用户名: 密码: 验证码:
黄河流域湿地遥感动态监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究的主要目的是综合利用遥感和地理信息系统技术查明并分析整个黄河流域湿地面积、类型、分布、变化与原因,主要研究内容包括黄河流域湿地数据处理、湿地分类方案、湿地信息提取和综合分析。
     论文采用的数据、方法如下:
     数据源包括全国1:50万地质图数据库、全国1:25万地形数据库、1:10万地形图、全国1:50万土地利用数据库、美国航天雷达地形数据(SRTM),美国陆地卫星获取的MSS(1975年)、TM(1990年)和ETM(2000年)卫星遥感数据。经过纸质图件扫描数字化、几何校正配准、镶嵌和分幅,将多元数据统一到同一地理坐标下。根据《湿地公约》分类系统和《全国湿地资源调查与监测技术规程》中的湿地分类方案,结合工作区的实际情况,将黄河流域湿地类型分为5个一级类和15个二级类。采用计算机自动信息提取和人机交互解译相结合方法提取三个时期湿地信息,利用地理空间分析技术提取变化信息,根据监测结果总结分析黄河流域湿地变化特征和原因,其中湿地变化原因分析重点考虑自然和人为两个因素。
     论文主要成果和创新点:
     1.提出了黄河流域湿地变迁的动态监测技术方案,指导编制了整个黄河流域1:25万标准分幅湿地遥感解译现状图、两期变化图和MSS、TM、ETM遥感影像图;黄河流域1:150万遥感影像镶嵌图(MSS、TM、ETM)、三期湿地现状图(1975年、1990年、2000年)和两期湿地变化图(1975-1990年、1990-2000年)为黄河流域生态环境综合评价提供了基础图件。
     2.提出了基于面向对象沼泽湿地信息提取方法,并解决了信息提取中的部分关键技术。根据沼泽湿地是水体、植被和土壤自然综合体的特点,采用基于面向对象分类方法提取沼泽湿地,针对河流湿地在影像上有明显河道信息的特点,采用基于边缘的方法提取河流湿地,上述方法综合利用了湿地的光谱特征和结构特征,取得较好效果,能在一定程度上减少手工操作,提高工作效率,具有推广应用价值。
     3.初步查明了黄河流域(1975-1990年期间和1990-2000年期间)湿地类型、面积、分布、变化和原因,得到第一手数据,填补了黄河流域近25年来湿地动态研究的空白,得到以下研究成果:
     (1)黄河流域湿地类型多样分布不均。
     湿地主要集中在黄河源区、诺尔盖、银川盆地和黄河入海口四处。黄河源区湿地类型主要是高山和冻原湿地,诺尔盖地区湿地类型主要是泥炭沼泽,银川盆地湿地类型较多,并且人工湿地数量明显增加,近海岸湿地则主要分布在黄河入海口。
     (2)黄河流域的湿地资源1975年为28103.51km~2,1990年为26703.66 km~2,2000年为24235.48 km~2。
     (3)黄河流域湿地构成按百分比由大到小顺序排列依次为沼泽湿地、河流湿地、湖泊湿地、人工湿地和近海岸湿地。
     (4)1975-2000年黄河流域湿地面积总体上呈减少趋势,近25年来共减少3868.03 km~2,后期(1990-2000年)的减少速度和幅度明显大于前期(1975-1990年)。
     (5)湿地减少的原因可分自然和人为两种,特别是人为因素应引起足够重视。
The purpose of this study is making use of remote sensing and GIS technique to investigate quantity, type, distribution, change, and cause of wetland in Yellow River Drainage Area. The main content is focused on multiple data processing, wetland classification, wetland information extraction and comprehensive analysis.
     Data resources consists of 1:500 000 China geological map data base, 1:250000 China terrain map data base, 1:100000 terrain map, 1:500000 China land use data base, DEM of Shuttle Radar Topography Mission(SRTM), MSS(1975),TM(1990)and ETM(2000)acquired by Landsat satellite. These data are consolidated in the same coordinate system through a series of processing including scanning and digitizing of paper map, geometric correction, mosaic and segmentation. Basing on wetland classification method of“The Ramsar Convention on Wetland”and“Regulations of investigating and monitoring of wetland in China”, and also according to the practical condition, the wetland of Yellow River Drainage Area are classified into 5 classes in the first level and 15 types in the second level. Wetland temporal information of three stages was extracted by combining computer automatic information extraction and naked-eye and computer aided interpretation. Wetland change information was extracted by using of the technique of geographic space analysis. Basing on statistic result, dynamic characteristic of wetland is summarized。Two factors including nature and human being are considered in the analysis of the cause of wetland change.
