用户名: 密码: 验证码:
TiAl金属间化合物高温动态力学行为及变形机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前对可能成为新一代高温结构材料的TiAl金属间化合物的力学性能的研究主要为TiAl在不同温度下准静态力学行为的研究,而对TiAl的抗冲击性能的研究还仅仅处于起步阶段,且集中于TiAl在不同温度下动态压缩力学行为的研究当中。本课题来源于国家自然科学基金(项目批准号90505002),旨在对TiAl金属间化合物的动态高温拉伸力学性能和变形机理进行初步的探索。
     本文对高温冲击拉伸试验技术中的加温技术进行了改造,研制了第四代基于大热容量温升极大值原理的快速接触加温技术,从而将最高试验温度由750℃提高至850℃。
     利用该高温冲击拉伸试验技术,在室温至840℃下对等轴(NG)、近片层(NL)和双态(DP)组织的Ti-46.5Al-2Nb-2Cr在320、800和1350s~(-1)应变率下的冲击拉伸力学行为进行了实验研究;同时在MTS 809材料试验机上对相应温度下应变率为0.001s~(-1)的准静态拉伸力学行为进行了实验研究。试验结果表明,三种不同微观组织的TiAl具有类似的温度和应变率相关性。BDTT均随应变率的增加而上升。动载和静载下强度(包括屈服应力和定应变下的流动应力,下同)的温度相关性曲线均被“特征温度”(NG TiAl约为650℃,其它两种组织的TiAl约为500℃)和BDTT划分为Ⅰ,Ⅱ和Ⅲ三个区域;其中在Ⅰ和Ⅲ区,强度随温度的上升而下降,在Ⅱ区,强度随温度的上升几乎无变化;且动载Ⅱ区的温度跨度要明显大于静载Ⅱ区的温度跨度,也即动载下强度随温度上升而基本不变的温度跨度要明显大于静载下的。总体上动载下材料的强度以及高温下的失稳应变ε_b高于静载下的强度和高温下的ε_b(ε_b指的是BDTT以下的),但在本文的高应变率加载范围内(320~1350s~(-1))动载下的强度和ε_b的应变率相关性并不明显。同时,动态加载下的硬化率均可看成与温度和应变率无关。由此可看出,TiAl不仅呈现“高速韧”,而且呈现了高温高速韧;也就是说材料动态下的高温综合力学性能优于准静态下的。必须指出,三种微观组织的TiAl随组织中片层晶粒含量的增加(NG→DP→NL),准静态下的BDTT逐渐升高;动态下的真应力-真应变曲线中屈服点逐渐不明显,且硬化段也逐渐偏离线性。
     SEM断口分析表明,三种微观组织的TiAl的断裂方式具有类似的温度和应变率相关性。BDTT以下,无论静载还是动载下的材料均为脆性断裂,且随温度的升高,材料的断裂方式由穿晶解理断裂方式逐渐转变为沿晶断裂方式;而BDTT以上材料为塑性断裂,断口中出现大量韧窝。
     TEM显微分析表明,三种组织的TiAl的变形机理也具有类似的温度和应变率相关性。动载下试件中的位错密度明显小于静态下的位错密度,而形变孪晶的密度却明显高于静载下的密度;动载下与静载下类似,温度越高越容易形成孪晶,同时高温下形成的形变孪晶均会贯穿整个晶粒;但在本文的动态加载范围内(320~1350s~(-1)),形变孪晶的密度随应变率的增加无明显变化;且在动态加载下存在一个类似于上述强度的温度相关性曲线中的“Ⅱ区域”,在此“Ⅱ区域”的温度范围内形变孪晶的密度基本上不随温度的上升而变化。层错不仅在不同温度动载下的试件中的密度明显的高于静载下的密度,而且在本文的高应变率加载范围内(320~1350s~(-1)),应变率越高越容易出现层错。综上所述,动态加载下TiAl的变形主要是受孪生(层错)机制控制的,而准静态加载下,TiAl的变形还受位错滑移机制控制。还必须指出,由于片层晶粒的晶界面积要高于等轴晶粒的,NL组织的晶界间相互运动在整个材料的变形过程中占有一定的比例,导致片层晶内的孪晶/层错带的密度要明显小于NG TiAl以及DP TiAl中等轴晶粒内的;而DP组织中的变形主要集中在等轴晶粒内,而高应变加载下DP TiAl的片层晶群内几乎无明显的变形特征。
     孪生(层错)机制导致TiAl的动强度明显高于静强度,但在本文的高应变率范围内(320~1350s~(-1))动强度与应变率的相关性不明显。孪生(层错)机制还使得TiAl的硬化段基本成线性(NL TiAl的硬化段受晶界运动影响有些偏离线性)且与温度和应变率无关。同时孪生(层错)机制还可提高材料的塑性,因此BDTT以下相同温度时,材料动载下的塑性也高于静载下的塑性。
     基于Zerrilli-Armstrong模型,结合TiAl变形机理的特征,本文采用了BCC形式的Z-A本构模型以描述TiAl的流动特性,并给出了确定本构模型所用参数的方法。拟合曲线与试验结果吻合较好,说明该模型能较好地表征三种不同微观组织的TiAl在350~840℃应变率为320~1350S~(-1)下材料的流动特性。
     总之,本文从宏观力学行为以及变形机理的角度,初步揭示了TiAl有可能成为一种抗冲击的高温结构材料。
The current research on the mechanical behavior of TiAl intermetallics,a possible new-generation structural material serving at elevated temperatures,is mainly associated with the material's behavior under quasi-static loadings and different temperatures. However,research on the dynamic response of TiAI is still in its initial stage,mainly focused on the compressive behavior of TiAl under different temperatures and strain rates.This project,supported by NSFC(No.90505002),aims to elementarily investigate the tensile impact response of TiAl intermetallics at elevated temperatures and its deformation mechanism.
