用户名: 密码: 验证码:
高超声速流动的磁流体力学控制数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用MHD(磁流体动力学)方法实现高超声速流动控制是一种新颖的流动控制概念,与常规空气动力学方法采用的飞行器表面气流接触式干扰不同,MHD方法不改变飞行器外形,而是通过电磁场对电离流场进行有距离影响,这是MHD流动控制方法具有的最大优点。此类方法具有较大地改善高超声速飞行器性能的潜力,包括防热控制,增加进气道流量捕获、增强燃烧室燃烧效率等。
     本文针对高超声速MHD流动控制概念,基于磁流体动力学数值模拟方法研究,结合理论分析进行了数值模拟与控制机理分析。工作包括高超声速MHD数值方法研究和高超声速MHD流动控制模拟与机理研究两大部分。
     第一部分为MHD数值模拟方法研究。MHD流动依据特征磁雷诺数分为高磁雷诺数和低磁雷诺数两大类,分别对应于全MHD方程组形式和低磁雷诺数近似方程组形式。本文分别针对这两种形式发展了相应的数值模拟方法。
     全MHD方程组形式对应于磁雷诺数较高情况,针对当前研究中存在的伪磁场散度问题、方程组奇性和修正形式的守恒性问题,本文提出了八波形式方程附加源项的模拟形式,该方法同时具备八波形式和原七波MHD方程组的优点,既可以采用八波形式特征向量,同时又保证方程组整体守恒。在数值方法上,将CFD模拟中采用的有限体积方法、Roe的近似Riemann求解器、OC-TVD限制器以及时间格式推广到MHD模拟中。此外,作为全MHD模拟的辅助步骤,本文建立了三维投影方法,能够有效清除磁场的伪散度。
     低磁雷诺数MHD方程组的求解形式较全MHD方程组形式简单,为了使之能够更好地实现高超声速复杂流场结构变化的精细捕捉,提高计算效率,本文发展了一套完整的三维自适应各向异性叉树网格方法应用于低磁雷诺数MHD流动模拟。该网格方法的工作主要包括:建立了三维叉树形网格的数据结构,以及在此基础上完善了包括自适应判别、合并/分裂、网格级别审查等步骤,并提出了对流场结构进行“保护”性加密等网格优化方式,实现了对激波等流场结构的细致捕捉。
     针对上述发展的数值模拟方法,本文编制了三维结构网格全MHD流动模拟程序FMHD,三维结构网格低磁雷诺数MHD流动模拟程序LSMHD,以及三维各向异性叉树网格低磁雷诺数MHD流动程序LTMHD。这些程序经过了多个经典算例的计算,验证了其有效性和准确性,能够应用于针对高超声速飞行器MHD流动控制的模拟中。
     第二部分为高超声速MHD流动控制机理研究。本文主要结合理论分析,开展了钝体MHD防热控制和斜激波MHD控制的模拟研究,并对控制机理进行了分析。
     对于马赫5来流,考虑理想气体,且假设激波层内电导率均布的高超声速钝头绕流,气动热MHD控制的数值模拟结果显示,随着控制磁场的加强,弓形激波脱体距离增大,壁面压强变化很小,而热流降低比较明显,在驻点互涉参数Q=6时热流下降了26%。
     基于高温空气电导率模型和化学平衡热力学关系,成功进行了40km高空马赫15钝头MHD绕流数值模拟。结果显示考虑空气化学平衡效应的驻点热流小于理想气体。随着互涉参数Q的增大,弓形激波脱体距离增大,但很小,而热流降低比较明显,在驻点互涉参数Q=6时热流下降了24%。模拟结果说明了MHD钝体热流控制在很高马赫数下的可行性。
     数值研究了高磁雷诺数的理想无粘斜激波MHD流动控制规律。模拟清晰地捕捉到激波结构。磁场大小和方向对流场和激波影响较大。在多数磁场较大情况下得到了MHD流动特有的快—慢激波结构;而磁场垂直于来流方向时,始终未有慢激波产生。这些现象都通过群速度图方法进行了理论上的解释。
     数值研究了低磁雷诺数无粘MHD斜激波流动控制规律,自由来流马赫数6,考虑电子束激发使局部区域产生电导率,采用自适应各向异性叉树网格。结果显示,MHD作用能够使斜激波向远离壁面的方向偏离,激波控制效应明显。磁场和电导率的大小是MHD作用的决定性因素,且磁场垂直与来流时,MHD作用更明显。
     高超声速进气道前体MHD激波控制是一项重要的MHD应用,本文将MHD斜激波控制方法应用于二级马赫6进气道前体激波控制,结果显示,在飞行器飞行马赫数大于设计马赫数时,MHD激波控制可使激波偏折,两级激波重新交汇到进气道唇缘上,使流动状态更佳。来流马赫数增大时,增大控制磁场仍可很好达到这一效果。该结果对进气道的优化设计具有参考价值。
MHD (Magnetohydrodynamics) flow control is a new concept for hypersonic vehicle. In ordinary aerodynamics, flow control has to disturb flow by touching. But in MHD concept, it could be carried out by magnetic field and electric field, with the advantage of not modify configuration of vehicle. In the aerospace community, the MHD research has shown great potential in flow control associated with hypersonic vehicles and propulsion systems. The applications mainly include heating reduction, air capture increase and combustion mixing enhancement.