     The innovation and conclusion of this thesis go as follows:
     1. Forming the scheme of remote sensing mornitoring of Wetland Dynamic Change in Yellow River Drainage Area, and directoring the making of a series of wetland maps including:
     Wetland map of standard scope in Yellow River Drainage Area (1:250000, 1975, 1990, 2000),
     Wetland dynamic map of standard scope in Yellow River Drainage Area (1:250000, 1975-1990, 1990-2000),
     Remote sensing image map of standard scope in Yellow River Drainage Area (1:250000, MSS, TM, ETM),
     Wetland map in Yellow River Drainage Area (1:1500000, 1975, 1990, 2000), Wetland dynamic map in Yellow River Drainage Area (1:1500000, 1975-1990, 1990-2000),
     Remote sensing image map in Yellow River Drainage Area (1:1500000, MSS, TM, ETM).
     These maps are the basis for the comprehensive analysis and evaluation of ecological environment in Yellow River Drainage Area.
     2. Proposing the method of swamp extraction basing on object-based classification and solving some key issues of information automatic extraction. Basing on the fact that swamp is made up of water, vegetation and soil, object-based method was used to extract wetland. According to the bank feature, edge-extract technique was used to extracted river wetland. Because both of spectral and structural feature of wetland were used, the above information-extract methods got better result, which can decrease workload, promote work efficiency, and be worthy of applying to other area.
     3. In some extent, clearing such issue as wetland type, amount, distribution, change and cause in Yellow River Drainage Area, and got the first basis data which replenish the blank of the study of Wetland Dynamic Change in the recent 25 years in Yellow River Drainage Area, and the conclution is as follows:
     (1) Multiple types and disproportionally distributed
     Wetlands are mainly distributed in four regions including source area of Yellow River, Nuoergai area, Yinchuan basin and Yellow River delta area. In the source area of Yellow River, the main type of wetland is tundra, in Nuoergai area the main type of wetland is turf. The Yinchuan basin consists of varies kinds of wetland, especially there are more artificial wetland, and the offing-sea wetland is mainly distributed in Yellow River delta area.
     (2) Total amount of wetland in Yellow River Drainage Area is 28103.51km~2 in 1975 year, 26703.66 km~2 in 1990 year and 24235.48 km~2 in 2000 year.
     (3) Wetland composition proportion decreasingly ranks as swamp, river, lake, artificial wetland and sea-offing wetland.
     (4) From 1975 to 2000, the area of wetland in Yellow River Drainage Area took on decreasing trend. In about 25 years, the total amount of wetland reduced 3868.03 km~2,and the reduced extent from 1990 to 2000 is more than those from 1975 to 1990.
     (5) The cause of wetland decreasing includes nature and human being, especially the human being factor play an important rule and is worthy of more attention.
