.
    [42] Wang Wei;,Zhu Xiuhua,Liu Ning,Xue Yuzhi.Photocatalytic degradation of reactive dark blue with polyoxometalates[C]. 2nd International Conference on Bioinformatics and Biomedical Engineering, iCBBE. 2008.
    [43] yihans Guo,Danfeng Li,eta1.Layered double hydroxides pillared by npolyometalates:Synthesisand photocatalytic activity[J].International J of Inorganic Materials,2001,3:347—355.
    [44] Danfeng Li,Yiheng Guo.Photocatalytic degradation of aqueous formic acid over the silica composite films based on lacunary Xcssin—typepolyoxometalates[J].Appl Catal A:General,2002,235:11-20.
    [45] S Antonarakl,E Androulaki,eta1.Photo1ytic degradation of all ehlorophenols with polyoxometallates [J]. J Photochem Photobiol A:Chemistry,2002,148:191-197.
    [46] I A Alaton,J L Ferry.Near—UV—Vis light induced acid orange 7 bleaching in the presence of SiW12040 catalyst[J]-J Photochem Photohiol A:Chemistry,2002,152:175-181.
    [47]周萍,孝莉.多金属氧酸盐杂化催化剂光催化降解有机杀虫剂六氯[J].催化学报,2004,25(9):753-756.
    [48]刘战辉,张宇.磷钨系杂多酸复合TiO2纳米粒子的制备及光催化特性[J].江苏化工,2004,32(3):21-25.
    [49] A Hiskia, E Papaconstantinou. Photocatalytic oxidation of organic compounds by polyoxometalates of molybdenum and tungsten Catalyst regeneration by dioxygen [J].Inorg Chem,1992,31(2):163-167.
    [50]武钏.负载型杂多酸对罗丹明B光催化降解的研究[J].光谱实室,2007,24(4):687-691.
    [51]颜桂炀,郑柳萍.磷钨酸对甲基橙光催化降解的初步研究[J].广州化学,2004,29(2):14-18.
    [52]黄明华,孙旭平,毕立华,申燕,刘柏峰,董绍俊.金纳米粒子和杂多酸的多层组装及其对氧的催化还原[J].复旦学报(自然科学版) ,2004, 43(4):482-486.
    [53] Jianguo Huang,Toyoki Kunitakeand Shin-ya Onoue. A facile route to a highly stabilized hierarchical hybrid of titania nanotube and gold nanoparticle [J].Chem.Commun. 2004,1008-1009.
    [54] Wang XH, Liu JF, Pope MT.New polyoxometalate starch nanomaterial synthesis, characterization and antitumoral activity[J].Dalton Trans,2003,5:957-60.
    [55] Wang XH,Li F,Liu SX,Pope MT.New liposome-encapsulated-polyoxometalates:synthesis and antitumoral activity[J],.Inorg Biochem,2005,99:452-457.
    [56] Johnson B J S, Stein A. Surface modification of mesoporous,macroporous and amorphous silica with catalytically activepolyoxometalate clusters[J]. Inorg.Chem, 2001,40:801-802.
    [57] Huang JG, Kunitake T, Onoue S.A facile route to a highly stabilized hierarchical hybrid of titania nanotube and gold nanoparticle[J].Chem Commun,2004,8:1008-1009.
    [58] Mann S.Biomineralization: principles and concepts in bioinorganic materials chemistry[M]. Oxford: Oxford University Press,2001.
    [59] GouzerhP.,ProustA.,Main-groupelement,organic and organometallicderivatives of polyoxometalates [J]. Chem.Rev.,1998,98 :77-111.
    [60]王恩波,胡长文,许林.多酸化学导论[M].化学工业出版社,1998(第一版).
    [61]彭革,张大伟,胡长文.纳米级多金属氧盐的分子设计[J].工业催化,2000,8(1):13-16.