     In this study,the heating technique used in the tensile impact testing at elevated temperatures is improved.Consequently,the elevated temperature up to 850℃in the experiments is achieved.
     The tensile impact behaviors of Ti-46.5Al-2Nb-2Cr with different microstructures, Near Gamma(NG),Near Lamellar(NL) and Duplex(DP),were investigated under different temperatures ranging from room temperature(RT) to 840℃and strain rates of 320,800 and 1350 s~(-1).Also,the quasi-static tensile experiments at a strain rate of 0.001s~(-1) and corresponding temperatures were carried out using MTS 809 testing system.The results show that the mechanical behaviors of NG,NL and DP TiAls all exhibit similar dependence on temperature and strain rate.The Brittle to Ductile Transition Temperatures(BDTT) increase with increasing strain rates.The temperature-dependence curves of strength under dynamic and quasi-static loading conditions are divided into three regions,regionⅠ,ⅡandⅢ,by a "characteristic" temperature(about 650℃for NG TiAl and about 500℃for the other two) and BDTT.In RegionsⅠandⅢ,the strengths decrease with increasing temperatures, whereas in regionⅡ,the strengths remain nearly stable.The temperature ranges of regionⅡunder dynamic loadings are wider than those under quasi-static loadings. That is to say the temperature ranges in which the strengths remain stable with increasing temperature under dynamic loadings are wider than those under quasi-static loadings.On the whole,the strengths and unstable strainsε_b under dynamic Ioadings are higher than those under quasi-static loadings,whereas there is no significant strain-rate dependence of those under high strain rates ranging from 320 to 1350s~(-1) in this study.At the same time,the work-hardening rates under dynamic loadings are independent of temperature and strain rate.It can be concluded that TiAl is a high-velocity ductile material.That is to say,the comprehensive properties of TiAl at elevated temperatures under dynamic loadings are better than those under quasi-static loadings.It must be pointed out that,with increasing volumes of lamellar crystals (NG→DP→NL),the BDTT increases under quasi-static loadings,the yield points in the true-stress true-strain curves become less and less clear and the work-hardening parts in the curves begin to deviate from linearity.
     The SEM fractographic observation shows that there exists similar temperature and strain-rate dependence of fracture mode for the three TiAls.Below BDTT,the materials are brittle and the fracture modes change from planar cleavage fracture to intergranular fracture with increasing test temperatures.However,above BDTT,the materials become ductile and a large number of voids appear on the fracture surfaces.