     In this thesis, basing on MHD numerical technologies and theoretical analytical methods, hypersonic flow control phenomena and mechanisms were investigated. There are two main parts in this work, research of MHD numerical algorithms and analysis of MHD phenomena.
     The first part is the research of MHD numerical technologies. MHD flow is distinguished into two types, high Re_m (Magnetic Reynolds Number) and low Re_m. They correspond to full MHD equations and low Re_m equations respectively. Numerical algorithms for these two types were developed.
     For full MHD equations, aiming at spurious magnetic field divergence problem, equations singularity and conservation problem, a form of eight-waves with source term was proposed. This form has the advantages of eight-wave eigenvectors and monolithic conservation of equations. Numerically, a 3-D Roe solver by means of finite volume formulation, OC-TVD scheme and temporal scheme were applied. 3-D projection scheme was used to modify magnetic field from basic scheme, which could clear the spurious magnetic field divergence effectively.
     It is simpler in numerical algorithms for Low Re_m MHD equations than that for full MHD equations. In order to capture hypersonic flow field structures clearly, and to improve computational efficiently, a 3-D anisotropic self-adaptive tree mesh technology was built for low Re_m MHD flow simulation. A suit of algorithms for tree mesh were developed, including data structure form for 3-D tree mesh, self-adaptive distinguishing, mergence/ cleavage, and audit for levels of adjacent cells. Some other steps, protective refinement and local mergence/ cleavage control, were used for mesh optimization.
     Forementioned numerical algorithms were realized in Fortran codes, including FMHD(3-D full MHD code with structural mesh), LSMHD(3-D low Re_m MHD code with structural mesh), LTMHD(3-D low Re_m MHD code with tree mesh). These codes were validated to be accurate by multiple classical MHD problems. It shows they could be used for hypersonic vehicle MHD flow control.
     The second part is mechanism research for hypersonic MHD flow control. Heating reduction control for flow over blunt and oblique shock control were investigated, and results were compared with that for theoretical analysis.
     Cases for Mach 5 perfect gas flow over a 3-D blunt were studied. The assumption is that electric conductivity is unique in post-shock area. Simulation results show that shock standoff distance increases significantly. And it shows obvious reduction effect on wall heat transfer in the vicinity of the stagnation point (26% reduction for the interaction parameter Q = 6), but a slight variation on wall pressure.
     Cases for Mach 15 flow over a 3-D blunt were studied. The altitude is 40km. Models for electric conductivity of air and high temperature chiemical equilibrium relations were developed for MHD simulation. Results show heat transfer in stagnation point is lower than that of perfect gas. Shock standoff distance increases, but it is not insignificantly. There is 24% reduction for the interaction parameter Q = 6.
     Full-MHD numerical investigation for Mach 10 flow over a perfectly conducting corner was carried out. Shock structure was captured clearly. Results show that magnitude and direction of magnetic field have important impact on MHD effect. Fast-slow shock structure appears in the field in most cases of high magnetic field. When magnetic field vector is perpendicular to free stream, there's no slow shock. These phenomena were all explained by group velocity diagram method.
     Research for low Re_m Mach 6 MHD inviscous oblique shock was carried out. A partial area of flow field was ionized by electron beam. Results show that the magnetic field compels shock deflexed obviously. Magnitudes of magnetic field and electric conductivity were determinant. When magnetic field vector is perpendicular to free stream, shock deflexes more obviously.