    [62] Yoshinaga,Yusuke,Okuhara,Toshio.Shape-selective oxidation catalyzed by a Pt-promoted ultramicroporous ultramicroporous heteropoly compound[J].Chem.Soc.,94(15):2235-2240.
    [63] Okuhara Toshio,Yamada Takashi,Seki Kohei,Johnkan Ken-Ichi,Nakato Teruyuki.Pore structure and shape selective catalysis of bi functional microporous Heteropoly compounds[J].Microporous Mesoporous Mater,21(4-6):631-643.
    [64]郭天鹏,汪城文,陈吕军,等.上流式曝气生物滤池深度处理城市污水的特性[J].环境科学,2002,23 (1):58-61.
    [65]黄明华,孙旭平,毕立华,申燕,刘柏峰,董绍俊.金纳米粒子和杂多酸的多层组装及其对氧的催化还原[J].复旦学报(自然科学版),2004,43(4):482-486.
    [66] Rocciccioli-Deltcheff C,Frank M,Thouvenot R.Vibrational investigations of polyoxometalates 2. Evidence for anioneanion interactions in molybdenum(VI) and tungsten(VI) compounds related to the Keggin structure[J].Inorg Chem,1983,22:207-216.
    [67] Wang XH,Liu JF,Pope MT.New polyoxometalate/starch nanomaterial: synthesis, characterization and antitumoral activity[J].Dalton Trans,2003,5:957-960.
    [68] Wang XH,Li F,Liu SX,Pope MT. New liposome-encapsulated-polyoxometalates: synthesis and antitumoral activity[J].Inorg Biochem,2005,99:452-457.
    [69] Huang JG, Kunitake T.Nano-precision replication of natural cellulosic substances by metal oxides[J]. Am Chem Soc 2003, 125:11834-5.
    [70]廖禹东,张宁,郭忠.掺铁纳米TiO2的表征及光催化降解制药废水的研究[J].应用化工,2007,36 (1): 44-46
    [71]合金,庞宏,南军.纳米材料及其在催化领域中的应用前景[J].沈阳化工,2000,29(2):97-100.
    [72]于剑锋,吴通好.杂多化合物及其在催化反应中的应用[J].化工科技,1998,6(2):1- 9.
    [73]高孝恢,肖慎修,陈天朗,蒋淑芬.杂多化合物的合成与结构性能研究的近代发展[J].化学研究与应用,1999,11(4):352-357.
    [74]温郎友,阂恩泽.固载杂多酸催化剂研究新进展[J].石油化工,2000,29:49-51.
    [75] Lei PX,Chen CC,Yang J,Ma WH,Zhao JC,Zang L.Degradation of dye pollutants by immobilized polyoxometalate with H2O2 under visiblelight irradiation[J].Environ Sci Technol,2005,39: 8466-8474.
    [76] Li J,Ma WH,Huang YP,Tao X,Zhao JC,Xu YM.Oxidative degradation of organic pollutants utilizing molecular oxygen and visible light over a supported catalyst of Fe(bpy)32 + in water[J].Appl Catal B Environ 2004;48:17-24.
    [77]陈梅兰,陈金缓.TiO2光催化降解低浓度溴氰菊酯[J].环境污染与防治,2000,22(1):13.
    [78] Sun YG,Xia YN.Shape-controlled synthess of gold and silver nanoparticles[J].Science,2002,298:2176-9.
    [79] Pope MT,Muller A.Polyoxometalate chemistry:an old field with new dimensions in several disciplines [J].Angew Chem Int Ed Engl,1991,30:34-38.
    [80] Muller A,Petters F,Pope MT,Gatteschi D.Polyoxometalates: very large clusters e nanoscale magnets [J].Chem Rev 1998,98:239-272.
    [81] E D Tusnelda,H F Fritz.Kinetic study of photocatalytic degradation of carbamazepine, clofibric acid, iomeprol and iopromide assisted by different TiO2 materials - determination of intermediates and reaction pathways [J].Water Res,2004,38(5):955-964.