     TEM analysis is performed to investigate the deformation mechanisms of the three TiAls under different temperatures and strain rates.The results show that there also exists similar temperature and strain-rate dependence of deformation mechanism for the three TiAls.The dislocation density under dynamic loadings is smaller than that under quasi-static loadings,while the twinning density under dynamic loadings is higher than that under quasi-static loadings.Similarly,under dynamic loadings,the higher the temperature is,the greater the tendency for twinning to occur,which resuits in twinnings throughout the whole crystal.Nevertheless,within the rate range in the present study,the twinning density is not sensitive to the dynamic strain rates and there exists a region,similar to the aforementioned RegionⅡ,in which the twinning density remains nearly stable with the increasing temperatures.Not only is the density of the stacking faults under dynamic loadings higher than that under quasi-static loadings,but also the stacking faults become more likely to occur with increasing dynamic strain rates within the rate range in this study.To sum up,the deformation of TiAl under dynamic loadings is controlled chiefly by the twin mechanism,whereas under quasi-static loadings that is also governed by the dislocation slip mechanism as well.In addition,the proportion of crystal boundaries of lamellar crystal is larger than that of equiaxed crystal and crystal boundary slipping plays an important role in the deformation process of NL TiAl.Therefore,the density of twinnings and stacking faults in NL TiAl is lower compared with NG TiAl and equiaxed crystal in DP TiAl. The deformation of DP TiAl is concentrated in the equiaxed crystal and there are no obvious deformation characteristics in the lamellar crystal colony in DP TiAl under dynamic loadings.
     As a result of the twin mechanism,the strength of TiAl under dynamic loadings is obviously higher than that under quasi-static loadings,the former being not sensitive to the strain rates within the range in this study,and the work-hardening parts in the strain-stress curves are basically linear,with an exception that the work-hardening parts of NL TiA1 deviate somewhat from linearity due to the slipping of the crystal boundaries of lamellar crystals.Moreover,the twin mechanism is found capable of increasing the ductility of TiAl.Consequently,below BDTT,the ductility under dynamic loadings is better than that under quasi-static loadings.
     Upon the basis of Zerrilli-Armstrong model and the deformation mechanism of TiAl,a BCC type of Z-A model is employed to describe the flow behavior of the three TiAls,and a method is proposed for determining the parameters involved in the model.The fitted curves find comparatively good agreement with the test results.
     To sum up,from the point of view of macro-mechanic behavior and deformation mechanism,it is concluded that TiAl intermetallics will probably become a structural material that is capable of suffering both high temperature and impact loadings.
引文
1.Clemens,H.K.,Processing and Applications of Intermetallic γ-TiAl-Based Alloys.Advanced Engineering Materials,2000.2(9):p.551-570.
    2.傅恒志,未来航空发动机材料面临的挑战与发展趋向.航空材料学报,1998.18(4):p.52-61.
    3.颜鸣皋,吴学仁,and朱知寿,航空材料技术的发展现状与展望.航空制造技术,2003.12:p.19-25.
    4.张永刚,et al.,金属间化合物结构材实.2001,北京:国防工业出版社.
    5.章德铭,et al.,轻质高温结构材料——γ-TiAl基合金的研究动向.材料导报,2005.19(8):p.47-50.
    6.Tetsui,T.,Gamma Ti aluminides for non-aerospace applications.Current Opinion in Solid State and Materials Science,1999.4(3):p.243-248.
    7.Kestler,H.,N.Eberhardt,and S.Knippscheer,Some Aspects on Production of Wrought γ(TiAl)Based Components for Transportation,in International Symposium on Niobium for High Temperature Applications.2004:Araxa,MG;Brazil.
    8.Kim,Y.,Intermetallic alloys based on gamma titanium aluminide,in JOM.1989:United States.p.Pages:24-30.
    9.Kim,Y.-W.and D.M.Dimiduk,Progress in the Understanding of Gamma Titanium Aluminides.JOM,1991.43:p.40-47.
    10.Kim,Y.-W.,Ordered lntermetallic Alloy,Part Ⅲ:Gamma Titanium Aluminides.JOM,1994.46:p.30-39.
    11.Huang,S.C.and J.C.Chesnutt,Gamma TiAl and its Alloys,in Intermetallic Compounds,Volume 3-Structural applications of intermetallic compounds J.H.Westbrook and R.L.Fleischer,Editors.2000,Wiley:New York.p.75-92.
    12.孔凡涛,et al.,TiAl基金属间化合物研究进展.材料科学与工艺2003.11(4):p.441-444.
    13.岳文龙,et al.,TiAl金属间化合物的研究进展.济南大学学报(自然科学版),2004.18(1):p.31-34.
    14.Shechtman,D.,M.Blackburn,and H.Lipsitt,The plastic deformation of TiAl.Metallurgical and Materials Transactions B,1974.5(6):p.1373-1381.