     MHD control for inlet of hypersonic vehicle is one important application. MHD oblique control was applied to a two-stage Mach 6 inlet. Results show that, when free Mach number is higher than designed, MHD oblique shock control method can be used to change inlet shocks, and make them converging in cowl slip, which is the optimal case desired by designers. With the increase of velocity of free stream, if magnitude of magnetic field increases properly, the optimal case can also realize.
引文
[1] Bruno C, Czysz P A, Murthy S N B. Electro-magnetic in a hypersonic propulsion system [C]. AIAA Paper 97-3389. 1997.
    
    [2] Chase R L, Boyd R, Czysz P, et al. An AJAX technology advanced SSTO design concept [C]. AIAA Paper 98-5527. 1998.
    [3] Tang J, Bao W, Yu D. The influence of energy-bypass on the performance of AJAX [C]. AIAA Paper 2006-1376. 2006.
    [4] Fraishtadt V L, Kuranov A L, Sheikin E F. The application of MHD system in hypersonic flight vehicle [J]. Technical Physicas, 1998, 43 (11).
    [5] Gurianov E P, Harsha P T. AJAX: New directions in hypersonic technology [C].AIAA Paper 96-4609. 1996.
    [6] Macheret S O, Shneider M N, Miles R B. Weakly ionized plasmas and MHD for enhanced performance of hypersonic vehicles [R].Symposium on Energy Conversion Fundamentals Istanbul. Turkey: 21-25 June, 2004.
    [7] Aithal S, Munipalli R, Shankar V. Performance enhancement of high speed inlets using MHD [R]. ADA422143. 2004.
    [8] Baughman J A, Micheletti D A, Nelson G L, et al. Magnetohydrodynamics accelerator research into advanced hypersonics (MARIAH) [R].NASA-CR-97-206242. Oct., 1997.
    [9] Macheret S O, Shneider M N, Miles R B. External supersonic flow and scramjet inlet control by MHD with electron beam ionizaton [C]. AIAA Paper 2001-0492.2001.
    [10] Aithal S M, Munipalli R, Shankar V. A design environment for plasma and magnetoaerodynamics [C]. AIAA Paper 2003-4167. 2003.
    
    [11] Macheret S O, Shneider M N, Miles R B. Magnetohydrodynamic control of hypersonic flows and scramjet inlets using electron beam ionization [J]. AIAA Journal, 2002,40 (1):74 - 81.
    
    [12] Staats G E, McGregor W K, Sprouse J A. Magnetogasdynamic experiments conducted in a supersonic plasma ARC tunnel [C]. AIAA Paper 2000-2566.2000.
    [13] Bityurin V A, Bocharov A N. MHD flow control in hypersonic flight [C]. AIAA Paper 2005-3225. 2005.
    [14] McMullan R J, Lindsey M F, Adamovich I V, et al. Experimental validation of 3-D magnetogasdynamic compressible Navier-Stokes solver [C]. AIAA Paper 2004-2269a. 2004.
    [15]Otsu H,Matsuda A,Abe T,et al.Feasibility study on the flight demonstration for a reentry vehicle with the magnetic flow control system[C].AIAA Paper 2006-3566.2006.
    [16]Ganiev Y C,Gordeev V P,Krasilnikov A V,et al.Experimental and theoretical study of the possibility of reducing aerodynamic drag by employing plasma injection.[C]Proceedings of the 2nd Weekly Ionized Gas Workshop.Norfolk:1998:
    [17]Gaitonde D V.Simulation of local and global high-speed flow control with magnetic fields[C].AIAA Paper 2005-0560.2005.
    [18]#12
    [19]#12
    [20]Wie D M V,Nedungadi A.Plasma aerodynamic flow control for hypersonic inlets[C].AIAA Paper 2004-4129.2004.
    [21]Knight D.A selected survey of magnetogasdynamic local flow control at high speeds[C].AIAA Paper 2004-1191.2004.
    [22]Soloviev V R,Krivtsov V M,Konchakov A M.Modeling of MHD effects in 2-D planar flow over a wedge[C].AIAA Paper 2002-2138.2002.
    [23]Liu C J.Preliminary design of the MHD accelerator for an ARC-heated,MHD-augmented hypersonic wind tunnel[D].Arlington:Texas University (Master thesis),1990.
    [24]Macheret S O,Shneider M N,Miles R B.Electron beam generated plasmas in hypersonic mhd channels[J].AIAA Journal,2001,39(6):1127-1138.
    [25]Knight D.Survey of aerodynamic flow control at high speed by energy deposition[C].AIAA Paper 2003-0525.2003.