    [82]季萍,潘健民.负载型纳米催化剂降解有机磷农药废水的研究.2004年全国太阳能光化学与光催化学术会议专辑[C],上海:上海工程技术大学化学化工学院, 2004.
    [83] Zhao C,Zhao D.Degradation of nitrobenzene in wastewater by ultrasound/Fenton’s reagent[J].ACS Div. Environ. Chem., 2001,41(2):485-569.
    [84]郭伊荇,杨宁,胡长文,王恩波.三维有序大孔杂化材料SiW11O398--SiO2和γ- SiW10O368--SiO2的制备与表征[J],高等学校化学学报.2002, 23 (11):2035-2039.
    [85]耿爱芳,施卫平,郭伊荇.多金属氧酸盐一氧化硅复合物膜的制备及其光催化性能研究[J].长春理工大学学报,2002,25(4):42-44.
    [86]李莉,张晓虹,王政军,郭伊荇.纳米材料H6P2W18O62/SiO2光催化降解茜素红[J],齐齐哈尔大学学报.2006,22(1):22-24.
    [87] Yang Y,Wu QY,Guo YH, Hu CW,Wang EB. Efficient degradation of dye pollutants on nanoporous polyoxotung stateeanatase composite under visible-light irradiation[J].Mol Catal A Chem,2005,2 (25):203-212.
    [88]雷鹏翔,陈春城,马万红,赵进才.可见光照射下SiW12O40/Resin光催化剂活化H202降解染料的研究[J].化学学报,2005,63(17):1551-1553.
    [89]朱秀华,李海成,王炜.硅钨酸光催化降解甲基橙溶液研究[J].大连铁道学院学报,2001,22(1): 1038-1040.
    [90]杨曦,余刚,孔令仁,王连生.酸性红3B的杂多酸光催化降解动力学[J].环境科学,2002,23(3):40-43.
    [91]林碧洲.某些有机胺十聚钨酸盐的制备和催化性质[J].华侨大学学报(自然科学版),2002,23(3): 300-303.
    [92]尚静,朱永法.钨磷酸碱金属盐气相光催化氧化甲醛的性能研究[J].复旦学报(自然科学版),2003, 42(6):903-905.
    [93]朱秀华,朱敏,王炜.多金属氧酸盐光催化降解水中有机污染物[J].化学通报.2004,67(17):1-8.
    [94]杨军,陆正禹,胡纪萃等.抗生素工业废水生物处理技术的现状与展望[J].环境科学,1997,18(5): 83-85.
    [95]李道棠,赵敏钧,杨虹.深井曝气-ICEAS技术在抗菌素制药废水处理中的应用[J].给水排水,1996,22 (3):21-24.
    [96]谭智,汪大肇,张伟烈.深井曝气处理高浓度制药废水[J].环境污染与防治,1993,15(6):6-8.
    [97]简英华.ORBAL氧化沟处理合成制药废水[J].重庆环境科学,1994,16 (1):22-24.
    [98]陈玉,刘峰,王建晨等.上流式厌氧污泥床(UASB)处理制药废水的研究[J].环境科学,1994,15(1): 50-52.
    [99]钱易,文一波.焦化废水中难降解有机物去除的研究[J].环境科学研究,1992, 5(5):1-8.
    [100]韩沛,张少倩.水解酸化-厌氧-好氧-絮凝-吸附工艺处理洁霉素生产高浓度有机废水[J].环境工程, 1998,16(1):19-20.
    [101]冯凯,杨世君.UNITANK工艺处理城市污水工程与实践[M].北京:北京市政设计研究总院,1-5.
    [102]谷成,刘维立.高浓度有机废水处理技术的发展[J].城市环境与城市生态,1999, 12 (3):54-56.
    [103] Segrers Engineering Water.UNITANK—Advanced treatment of industrial and municipal[J],waste water,1996.