引文
[1]. 柴岫,金树仁,若尔盖高原沼泽类型及其发生与发展,地理学报,1963,29(3):363-366
    [2]. 陈建伟,黄桂林,中国湿地分类及其划分指标的探索,林业资源管理,1995,(5):65-71
    [3]. 陈吉余等.中国海岸发育过程和演变规律. 上海: 上海科技出版社,1989
    [4]. 陈述彭,赵英时,遥感地学分析,北京:测绘出版社,1990
    [5]. 陈晓光,苏占胜等,宁夏气候变化的事实分析,干旱区资源与环境,2005,19(6):43-47
    [6]. 党安荣等,基于 3S 技术的土地利用动态变化研究,清华大学学报,2003,43(10):1408-1411
    [7]. 邓培雁,陈桂珠,湿地价值及其有关问题探讨,湿地科学,2003,1(2):136-140
    [8]. 邓培雁,陈桂珠,生态伦理与湿地保护,生态科学,2006,25(3):271-274
    [9]. 丁一汇,戴晓苏,中国近百年来的温度变化,气象,1994,20(12):19-26
    [10]. 杜培军,郭达志,“GIS 支持下遥感图象中采矿塌陷地提取方法研究”, 中国图象图形学报,2003,8(2):231-235
    [11]. 高洁,四川若尔盖湿地退化成因分析与对策研究,四川环境,2006,25(4):48-53
    [12]. 国家林业局等,中国湿地行动保护计划,北京:中国林业出版社,2000
    [13]. 华润葵,李玉勤.博斯腾湖芦苇资源调查中遥感技术的应用. 地理科学,1983, 3(2): 151-158
    [14]. 黄进良.洞庭湖湿地的面积变化与演替. 地理研究,1999,18(3): 297-304
    [15]. 贾萍,宫辉力,我国湿地研究的现状与发展趋势,首都师范大学学报(自然科学版),2003,24(3):84-88
    [16]. 焦晋川,杨万勤等,若尔盖湿地退化原因及保护对策,四川林业科技,2007,28(1):99-103
    [17]. 郎惠卿.中国湿地与保护.中国湿地保护与持续利用研究论文集. 北京:中国林业出版社,1997
    [18]. 雷国琼,刘娜,若尔盖湿地生态旅游开发探讨,西南农业大学学报(自然科学版),2006,28(5):732-736
    [19]. 雷昆,张明祥,中国的湿地资源及其保护建议,2005,3(2):81-86
    [20]. 李炳玺,谢应忠,湿地研究的现状与展望,宁夏农学院学报,2002,23(3):61-67
    [21]. 刘昌明,杨胜天等,基于 RS/GIS 技术的黄河流域水循环要素研究,郑州:黄河水利出版社,2006
    [22]. 刘德祥,白虎志等,气候变暖对甘肃干旱气象灾害的影响,冰川冻土,2006,28(5):707-712
    [23]. 刘海涛,黄河三角洲湿地及其生态系统可持续发展研究,水利科技与经济,2006,12(11):754-756
    [24]. 刘厚田.湿地的定义和类型划分. 生态学杂志,1995, 14(4): 73-77
    [25]. 刘盛和,何书金,土地利用动态变化的空间分析测算模型,自然资源学报,2002,17(5):533-540
    [26]. 刘侠,张树林,苏文盛.陆地卫星图像在洞庭湖芦苇资源调查中的应用. 地理科学,1981,l(1): 52-57
    [27]. 刘兴汉,赵华昌,遥感技术在土地利用动态研究中的应用—以三江平原为例. 地理科学, 1985,5(2): 160-166
    [28]. 刘振乾,徐兴国等(1999).3S 技术在三角洲湿地资源研究中的应用. 地理学与国土研究,15(4): 87-91
    [29]. 陆健健,湿地和湿地生态系统的管理对策,农村生态环境,1988,(2)
    [30]. 陆健健,中国湿地,上海:华东师范大学出版社,1990
    [31]. 罗格平,周成虎等,干旱区绿洲土地利用与覆被变化过程,地理学报,2003,58(1):63-72
    [32]. 吕宪国,黄锡畴,我国湿地研究进展――献给中国科学院长春地理研究所成立 40 周年,地理科学,1998,18(4):293-300
    [33]. 吕宪国等,湿地生态系统观测方法,北京:中国环境科学出版社,2005
    [34]. 马建林,何彤慧银川平原湿地的初步研究,宁夏大学学报(自然科学版),2002,23(4):377-380
    [35]. 马寅生,廖椿庭等,黄河上游新构造活动与地质灾害风险评,北京:地质出版社,2003
    [36]. 马忠玉,张自军,银川湿地恢复与重建应注意的问题,中国水利,2006,19(3):52-54
    [37]. 梅安新,彭望琭等,遥感概论,北京:高等教育出版社,2001
    [38]. 倪晋仁,殷康前等.湿地综合分类研究:I. 分类. 自然资源学报,1998,13(3): 214-221
    [39]. 牛志春等,土地利用动态遥感监测中数据融合方法的研究进展,南京师大学报,2002(25)3:13-15
    [40]. 任美锷,黄河――我们的母亲河,北京:清华大学出版社,广州:暨南大学出版社,2002
    [41]. 沈非等,RS、GIS一体化土地利用动态信息提取技术改进初探,安徽师范大学学报,2002,25(4):392-395