    15.国家自然科学基金委.空天飞行器的若干重大基础问题.2005[cited;Available from:http://www.nsfc.gov.cn/nsfc/cen/vjjh/2005/20050628_zn.htm.
    16.国家自然科学基金委.近空间飞行器的关键基础科学问题.2007[cited;Available from:http://www.nsfc,gov.cn/nsfc/cen/xmzn/2007its/20070608_02.htm.
    17.刘峰晓,et al.,元素粉法制备TiAl基合金板材.材料导报,2004.18(3):p.24-26.
    18.Nieh,T.G.and J.Wadsworth,Microstructural characteristics and deformation properties in superplastic intermetallics.Materials Science and Engineering A,1997.239-240:p.88-96.
    19.Lin,D.and F.Sun,Superplasticity in a large-grained TiAl alloy.Intermetallics,2004.12(7-9):p.875-883.
    20.Sun,J.,Y.H.He,and J.S.Wu,Characterization of low-temperature superplasticity in a thermomechanically processed TiAl based alloy.Materials Science and Engineering A,2002.329-331:p.885-890.
    21.Imayev,R.M.,et al.,Low-temperature superplasticity of titanium aluminides.Materials Science and Engineering A,2001.300(1-2):p.263-277.
    22.Clemens,H.,H.Kestler,and N.Eberhardt.in Gamma titanium aluminides.1999.Warrendale,PA:TMS.
    23.Kestler,H.,et al.in Gamma titanium aluminides.1999.Warrendale,PA:TMS.
    24.Clemens,H.,et al.,Processing,properties and applications of gamma titanium aluminide sheet and foil materials.Mater.Res.Symp.Proc.,1997.460:p.29-43.
    25.鲁世强,黄伯云,and贺跃辉,TiAl基金属间化合物的超塑性研究现状.南昌航空工业学院学报(自然科学版)2001.15(4):p.6-10.
    26.Koeppe,C.,et al.,Optimizing the properties of TiAl sheet material for application in heat protection shields or propulsion systems.Materials Science and Engineering A,1995.201(1-2):p.182-193.
    27.Clemens,H.,et al.,Characterization of Ti—48Al—2Cr sheet material.Intermetallics,1994.2(3):p.179-184.
    28.Das,G.and H.Clemens.in Gamma titanium aluminides.1999.Warrendale,PA:TMS.
    29.张俊红,et al.,TiAl基合金板材制备技术的发展现状.材料导报,2002.16(2):p.16-18.
    30.Das,G.,et al.,Sheet Gamma TiAl:Status and opportunities.JOM Journal of the Minerals,Metals and Materials Society,2004.56(11):p.42-45.
    31.Loria,E.A.,Gamma titanium aluminides as prospective structural materials.Intermetallics,2000.8(9-11):p.1339-1345.
    32.Bartels,A.,H.Kestler,and H.Clemens,Deformation behavior of differently processed [gamma]-titanium aluminides.Materials Science and Engineering A,2002.329-331:p.153-162.
    33.Leholm,R.,H.Clemens,and H.Kestler.in Gamma titanium aluminides.1999.Warrendale,PA:TMS.
    34.Dimiduk,D.M.Gamma titanium aluminides-an emerging materials technology,in Gamma Titanium Aluminides.1995.Warrendale,PA,USA TMS.
    35.Liu,C.T.,Recent advances in ordered intermetallics.Materials Chemistry and Physics,1995.42(2):p.77-86.
    36.Liu,C.T.,et al.,Ordered intermetallic alloys:an assessment.Intermetallics,1997.5(8):p.579-596.
    37.Appei,F.and R.Wagner,Microstructure and deformation of two-phase y-titanium aluminides.Materials Science and Engineering:R:Reports,1998.22(5):p.187-268.
    38.Austin,C.M.,Current status of gamma Ti aluminides for aerospace applications.Current Opinion in Solid State and Materials Science,1999.4(3):p.239-242.
    39.Dimiduk,D.M.,Gamma titanium aluminide alloys—an assessment within the competition of aerospace structural materials.Materials Science and Engineering A,1999.263(2):p.281-288.
    40.Appel,F.,et al.,Recent Progress in the Development of Gamma Titanium Aluminide Alloys.Advanced Engineering Materials,2000.2(11):p.699-720.