    [104]陈运进.猎德污水处理厂UNITANK工艺的运行效果[J].中国给水排水,2006,22(2):93-95.
    [105]莫东华,石明岩.UNITANK工艺在广东地区的应用[J].广东化工,2008, 35(177):87-89.
    [106]喻学敏,姜伟立,邹敏.UNITANK废水处理工艺及其应用[J],污染防治技术,2001,14(4):14-16.
    [107]石明岩,胡晓东,陈方肃,吕锡武.革新UNITANK法处理城市污水的特性[J].城市环境与城市生态,2003,16(4):65-68.
    [108] Segrers Engineering Water nv. UNITANK系统在工业及城市污水处理中的应用[J],1997.
    [109]李探微,彭永臻,何金.UNITANK系统及污水处理研究方向的思考[J],中国给水排水,1999,15(7): 21-23.
    [110]杨向平.城市污水处理的技术特点与工程建设体验.中国水工业科技与产业[M].北京:中国建筑工业出版社,2000.85-86.
    [111]喻学敏,姜伟立,邹敏.UNITANK废水处理工艺及其应用[J].污染防治技术,2001,14(4):14-16
    [112] Feyaerts M. Redox control of biological nitrogen removal in the UNITANK single stageoperation[J]. Med Fac Landbouww Uijksuniv Gent,1995.
    [113] Vriens L.The UNITANK systems for enhanced biological nutrient removal from wastewaters[J], Water,1990:52-53.
    [114]郑俊,吴浩汀,程寒飞.曝气生物滤池污水处理新技术及工程实例[M].北京:化学工业出版社,2002.26-27.
    [115]罗艳丽,徐世兵,夏永志.BAF法在雅山污水处理厂的应用[J].环境工程, 2007,25(4):86-88.
    [116]张杰,曹相生,孟雪征.曝气生物滤池的研究进展[J].中国给水排水,2002,18(8):26-29.
    [117]于颂明,张东伟,张宝杰,许霞,杨红芬.曝气生物滤池处理尿素解吸废水的启动性能研究[J].哈尔滨理工大学学报.2006,11(5):94-96.
    [118]徐新良,郭景玉,郭亚丽.上向流曝气生物滤池处理合成氨废水的研究[J].大氮肥.2006,29(4): 286-288.
    [119]孙志国,陈季华,陈思贫.曝气生物滤池废水深度净化工艺研究[J].工业水处理,2003,23(4):35-38.
    [120]刘雯婷,王白杨.BAF组合工艺在炼油废水处理中的研究与应用[J].江西化工,2006(4):64-66.
    [121] R.Massart,R.Contant,J.-MFruchart,J.–P.Ciabrin,M.Fournier, Inorg.Chem.,1977,16,2916.
    [122]何苗.杂环化合物和多环芳烃生物降解性能的研究[D].清华大学环境工程系,1995.
    [123]国家环保局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [124]王建兵,祝万鹏,王伟,杨少霞.催化剂Ru/ZrO2,CeO2催化湿式氧化苯酚[J].环境科学,2007,28(7): 1460-1465.
    [125] Hoigne J. Bader H. Rate constants of reaction of ozone with organic and inorganic compounds in water I:non-dissociating organic compounds[J].Water Research, 1983,17(2):173-183.
    [126]郎咸明,魏德洲,崔振强,甘丽华.水解-UNITANK工艺处理制药废水工序的优化[J].东北大学学报2005,26(9):904-906.
    [127]聂军,王珊珊.第三代生物膜反应池BIOFOR[J].给水排水,1998 ,24(10):26-27.
    [128] ChenJJ,MccartyD,SlackD,etal.Full scale case studies of asimplified aerated filter(BAF)for organics and nitrogen removal[J].Wat Sci Tech, 2000,41(4):1-4.
    [129]邹伟国,孙群,王国华等.新型BIOSMEDI滤池的开发研究[J].中国给水排水,2001,17(1):1-4.