    [26]Shang J S,Surzhikov S T.Magneto-fluid-dynamics interaction for hypersonic flow control[C].AIAA Paper 2004-0508.2004.
    [27]Robinson W,Gerwin R.MHD flight control for hypersonic vehicles[C].AIAA Paper 2001-1884.2001.
    [28]Kogan E Y,Zavershinsky I P.Drag force coefficient in the presence of heterogeneous relaxation[C]2nd Workshop on Magneto- Plasma-Aerodynamics in Aerospace Applications.Moscow:2000:
    [29]Poggie J,Gaitonde D.Computational studies of magnetic control in hypersonic flow[C].AIAA Paper 2001-0196.2001.
    [30]Bobashev S V,Mende N P,Sakharov V A,et al.MHD control of the separation phenomenon in a supersonic Xenon plasma flow.Ⅰ[C].AIAA Paper 2003-0168. 2003.
    [31]Minton D A,Lewis M J,Wie D M V.Plasma and magnetohydrodynamic effects on incipient separation in a cold supersonic flow[C].AIAA Paper 2005-3224.2005.
    [32]Matveev I,Matveeva S,Gutsol A,et al.Non-equilibrium plasma igniters and pilots for aerospace application[C].AIAA Paper 2005-1191.2005.
    [33]Leonov S,V.Bityurin,Savelkin K,et al.Hydrocarbon fuel ignition in separation zone of high-speed duct by discharge plasma[C].Fourth Workshop on Magnetoplasma Aerodynamics.Moscow,April 2002.
    [34]Bozhenkov S M,Starikovskaia S M,Sechenov V A,et al.Combustible mixture ignition in a wide pressure range nanosecond high-voltgae discharge ignition[C].AIAA Paper 2003-0876.2003.
    [35]Bityurin V,Bocharov A,Baranov D,et al.Numerical simulation and experimental study of MHD-driven mixing and combustion[C].AIAA Paper 2002-0492.2002.
    [36]Taylor T,Riggins D W.Impact of electro-magnetics and ionization on mixing and combustion in scramjet combustor[C].AIAA Paper 2004-0859.2004.
    [37]Macheret S O,Shneider M N,Miles R B.Potential performance of supersonic MHD power generators[C].AIAA Paper 2001-0795.2001.
    [38]Nishihara M,Rich J W,Lempert W R,et al.MHD flow control and power generation in low-temperature supersonic flows[C].AIAA Paper 2006-3076.2006.
    [39]方绍强,赵尚弘,余侃民,et al.飞行器等离子体隐身技术[J].现代防御技术,2005,33(2):32-36.
    [40]Wie D M V,Risha D J,Suchomel C F.Research issues resulting from an assessment of technologies for furture hypersonic aerospace systems[C].AIAA Paper 2004-1357.2004.
    [41]Hartmann J.Kgl.Danske Videnskab.Sleskab[J].Math.Fys.Medd,1937,15(6)
    [42]Resler E L,Sears W R.The prospects for magneto-aerodynamics[J].Journal of Aeronautical Sciences,1958,25(4):235-245.
    [43]Rossor V J.On flow of electrically conducting fluids over a flat plate in the presence of a transverse magnetic field[R].NACA TN 3971.May,1957.
    [44]Lykoudis P S.On a class of magnetic laminar boundary layers[C]1958 Heat Transfer and Fluid Mechanics Institute Preprint.1958:
    [45]Bush W B.Compressible flat-plate boundary layer flow with an applied magnetic field[J].Journal of the Aero/Space Science,1960,26 Jan:49-58.
    [46]Neuringer J L,mellroy W.Incompressible two-dimensional stagnation-point flow of an electrically conducting viscous flluid in the presence of a magnetic field [J]. Journal of Aeronautical Sciences, 1958, 25 (3): 194-198.
    [47] Neuringer J L, mellroy W. Hydromagnetic effects on stagnation-point heat transfer [J]. Journal of Aeronautical Sciences, 1958,25 (5):332-334.
    [48] Bush W B. Magnetohydrodynamic-hypersonic flow past a blunt body [J].Journal of Aero/Space Science, 1958,25 (11):685-690, 728.
    [49] Landshoff RKM, Burgers J. Penetration of a shock-wave into a magnetic field [M]. Stanford, CA:Stanford University Press, 1957.