    41.Loria,E.A.,Quo vadis gamma titanium aluminide.Intermetallics,2001.9(12):p.997-1001.
    42.Fischer,F.D.Gamma-TiAl based alloys-A Promising Intermetallic Material for High Temperature Applications.2002[cited;Available from:http://www.ippt.gov.pl/amas/courses/maml/fischer.htm.
    43.Wu,X.,Review of alloy and process development of TiAl alloys,lntermetallics,2006.14(10-11):p.1114-1122.
    44.S.Knippscheer,G.F.,Intermetallic TiAl(Cr,Mo,Si) Alloys for Lightweight Engine Parts.Advanced Engineering Materials,1999.1(3-4):p.187-191.
    45.Eylon,D.,M.M.Keller,and P.E.Jones,Development of permanent-mold cast TiAl automotive valves.Intermetallics,1998.6(7-8):p.703-708.
    46.Noda,T.,Application of cast gamma TiAl for automobiles.Intermetallics,1998.6(7-8):p.709-713.
    47.Huang,S.C.and J.C.Chesnutt,in Intermetallic Compounds—Principles and Practice,J.H.Westbrook and R.L.Fleischer,Editors.1994,Wiley:New York.p.73.
    48.Wagner,R.,et al.Investment casting of γ-TiAl-based alloys:microstructure and data base for gas turbine applications,in Gamma Titanium Aluminides.1995.Warrendale,PA:TMS.
    49.Kim,Y.-W.,Microstructural evolution and mechanical properties of a forged gamma titanium aluminide alloy.Acta Metallurgica et Materialia,1992.40(6):p.1121-1134.
    50.Kim,Y.-W.,Effects of microstructure on the deformation and fracture of[gamma]-TiAl alloys.Materials Science and Engineering A,1995.192-193(Part 2):p.519-533.
    51.Appel,F.,M.Oehring,and R.Wagner,Novel design concepts for gamma-base titanium aluminide alloys.Intermetallics,2000.8(9-11):p.1283-1312.
    52.Appel,F.,et al.in Gamma titanium aluminides.1999.Warrendale,PA:TMS.
    53.Chen,G.L.,et al.in Gamma titanium aluminides.1999.Warrendale,PA:TMS.
    54.Mishin,Y.and C.Herzig,Diffusion in the Ti-Al system.Acta Materialia,2000.48(3):p.589-623.
    55.Appel,F.,M.Oehring,and P.J.Ennis.in Gamma titanium aluminides.1999.Warrendale,PA:TMS.
    56.彭超群,黄伯云,and贺跃辉,TiAl基合金的工艺-显微组织-力学性能关系.中国有色金属学报,2001.11(4):p.527-540.
    57.Chu,W.-Y.and A.W.Thompson,Effects of grain size on yield strength in TiAl.Scripta Metallurgica et Materialia,1991.25(3):p.641-644.
    58.Mercer,C.and W.O.Soboyejo,Hall-petch relationships in gamma titanium aluminides.Scripta Materialia,1996.35(1):p.17-22.
    59.Soboyejo,W.,D.Schwartz,and S.Sastry,An Investigation of the fracture behavior of gamma-based titanium aluminides:Effects of armealing in the α+γ and α2+γ phase fields.Metallurgical and Materials Transactions A,1992.23(7):p.2039-2059.
    60.Zhou,Y.and Y.Xia,Tensile mechanical behavior of TiAl(FL) at high strain rate Journal of Materials Science,2000.35(4):p.925-929.
    61.Kad,B.K.,M.Dao,and R.J.Asaro,Numerical simulations of stress-strain behavior in two-phase[alpha]2+[gamma]lamellar TiAl alloys.Materials Science and Engineering A,1995.192-193(Part Ⅰ):p.97-103.
    62.Kumpfert,J.,Y.W.Kim,and D.M.Dimiduk,Effect of microstructure on fatigue and tensile properties of the gamma TiAl alloy Ti-46.5Al-3.0Nb-2.1Cr-0.2W.Materials Science and Engineering A,1995.192-193(Part 1):p.465-473.
    63.Liu,C.T.and P.J.Maziasz,Microstructural control and mechanical properties of dual-phase TiAl alloys.Intermetallics,1998.6(7-8):p.653-661.
    64.Clemens,H.,W.Glatz,and F.Appel,Tensile properties and strain rate sensitivity of Ti-47Al-2Cr-0.2Si sheet material with different microstructures.Scripta Materialia,1996.35(3):p.429-434.