    [130]孙力平,侯红娟.改进的BAF工艺用于工业废水处理[J],中国给水排水,2000,16(8):55-56.
    [131] Bacquet G,Joret J C,Rogalla F.Biofilm start-up and controlinaeratedfilter[J].Wat Sci Tech,1999,33(4):1108-1113.
    [132]郭天鹏,汪城文,陈吕军等.上流式曝气生物滤池深度处理城市污水的特性[J].环境科学,2002,23 (1):58-61.
    [133]郎咸明,魏德洲,郭艳红等.曝气生物滤池深度处理部分制药废水的研究[J].安全与环境学报.2004, (5):41-43.
    [134]何苗,张晓健,顾夏声等.杂环化合物好氧生物降解性能的研究[J].中国环境科学,1997,17(6): 481-483.
    [135]黄儒钦,杨敏.活性污泥法的发展及其工程选择[J].四川环境,2001,20(l):24-27.
    [136]李松田,吴春笃,闫永胜,等.杂多酸光催化降解有机污染物[J].化学进展,2008,20(5):690-697
    [137] Mylonas A., Papaconstantinou E.,Roussis V. Photocatalytic degradation of phenol and pcresol by polyoxotungstates[J]. Polyhedron, 1996, 15(19): 3211—3217
    [138]毛萱,殷元骐.杂多酸催化研究新进展[J].分子催化,2000,14(6):483-489.
    [139] F. P. Logemann, J. H. J. Annee. Water Treatment with a Fixed Bed Catalytic Ozonation Process[J]. Wat. Sci. Tech,1997, 35:353-360
    [140]周明华,吴祖成,祝巨.基于均相光化学氧化的光电一体化降解对硝基苯酚的研究[J].催化学报,2002,73(4):367-38.
    [141] K. M. Bulanin, A. V .Alekseev, D. S. Bystror, et al. IR Study of Ozone Adsorption on Si02[J].Phys. Chem.1994,98:5100-5103.
    [142] K.M.Bulanin,J.C.Lavalley,A.A.Tsyganenko.Infrared Study of Ozone Adsorption on Ti02(Anatase)[J]. Phys. Chem.,1995,99:10294-10298
    [143] K. M. Bulanin, J. C.Lavalley. Infrared Study of Ozone Adsorption on Ce02[J]. Phys. Chem. ,1998,102:6809-6816.
    [144] K. M. Bulanin, J. C. Lavalley, A. A. Tsyganenko. Infrared Study of Ozone Adsorption on CaO[J]. Phys. Chem., 1997,101:2917-2922.
    [145] W. Li, G V Gibbs, S. T. Oyama. Mechanism of Ozone Decomposition on A Manganese Oxide Catalyst I: in ,situ Ramann Spectroscopy and ab Initio Molecular Orbital Calculation[J]. Am. Chem. Soc., 1998,120:9041-9046.
    [146] W. Li, G V Gibbs, S. T. Oyama. Mechanism of Ozone Decomposition on A Manganese Oxide Catalyst II:Steady一state and Transient Kinetics Studies[J]. Am. Chem. Soc.,1998,120:9047-9052
    [147]杨庆良,谢家理,许正等.高湿度条件下O3在MnOx/A12O3催化剂上的分解[J].四川大学学报,2001, 4:226-229.
    [148]印红玲.高湿度条件下臭氧分解催化剂(锰、银)的制备及性能研究[D].四川大学硕士学位论文,2003.
    [149] Hiroki Tamura, Akio Tanaka, Ken-ya Mita, et al.Surface Hydroxy Site Densities on Metal Oxides as a Measure for the Ion-Exchange Capacity[J]. Colloid. Inter. Sci.,1999,209:225-231.
    [150]孙志忠.臭氧/多相催化氧化去除水中有机污染物[D].哈尔滨工业大学市政工程系,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700