    [50] Sakurai T. Two-dimensional hypersonic flow of an ideal gas with ilnfmite electric conductivity past a two-dimensinal magnetic dipole [J]. Journal of the Aero/Space Science, 1959, 26 (12):841-842.
    [51] Seeman G R, Cambel A B. Observations concerning magnetoaerodynamic drag and shock standoff distance [J]. Proc. Natl. Acad. Sci. U.S.A., 1966, 55:457.
    [52] Ziemer R W, Bush W B. Magnetic field effects on bow shock stand-off distance [J]. Phys. Rev. Lett, 1958,1 (2):58-59.
    [53] Ziemer W. Experimental investigation in magneto-aerodynamics [J]. American Rocket Society Journal, 1959,29 (9):642-647.
    [54] Wilkinson J B. Magnetohydrodynamic effects on stagnation-point heat transfer from partially ionized nonequilibrium gases in supersonic flow [R].in Engineering Aspects of Magnetohydrodynamics: Proceedings, 3rd Symposium.New York: 1964.
    [55] Nowak R, Kranc S, Porter R W, et al. Magnetogasdynamic re-entry phenomena [J]. Journal of Space and Rockets, 1967, 4:1538.
    [56] Romig M F. The influence of electric and magnetic fields on heat transfer to electrically conducting fluid [J]. Advances in Heat Transfer, 1964,1:267-354.
    [57] Miles R B, Brown G L, Lempert WR,et al. Radiatively driven hypersonic wind tunnel [J]. AIAA Journal, 1995, 33 (8): 1463-1470.
    [58] Kimmel R, Hayes J, Tyler C. Performance of a low-density hypersonic magneto-aerodynamic facility[C] 2003:
    [59] Alferov V I, Labazkin A P, Rudakova A P, et al. Teplofizika Vysokikh Temperatur[C] Eleventh Intern.Conf. on Magnetohydrodynamics Electrical Power Generation. Beijing, China: 1992: 1308
    [60] Meloney E D, Myrabo L N, Nagamatsu H T, et al. Experimental investigation of a 2-D MHD slipstream accelerator: Progress report[C] AIAA Paper 2001-3799.2001:
    [61] Menart J, Shang J, Atzbach C, et al. Total drag and lift measurements in a mach 5 flow affected by a plasma discharge and a magnetic field [C]. AIAA Paper 2005-0947. 2005.
    [62] Bityurin V A, Baranov D S, Bocharov A N, et al. Experimental study of MHD interaction at a cylinder in hypersonic flow[C].The 4rd Workshop on Magneto-and Plasma-Aerodynamics for Aerospace Application.Moscow,9-11April,2002.
    [63]Bobashev S V,Erofeev A V,Lapushkina T A,et al.Experiments on MHD control of attached shocks in diffuser[C].AIAA Paper 2003-0169.2003.
    [64]Bocharov A,Bityurin V,Klementeva I.Experimental and theoretical study of MHD assisted mixing and ignition in co- flow streams[C].AIAA Paper 2002-2228.2002.
    [65]Bityurin V A,Bocharov A,Klementeva I,et al.A study of MHD assisted mixing and combustion[C].AIAA Paper 2003-0378.2003.
    [66]Borghi C A,Carraro M R,Cristofolini A,et al.Experimental investigation on the magneto-hydrodynamic interaction in the shock layer on a hypersonic body [C].AIAA Paper 2004-2265.2004.
    [67]Takizawa Y,Matsuda A,Sato S,et al.Experiment on shock layer enhancement by electro-magnetic effect in reentry-related high-enthalpy flow[C].AIAA Paper 2005-4786.2005.
    [68]Udagawa K,Kaminaga S,Asano H,et al.MHD boundary layer flow acceleration experiments[C].AIAA Paper 2006-3233.2006.
    [69]刘万刚,李一滨.应用等离子体实现流动控制的研究[D].西安:西北工业大学(硕士学位论文),2004.
    [70]Palmer G.Magnetic field effects on the computed flow over a Mars return aerobrake[J].Journal of the Thermophysics and Heat Transfer,1993,7(2):294-301.
    [71]Zachary A L.A higher-order godunov mehtod for the equations of ideal magnetohydrodynamics[J].Journal of Computational Physics,1992,99:341-347.
    [72]Bell J B,Colella P,Trangenstein J A.High-order Godtmov mehtods for general systems of hyperbolic conservation laws[J].Journal of Computational Physics,1989,82:362.