    65.Wang,Y.,D.Lin,and C.C.Law,Brittle-to-ductile transition temperature and its strain rate sensitivity in a two-phase titanium aluminide with near lamellar microstructure.Journal of Materials Science,1999.34(13):p.3155-3159.
    66.Wang,Y.,D.Lin,and C.C.Law,The effect of boron addition on brittle-to-ductile transition temperature and its strain rate sensitivity in gamma titanium aluminide.Journal of Materials Science,2000.35(12):p.3083-3087.
    67.Lin,D.,et al.,The effects of temperature,strain rate and minor boron on tensile properties of wrought Ti-47Al-2Mn-2Nb alloy.Intermetallics,2000.8(5-6):p.549-558.
    68.Gao,J.,et al.,Strain rate sensitivity of tensile properties in high Nb containing TiAl alloys.Journal of University of Science and Technology Beijing,2005.12(6):p.535-539.
    69.Yamaguchi,M.,H.Inui,and K.Ito,High-temperature structural intermetallics.Acta Materialia,2000.48(1):p.307-322.
    70.Marketz,W.T.,F.D.Fischer,and H.Clemens,Deformation mechanisms in TiAl intermetallics—experiments and modeling.International Journal of Plasticity,2003.19(3):p.281-321.
    71.Yamaguchi,M.and Y.Umakoshi,The deformation behaviour of intermetallic superlattice compounds.Progress in Materials Science,1990.34(1):p.1-148.
    72.Andrew,J.M.and H.Kessler,Ti-36 PCT Al AS A BASE FOR HIGH TEMPERATURE ALLOYS.J.Metals,1956.8:p.1348.
    73.Maloy,S.A.and G.T.Gray Ⅲ,High Strain Rate Deformation of Ti-48-2Nb-2Cr in the Duplex Morphology,in Gamma Titanium Aluminides.1995.p.307-314.
    74.Maloy,S.A.and G.T.Gray Iii,High strain rate deformation ofTi48,412Nb2Cr.Acta Materialia,1996.44(5):p.1741-1756.
    75.Jin,Z.,et al.,Mechanical response and microcrack formation in a fine-grained duplex TiAl at different strain rates and temperatures,in Deformation and Fracture of Ordered Intermetallic Materials.1996,TMS:Cincinnati,Ohio.
    76.Vaidya,R.U.,et al.,A comparative study of the strain rate and temperature dependent compression behavior of Ti-46.5Al-3Nb-2Cr-0.2W and Ti-25Al-10Nb-3V-1Mo intermetallic alloys.Scripta Materialia,1999.41(6):p.569-574.
    77.Jin,Z.,et al.,Mechanical Behavior of a Fine-Grained Duplex Gamma-TiAl Alloy.Metallurgical and Materials Transactions A,2000.31:p.1007-1016.
    78.Wang,Y.,et al.,Dynamic tensile properties of Ti-47Al-2Mn-2Nbs alloy.Journal of Materials Science,1999.34(3):p.509-513.
    79.Sun,Z.M.,et al.,Tensile Properties and Fracture Toughness of α Ti-45Al-1.6Mn Alloy at Loading Velocities of up to 12m/s.Metallurgical and Materials Transactions A,1998.29:p.263-.
    80.Shazly,M.,V.Prakash,and S.Draper,Mechanical behavior of Gamma-Met PX under uniaxial loading at elevated temperatures and high strain rates.International Journal of Solids and Structures,2004.41:p.6485-6503.
    81.Shazly,M.,Dynamic Deformation and Fracture of Gamma-Met PX at Room and Elevated Temperatures,in Dept.of Mech.and Aero.Eng.2005,Case Western Reserve University.
    82.Sun,Z.M.,et al.,Tensile Properties and Fracture Toughness of a Ti-45Al-1.6Mn Alloy at Loading Velocities of up to 12m/s.Metallurgical and Materials Transactions A,1998.29:p.263-277.
    83.Chen,S.and G.Gray,Constitutive behavior of tantalum and tantalum-tungsten alloys.Metallurgical and Materials Transactions A,1996.27(10):p.2994-3006.
    84.Meyers,M.A.,O.Vohringer,and V.A.Lubarda,The onset of twinning in metals:a constitutive description.Acta Materialia,2001.49(19):p.4025-4039.