    [42]. 盛海洋,田玲,若尔盖盆地草地沙化研究,贵州师范大学学报(自然科学版),2006,24(4):16-20
    [43]. 水利部黄河水利委员会,黄河流域地图集,北京:中国地图出版社,1989
    [44]. 宋连春,杨兴国等,甘肃气象灾害与气候变化问题的初步研究,干旱气象,2006,24(2):63-69
    [45]. 粟晓玲,康绍忠等,气候变化和人类活动对渭河流域入黄径流的影响,西北农林科技大学学报(自然科学版),2007,35(2):153-159
    [46]. 孙家抦,舒宁等,遥感原理、方法和应用,北京:测绘出版社,1997
    [47]. 唐小平,黄桂林中国湿地分类系统的研究,林业科学研究,2003,16(5):531-539
    [48]. 田应兵,熊明标,若尔盖湿地国家级自然保护区水质评价,湖北农学院学报,2004,24(3):161-165
    [49]. 汪爱华,张树清等,RS 和 GIS 支持下的三江平原沼泽湿地动态变化研究,地理科学,2002,22(5):636-640
    [50]. 王绍武,叶瑾琳等,近百年中国气温序列的建立,应用气象学报,1998,9(4):392-401
    [51]. 王树功,黎夏等,遥感与 GIS 技术在湿地定量研究中的应用趋势分析,热带地理,2005,25(3):201-205
    [52]. 王学金,郅兴桥等,黄河三角洲湿地利用与影响因素分析,人民黄河,2004,26(10):10-11
    [53]. 王雁,任立新,黄河断流的危害、原因及对策,甘肃水利水电技术,2005,41(4):349-350
    [54]. 汪一鸣,银川平原湖沼的历史变迁与今后利用方向,干旱区资源与环境,1992,1(4):15-17
    [55]. 汪一鸣,宁夏平原湿地保护、利用的经验教训,干旱区资源与环境,2004,18(6):6-9
    [56]. 王英,曹明奎等,全球气候变化背景下中国降水量空间格局的变化特征,地理研究,2006,25(6):1031-1041
    [57]. 王玉玺,中国西北气候状况及气候变化与生态环境建设对策的研究,陕西气象,2000,(5):21-24
    [58]. 邬建国,景观生态学――格局、过程、尺度与等级,北京:高等教育出版社,2000
    [59]. 吴赛,张秋文.基于 MODIS 遥感数据的水体提取方法及模型研究. 计算机与数字工程,2005,33(7): 1-4
    [60]. 吴玉虎.试论黄河源区生态环境保护与建设. 青海环境,2003,13(2): 60-64
    [61]. 吴运军,张树文等. 基于 TM 光谱特征的沼泽地定量提取模式研究. 湿地科学,2005,3(3): 205-209
    [62]. 肖笃宁,布仁仓等,生态空间理论与景观异质性,生态学报,1997,17(5):453-461
    [63]. 肖笃宁,胡远满等,环渤海三角洲湿地的景观生态学研究,北京:科学出版社,2001
    [64]. 谢炳庚,李晓青等,湿地景观生态学理论与方法研究,长沙:中南工业大学出版社,1997
    [65]. 徐琪,湿地农田生态系统的特点及其调节,生态学杂志,1989,(3)
    [66]. 许学工,林辉平等,黄河三角洲湿地区域生态风险评价,北京大学学报(自然科学版), 2001,37(1):111-120
    [67]. 杨永兴,国际湿地科学研究的主要特点、进展与展望,地理科学进展,2002,21(2):111-120
    [68]. 杨永兴,王世岩,人类活动干扰对若尔盖高原沼泽土、泥炭土资源影响的研究,资源科学,2001,23(2):37-41
    [69]. 杨枝灵,王开等.Visual C++数字图像获取、处理及实践应用. 北京: 人民邮电出版社. 2003
    [70]. 叶青超,黄河流域地表物质迁移规律与地貌塑造研究,北京:地质出版社,1992
    [71]. 易朝路,蔡述明等,江汉平原(四湖地区)和洞庭湖区湿地的分类与分布特征,应用基础与工程科学学报,1998,6(1):19-25
    [72]. 尹澄清,内陆水―陆地交错带的生态功能及其保护与开发前景,生态学报,1995,15(3):331-335
    [73]. 殷康前,倪晋仁湿地研究综述,生态学报,1998,18(5):539-546
    [74]. 雍国玮, 石承苍等,川西北高原若尔盖草地沙化及湿地萎缩动态遥感监测,山地学报, 2003,21(6):758-762
    [75]. 袁吟欢,秦其明等,基于遥感数据源的景观分析系统的设计与实现,应用生态学报,2000 (6):927-930
    [76]. 张振德等,生态地质环境遥感调查与监测数字制图及建库要求,中国国土资源航空物探遥感中心,2005
    [77]. 张森琦,王永贵等.黄河源区水环境变化及其生态环境地质效应. 水文地质工程地质,2003,3: 11-14
    [78]. 张森琦等,黄河源区生态地质环境地质调查研究报告,青海省地质调查院,2002,310-311
    [79]. 张先恭,李小泉,本世纪中国气温变化的某些特征,气象学报,1982,40(2):198-208