    [73]Brio M,Wu C C.An upwind difference scheme for the equations of ideal magnetohydrodynamics[J].Journal of Computational Physics,1988,75:400-422.
    [74]Dia W,Woodward P R.Extension of the piecewise parabolic method to multidimensional ideal magnetohydrodynamics[J].Journal of Computational Physics,1994,115:485-514.
    [75]Dia W,Woodward P R.A simple Riemann solver and high-order Godunov schemes for hyperbolic systems of conservation Laws[J].Journal of Computational Physics,1994,121:51-65.
    [76]Reddy S,Papadakis M.TVD schemes and their relation to artifical dissipaton [C].AIAA Paper 97-0070.Jan,1993.
    [77]Barmin A A,Kulikovskiy A G,Pogorelov N V.Shock-capturing approach and nonevolutionary solutions in magnetohydrodynamics[J].Journal of Computational Physics,1996,126:77-90.
    [78]Powell K G,Roe P L,Myong R S,et al.An upwind scheme for magnetohydrodynamics[C].AIAA Paper 95-1704-C.June,1995.
    [79]Harada S,Augustinus J,Hoffmann K A,et al.Development of a modified Runge-Kutta scheme with TVD limiters for the Ideal 1-D MHD equations[C].AIAA Paper 97-2090.June,1997.
    [80]Gaitonde D V.Development of a Solver for 3-D Non-ideal magnetogasdynamics [C].AIAA Paper 99-3610.June-July,1999.
    [81]MacCormak R W.An upwind conservation form method for the ildeal magnetohydrodynamics equations[C].AIAA Paper 99-3609.June-July,1999.
    [82]Canupp P W.Resolution of magnetogasdynamic phenomena using a flux-vector splitting method[C].AIAA Paper 2000-2477.June,2000.
    [83]Shumlak U.Development of an advanced implict algorithm for MHD computations on parallel supercomputers[R].ADA294333.1995.
    [84]Shumlak U.Development of an advanced implict algorithm for MHD [R].ADA359534.1999.
    [85]Shumlak U.An implicit,conservative multi-temperature MHD algorithm [R].ADA388222.2001.
    [86]Aftosmis M,Berger M,Melton J.Adaptation and surface modeling for cartesian mesh methods[C].AIAA Paper 95-1725-CP.1995.
    [87]Bharat S,Gary C,Roy K,et al.Enabling technologies for complex CFD applications[C].AIAA Paper 2004-3987.2004.
    [88]Sang W M,Li F W,Q E.Application of an omni-tree adaptive and hybrid Cartesian grid method[C].AIAA Paper 2003-1239.2003.
    [89]William J C,Sami A B.Urban area blast wave modeling using hierarchical,adaptive mesh refinement[C].AIAA Paper 2002-2749.2002.
    [90]Velde O V,Lacor C,Hirsch C.An adaptive solver for the Navier-Stokes equations on unstructured hexahedral meshes[C].AIAA Paper 97-2136.1997.
    [91]Wang Z J,Chen R F.Anisotropic cartesian grid method for viscous turbulent flow[C].AIAA Paper 2000-0395.2000.
    [92]Li K,Wu Z N.Nonet-Cartesian grid method[J].Chinese Journal of Computational Physics,2003,20(6):498-502.
    [93]吴子牛.NS方程的各向异性笛卡尔网格法研究[J].计算物理,1998,15(4):463-475.
    [94]栗可.可压缩流计算的九分笛卡尔网格技术[J].计算物理,2003,20(6):498-502.
    [95]董程栋.三维Euler方程的自适应八叉树结构直角网格算法[J].南京航空航天大学学报,1999,31(1):12-17.
    [96]万铮,伍贻兆,刘学强.一种新型的直角网格生成方法及应用研究[J].南京航空航天大学学报,2004,36(3):284-287.
    [97]肖涵山.基于Euler方程的三维自适应笛卡尔网格应用研究[J].空气动力学学报,2003,21(2):202-210.
    [98]桑为民,李凤蔚.采用自适应直角网格计算三维增升装置绕流[J].力学学报,2005,37(1):80-86.
    [99]赵书廷.直角切割网格生成技术及在CFD中的应用研究[D].西安:西北工业大学(硕士学位论文),2003.
    [100]Deb P,Agarwal R.Numerical simulation of compressible viscous MHD flow with a Bi-temperature model for reducing supersonic drag of blunt bodies and scramjet inlets[C].AIAA Paper 2000-2419.2000.