    85.Follansbee,P.S.and U.F.Kocks,A Constitutive Description of the Deformation of Copper Based on the Use of the Mechanical Threshold Stress as an Internal State Variable.Acta Matell.,1988.36(1):p.81-93.
    86.Zerilli,F.J.and R.W.Armstrong,Dislocation-mechanics-based constitutive relations for material dynamics calculations.Journal of Applied Physics,1987.61(5):p.1816-1825.
    87.Johnson,G.R.and T.J.Holmquist,Evaluation of cylinder-impact test data for constitutive model constants.Journal of Applied Physics,1988.64(8):p.3901-3910.
    88.曲选辉,et al.,TiAl有序金属间化合物中的层错带与变形挛晶.材料科学与工艺,1992.11(3,4):p.31-36.
    89.Cerreta,E.,et al.,Dynamic deformation and damage in cast γ-TiAl during taylor cylinder impact:Experiments and model validation.Metallurgical and Materials Transactions A,2004.35(9):p.2557-2566.
    90.Lee,W.-S.and C.-F.Lin,High-temperature deformation behaviour of Ti6Al4V ahoy evaluated by high strain-rate compression tests.Journal of Materials Processing Technology,1998.75(1-3):p.127-136.
    91.Lee,W.-S.and C.-Y.Liu,The effects of temperature and strain rate on the dynamic flow behaviour of different steels.Materials Science and Engineering:A,2006.426(1-2):p. 101-113.
    92.昝祥,et al.,高温冲击拉伸试验中的快速接触加温技术.实验力学,2005.20(3):p.321-327.
    93.Huang,W.,et al.,Experimental study on the dynamic tensile behavior of a poly-crystal pure titanium at elevated temperatures.Materials Science and Engineering:A,2007.443(1-2):p.33-41.
    94.Liang,R.and A.S.Khan,A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures.International Journal of Plasticity,1999.15(9):p.963-980.
    95.Appel,F.,P.A.Beaven,and R.Wagner,Deformation processes related to interfacial boundaries in two-phase[gamma]-titanium aluminides.Acta Metallurgica et Materialia,1993.41(6):p.1721-1732.
    96.Lipstt,H.,D.Shechtman,and K.Schafri,The Deformation and Fracture of TiAl at Elevated Temperature.Metallurgical Transactions A,1975.6(11):p.19911996.
    97.Fischer,F.D.,et al.,Mechanical twins,their development and growth.European Journal of Mechanics-A/Solids,2003.22(5):p.709-726.
    98.Gray Ⅲ,G.T.,ed.Deformation Twinning:Influence of Strain Rate.Fall meeting of the Minerals,Metals and Materials Society:physical metallurgy and materials.1993:Pittsburgh,PA
    99.张旺峰,et al.,组织结构对应变硬化的影响.机械工程材料,2002.26(10):p.7-9.
    100.熊荣刚,et al.,TWIP钢的位伸应变硬化行为.钢铁,2007.42(11):p.61-64.
    101.张永刚and陈昌麒,钛铝金属间化合物基合金中的孪生与孪生交互作用.航空学报,2000.21:p.1-5.
    102.彭见祥and李大红,金属材料两种常用本构模型的比较.爆轰波与冲击波,2001(4):p.168-171.
    103.Follansbee,P.S.and U.F.Kocks,A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable.Acta Metallurgica,1988.36(1):p.81-93.
    104.Zerilli,F.J.and R.W.Armstrong,Description of tantalum deformation behavior by dislocation mechanics based constitutive relations.Journal of Applied Physics,1990.68(4):p.1580-1591.
    105.Zerilli,F.,Dislocation mechanics-based constitutive equations.Metallurgical and Materials Transactions A,2004.35(9):p.2547-2555.
    106.Voyiadjis,G.Z.and F.H.Abed,Microstructural based models for bcc and fcc metals with temperature andstrain rate dependency.Mechanics of Materials,2005.37(2-3):p.355-378.
    107.Meyers,M.A.,O.V(鱼威)ringer,and V.A.Lubarda,The onset of twinning in metals:a constitutive description.Acta Materialia,2001.49(19):p.4025-4039.
    108.彭建祥and李大红,金属材料两种常用本构模型的比较.爆轰波与冲击波,2001(4):p.168-171.
    109.Yoo,M.and C.Fu,Physical constants,deformation twinning,and microcracking of titanium aluminides. Metallurgical and Materials Transactions A, 1998. 29(1): p. 49-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700