    [80]. 张晓云,吕国宪等,若尔盖湿地面临的威胁、保护现状及对策分析,湿地科学,2005,3(4):292-297
    [81]. 张学成,潘启民等,黄河流域水资源调查评价,郑州:黄河水利出版社,2006
    [82]. 张学俭,冯锐,近 10 年宁夏盐池县生态景观格局动态变化研究,宁夏大学学报(自然科学版),2006,27(4):369-372
    [83]. 赵魁义,何池全,人类活动对若尔盖高原沼泽的影响与对策,地理科学,2000,20(5):444-449
    [84]. 赵学敏,湿地:人与自然和谐共存的家园,北京:中国林业出版社,2005
    [85]. 赵英时等,遥感应用分析原理与方法,北京:科学出版社,2003
    [86]. 周成虎,杜云艳等,基于知识的 AVHRR 影像的水体自动识别方法与模型研究,自然灾害学报,1996,5(3):100-108
    [87]. 周成虎,骆剑承等.遥感影像地学理解与分析. 北京: 科学出版社,1999
    [88]. 中国湿地网,http://www.wetlands.cn/cons/kn/2068.html
    [89]. 中国湿地网,http://www.wetlands.cn/cons/kn/2181.html
    [90]. Allan Crowe. Quebec 2000: Millennium Wetland Event Program with Abstracts. Quebec, Canada, Elizabeth MacKay, 2000: 1-256
    [91]. ARGIALAS D, TZOTSOS A. Automatic Extraction of Physiographic Features and Alluvial Fans in Nevada, USA from Digital Elevation Models and Satellite Imagery through Multiresolution Segmentation and Object-oriented Classification [A]. In: Proceedings of ASPRS 2006 Annual Conference[C], Reno, Nevada. 2006.
    [92]. Best R.G. and Moore D.G.(1979). Landsat interpretation of prairie lakes and wetlands of eastern South Dakota. In: Deutsch M., Wiesnet D.R. and Rango A. (eds), Fifth Annual William T. Pecora Memorial Symposium on Remote Sensing 1979. American Water Resources Association, Souix Falls, South Dakota, USA, pp. 499–506.
    [93]. Brinson M M. A hydrogeomorphic classification for wetlands. Wetlands research program technical report WRP-DER ,U.S. Army Enginers Waterways Experiment Station, Vicksburg, M.S.1993
    [94]. Byrne, G. F., Crapper, P. F., and Mayo, K. K., 1980, Monitoring Land-cover byprincipal component analysis of multitemporal Landsat data. Remote Sensing of Environment, 10: 175-184.
    [95]. Chopra R., Verma V.K., and Sharma P.K. Mapping, monitoring and conservation of Harike wetland ecosystem, Punjab, India through remote sensing. International Journal of Remote Sensing. 2001, 22: 89–98
    [96]. Cowardin L.M., Carter V., Golet F.C., Classification of wetlands and deepwater habitats of the United States. US Fish and Wildlife Service, FWS/OBS 79/31, 1979
    [97]. Goodin D.G.(1995). Mapping the surface radiation budget and net radiation in a Sand Hills wetland using a combined modeling/remote sensing method and Landsat thematic mapper imagery. Geocarto International 10: pp. 19–29.