    [101]Gupta A,Agarwal R K.Numerical investigation of real gas effects on magnetohydrodynamic hypersonic flows[C].AIAA Paper 2001-0199.2001.
    [102]Golovachov Y P,Kurakiny Y A,Schmidtz A A.Numerical simulation of 3D MHD flow in a duct modeling a hypersonic intake[C].AIAA Paper 2003-0171.2003.
    [103]Fujino T,Funaki I,Mizuno M,et al.Numerical studies of influences of Hall effect on MHD flow control around blunt body OREX[C].AIAA Paper 2004-2561.2004.
    [104]Munipalli R,Anderson D A,Wilson D R.CFD evaluation of seeded and unseeded MHD accelerators[C].AIAA Paper 2000-0215.2000.
    [105]Munipalli R,Shankar V.Development of computational capabilities in real gas MHD simulations[C].AIAA Paper 2001-0198.2001.
    [106]Munipalli R,Shankar V,Liu Z.An unstructured grid parallel MHD solver for real gas simulations[C].AIAA Paper 2001-2738.2001.
    [107]Munipalli R,Aithal S,Shankar V.Effect of wall conduction in proposed MHD enhanced hypersonic vehicles[C].AIAA Paper 2003-6921.2003.
    [108]Otsu H,Matsuda A,Abe T,et al.Numerical validation of the magnetic flow control for reentry vehicles[C].AIAA Paper 2006-3236.2006.
    [109]许振宇,李椿萱.超声速磁流体管道流动的数值模拟[J].北京航空航天大学学报,2005,31(8):893-898.
    [110]赫新,陈坚强,邓小刚.NND格式在多维理想磁流体方程组中的应用[J]. 空气动力学学报,2005,23(3):267-273.
    [111]张康平.磁流体力学管道流动数值模拟研究[D].长沙:国防科学技术大学(硕士学位论文),2007.
    [112]王江峰,伍贻兆.非结构混合网格高超声速绕流与磁场干扰数值模拟[J].计算力学学报,2007,24(1):30-34.
    [113]Pan Y,Wang J,Wu Y.Upwind scheme for ideal 2-D mhd flows based on unstructured mesh[J].Transactions of Nanjing University of Aeronautics &Astronautics,2007,24(1):1-7.
    [114]Demevin H M.Development of numerical techniques for simulation of magnetogasdynamics and hypersonic chemistry[D].Wichita State University(Thesis of Doctor Degree),2001.
    [115]胡文瑞.宇宙磁流体力学[M].北京:科学出版社,1987.
    [116]Yee H C,Sj(o|¨)green B.Efficient low dissipative high order schemes for multiscale MHD flows,Ⅱ:minimization of ▽.B numerical error[C]Proceedings of the international conference on high performance scientific computing.Hanoi,Vietnam:2003:
    [117]Y6th G.The div.B=0 constraint in shock-capturing magnetohydrodynamics codes[J].Journal of Computational Physics,2000,161:605-652.
    [118]Evans C R,Hawley J F.Simulation of magnetohydrodynamic flows:A constrained transport method[J].Journal ofAstrophys,1988,332:659-667.
    [119]Ryu D,Miniati F,Jones T W.A divergence-free upwind code for multi-dimensional magnetohydrodynamic flows[J].Journal of Astrophys,1998,(509):244-255.
    [120]Balsara D S,Spicer D S.A staggered mesh algorithm using high order Godunov fluxes to ensure solenoidal magnetic fields in magnetohydrodynamic simulations[J].Journal of Computational Physics,1999,149:270-292.
    [121]Zhang M J,John S T.Solving the MHD equations by the space-time CESE method[C].AIAA Paper 2006-971.2006.
    [122]Brackbill J U,Barnes D C.The effect of nonzero ▽.B on the numerical solution of the magnetohydrodynamic equations[J].Journal of Computational Physics,1980,35:426-430.
    [123]Powell K G.An approximate Riemann solver for magnetohydrodynamics [R].ICASE Report No.94-24.Langley.1994.
    [124]Hoffmann K A,Damevin H M,Dietiker J F.Numerical simulation of hypersonic magnetohydrodynamic flows[C].AIAA Paper 2000-2259.2000.
    [125]Canupp P W.Influence of magnetic field divergence errors in magneto-aerodynamic computations[C].AIAA Paper 2001-0197.2001.
    [126]Roe P L,Balsara D S.Notes on the eigensystem of magnetohydrodynamics[J].SIAM Journal of Applied Mathematics,1996,56(1):57-67.
    [127]Roe P L.Approximate Riemann solvers,parameter vectors and difference schemes[J].Journal of Computational Physics,1981,43:357-372.
    [128]Chakravarthy S L.High resolution formulations for the NS equations [R].N89-17824.1989.
    [129]Yoon S,Jameson A.Lower-Upper Symmetric-Gauss-Seidel method for the euler and Navier-Stokes equations[J].AIAA Journal,1988,26(9)
    [130]王承尧,王正华,杨晓辉.计算流体力学及其并行算法[M].长沙:国防科技大学出版社,2000.
    [131]阎超.计算流体力学方法与应用[M].北京:北京航空航天大学出版社,2006.
    [132]Poggie J,Gaitonde D V.Magnetic control of flow past a blunt body:Numerical validation and exploration[J].Physics of Fluids,2002,14(5):1720-1731.
    [133]Chamberlain R.Calculation of three-dimensional jet interaction flowfields[C].AIAA Paper 90-2099.1990.
    [134]Hoffmann K A.An integrated xomputational tool for hypersonic flow simulation [R].AFRL-SR-ARTR-04-0232.2004.
    [135]Dedner A,F.Kemm,Kroner D,et al.Hyperbolic divergence cleaning for the MHD equations[J].Journal of Computational Physics,2002,175:645-673.
    [136]Orszag A,Tang C M.Small-scale structure of two-dimensional magnetohydrodynamic turbulence[J].Journal of Fluid Mechanics,1979,90:129-145.
    [137]Arminjon P,Touma R.Central finite volume methods with constrained transport divergence treatment for ideal MHD[J].Journal of Computational Physics,2005,204:737-759.
    [138]Bush W B.The stagnation-point boundary layer in the presence of an applied magnetic field[J].Journal of Aero/space Science,1961,28(8):610-611,630.
    [139]Wen C Y.Hypervelocity flow over spheres[D].California Institute of Technology(Thesis of Doctor Degree),1994.
    [140]Billig F S.Shock-wave shapes around spherical- and cylindrical-nosed bodies [J].Journal of Spacecraft and Rockets,1967,4(6):822-823.
    [141]MacCormack R W.Evaluation of low magnetic Reynolds approximation for aerodynamic flow calculations[C].AIAA Paper 2005-4780.2005.
    [142]Cambel A B.Plasma physics and magnetohydrodynamics[M].McGraw-Hill Series in Missile and Space technology,1963.
    [143]Yoe J M.Transport properties of Nietrogen,Hydrogen,Oxygen,and Air to 30,000K[R].AVCO Corporation Report.RAD-TM-63-7.1963,1963.
    [144]Rannehill J C,Mugge P H.Improved Curve Fits for the Thermodynamic Properties of Equilibrium Air Suitable for Numerical Computation Using Time-Dependent or Shock-Capturing Mehtods[R].NASA CR-2470.1974.
    [145]Prabhu R K,Stewart J R,Thareja R R.A Navier-Stokes solver for high speed equilibrium flows and applications to blunt bodies[C].AIAA Paper 89-0668.1989.
    [146]Henderson S J,Menart J A.Parallel,unstructured Euler/Navier-Stokes flow solver[C].AIAA Paper 2006-3736.2006.
    [147]Kennel C F,Blandford R D,Coppi P.MHD intermediate shock discontinuities.Part 1.Rankine-Hugoniot conditions[J].Journal of Plasma Physics,1989,42:299-319.
    [148]吴其芬,李桦.磁流体力学[M].长沙:国防科技大学出版社,2007.
    [149]Kuranov A L,Sheikin E G.Magnetohydrodynamic control on hypersonic aircraft under "AJAX" concept[J].Journal of Spacecraft and Rockets,2003,40(2):174-182.
    [150]Sheikin E G;Kuranov A L.MHD controlled Inlet for scramjet with various configurations of magnetic field[C].AIAA Paper 2004-1195.2004.
    [151]Kuranov A L,Sheikin E G.MHD control by external and internal flows in scramjet under "AJAX" concept[C].AIAA Paper 2003-0173.2003.
    [152]Sheikin E G,Kuranov A L.MHD control in hypersonic aircraft[C].AIAA Paper 2005-1335.2005.
    [153]Shneider M N,Macheret S O,Miles R B.Nonequilibrium magnetohydrodynamic control of scramjet inlet[C].AIAA Paper 2002-2251.2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700