    [98]. Hewitt M.J. III (1990). Synoptic inventory of riparian ecosystems: the utility of Landsat Thematic Mapper data. Forest Ecology and Management 33/ 34: pp. 605–620.
    [99]. Hinson J.M., German C.D. and Pulich W. Jr (1994). Accuracy assessment and validation of classified satellite imagery of Texas coastal wetlands. Marine Technology Society Journal 28: pp. 4–9.
    [100]. Hutton S.M. and Dincer T.(1979). Using Landsat imagery to study the Okavango Swamp, Botswana. In: Deutsch M., Wiesnet D.R. and Rango A. (eds), Fifth Annual William T. Pecora Memorial Symposium on Remote Sensing 1979. American Water Resources Association, Souix Falls, South Dakota, pp. 512–519.
    [101]. Jensen J.R., Cowen D.J., Althausen J.D., Narumalani S. and Weatherbee O(.1993). The detection and prediction of sea level changes on coastal wetlands using satellite imagery and a geographic information system. Geocarto International 4: pp.87–98.
    [102]. Jessika Toyra, Alain Pietroniro and Lawrence W.M.(2001). Multisensor hydrologic assessment of a freshwater wetland. Remote Sensing of Environment. 75. pp. 162-173
    [103]. Johson, R.D., et al., Change vector analysis: a technique for the multispectral monitoring of land cover and condition. Int. J. Remote Sensing, 1998, (19)3:411-426.
    [104]. Kattenberg A, Giorgi F, Grassl H et al., Climate models–projections of future climate. In: Houghton J T, Meira Filho L G, Callander B A, et al (Eds), Climate Change 1995: The Science of Climate Change. Cambridge University Press, Cambridge, 1996: 285-357
    [105]. Kent, Donald M. Defining wetlands. In: Kent, Donald M, et al. Applied wetlands science and technology. Lewis Publishers, 1996
    [106]. Keddy P A., Wetland Ecology-Principles and Conservation, Cambridge University Press, 2000: 1-146
    [107]. Klemov, Kenneth M. Wetland mapping. In: Majumdar SK, Miller EW, et al. Ecology of wetlands and associated systems. The Pennsylvania Academy of Science, 1998
    [108]. Luczkovich J.,Wagner T.W., Michalek J.L. and Stoffle R.W.(1993).Discrimination of coral reefs, seagrass meadows, and sandy bottom types from space: a Dominican Republic case study. Photogrammetric Engineering and Remote Sensing 59: 385–389.
    [109]. Mertes L.A.K., Daniel D.L., Melack J.M., Nelson B., Martinelli L.A. and Forsberg B.R.(1995). Spatial patterns of hydrology, geomorphology, and vegetation on the floodplain of the Amazon Rive r in Brazil from a remote sensing perspective. Geomorphology 13. pp. 215–232.
    [110]. Munyati C.(2000).Wetland change detection on the Kafue Flats Zambia, by classification of a multitemporal remote sensing image dataset. International Journal of Remote Sensing 21: pp. 1787–1806.
    [111]. Palylyk C.L., Crown P.H. and Turchenek L.W.(1987). Landsat MSS data for peatland inventory in Alberta, Symposium ’87 Wetlands/Peatlands 1987. Edmonton, Alberta, Canada, pp 365–371.
    [112]. Pietroniro A., Prowse T., Hamlin L., Kouwen N. and Soulis R.(1996). Application of a grouped response unit hydrological model to a northern wetland region. Hydrological Processes 10: pp. 1245–1261.
    [113]. Sader S.A. Accuracy of landsat-TM and GIS rule-based methods for forest wetland classification in Maine. Remote Sensing Environment. 1995, 3: 133-144
    [114]. Shaw, Samuel P and C. Gordon Fredine.(1956). Wetlands of the United States - their extent, and their value for waterfowl and other wildlife. U.S. Department of the Interior, fish and wildlife service, Washington, D.C. circular 39. 67.
    [115]. Stacy L.O., Marvin E.B(.2002). Satellite remote sensing of wetlands. Wetlands Ecology and Management 10: pp. 381-402.
    [116]. Weismiller et al. , Photogrammetric Engineering & Remote Sensing, 1977, 43:1533-1539.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700