用户名: 密码: 验证码:
共线准相位匹配光学参量过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
准相位匹配技术(QPM)是非线性光学频率变换领域中的一个重要组成部分,以其转换效率高、调谐方式灵活的特点受到众多科学家的青睐。基于共线准相位匹配的光学参量过程(包括光学参量振荡OPO和光学参量产生OPG)是获得高效可调谐光源的重要手段之一。利用共线QPM-OPO/OPG,可以使以往传统双折射相位匹配无法达到的目标成为可能,使可调谐光源更好地为其他科研领域和应用领域服务。本文的研究工作集中在利用共线QPM-OPO或OPG实现可调谐的双波长激光、近红外激光、中红外激光、窄线宽激光几个方面,这些激光器在气体检测、污染监测、军事红外对抗、通信、科学研究等方面具有重要的应用前景。
     本文的主要内容及创新点归纳如下:
     1.在理论上提出反向倒格矢的概念,对-1阶准相位匹配过程的调谐特性进行分析和计算,并引入后向波OPO的概念,对共线准相位匹配参量互作用的各种匹配形式进行系统总结,给出在各匹配形式下共线准相位匹配的周期调谐特性;
     2.对QPM双信号光OPO进行理论与实验研究。考虑泵浦光焦点位置对双信号光输出功率比例的影响,给出双信号光OPO中获得同比例输出的条件。采用双周期极化晶体,共用一个OPO谐振腔,通过温度和周期调谐,可以获得波长间隔在2.5 nm~69.1 nm间调谐的双波长。在重复频率50kHz、泵浦功率为3W时,双信号光的平均输出功率最高可达169.6mW。这是首次将周期极化晶体应用到双晶体双信号光QPM-OPO的实验研究;
     3.进行种子注入锁定共线QPM-OPO的实验研究。首先采用半导体单端泵浦环行腔单频1064nm Nd:YVO4激光器,获得9W连续输出的单频1064nm激光,光-光转换效率为36.6%。功率水平在单端泵浦的单频激光器方面处于国内领先水平。然后在激光器中,加入声光Q开关提高峰值功率,泵浦种子注入锁定的共线QPM-OPO,获得1510nm~1630.8nm的可调谐窄线宽相干光,输出线宽达到测量仪器的分辨极限0.06nm,信号光的平均输出功率最高可达56.9mW;
     4.对半导体泵浦的准相位匹配内腔OPG进行理论与实验研究。根据光学参量产生的耦合波方程以及声光Q开关运转的四能级系统速率方程,分析内腔OPG过程的动态特性以及输入输出特性。并采用Nd:YVO4晶体为激光介质,以PPLN为非线性晶体进行了准相位匹配内腔光学参量振荡的实验研究,实验获得1.497~1.517μm的可调谐激光输出,最高平均输出信号光功率达330mW,从半导体泵浦光到信号光的转换效率达5.5%;
     5.采用PPMgLN晶体,进行室温运转中红外QPM-OPO的实验研究。在室温情况下,获得超过1W的3.629μm中红外相干光,转换效率达到26.7%。
Quasi-phase matching (QPM) technique is an important component in nonlinear optical frequency conversion. It aroused the interests of scientists due to the advantages of high conversion efficiency and flexible tuning methods. The collinear QPM optical parametric process (including optical parametric oscillator, OPO and optical parametric generator, OPG) is a promising scheme to achieve the tunable coherent light source. The collinear QPM-OPO/OPG can accomplish many goals, which is difficult to the conventional birefringent phase matching. More suitable tunable light source based on collinear QPM-OPO/OPG emerged for many other scientific researches and applications. The work in this dissertation focused on the tunable dual wavelength laser, near-infrared laser, mid-infrared laser, and narrow-linewidth laser based on collinear QPM-OPO and QPM-OPG. These laser sources could be applied in many applications such as gas detection, pollution monitoring, military infrared countermeasure, optical communication, scientific research and so on.
     The main contents and key creation points in this dissertation are as follows:
     1. A concept of backward grating vector was proposed theoretically and the tuning character of -1 order quasi-phase matched process was discussed. Then, we summarized the collinear quasi-phase matched optical parametric process and analyzed the period tuning characters;
     2. Dual signal-wave QPM-OPO was investigated experimentally and theoretically. The condition of the dual signal output with the same ratio was discussed with consideration of the influence of the focal point position. There were two periodically poled crystals in the experiments, which shared the same resonant cavity. The wavelength interval of 2.5nm~69.1nm could be tuned by adjust the temperature and the period. At the repetition rate of 50 kHz, the maximum dual signal average power was 169.6mW with the incident power of 3W. To our knowledge, this is the first time to apply the periodically poled crystals in dual signal-wave QPM-OPO;
     3. The seed-injected collinear QPM-OPO was presented experimentally. At first, the diode pumped 1064nm Nd:YVO4 laser based on ring cavity was investigated as the pump source of the OPO. The CW output power of 9W was obtained in the experiment and the corresponding efficiency was 36.6%. An acousto-optic Q-switch was inserted to achieve high peak power. Pumped by this laser, a seed-injected narrow-linewidth QPM-OPO can provide 1510nm~1630nm tunable laser with the maximum average power of 56.9mW and the linewidth of 0.06nm;
     4. The diode pumped intra-cavity QPM-OPG was studied experimentally and theoretically. The dynamic characters and output characters of intra-cavity OPG were analyzed theoretically, according to the three-wave coupled equations and acousto-optic Q-switched four-level rate equation. We used Nd:YVO4 as gain medium and PPLN as nonlinear crystal in the experiments. The tunable laser between 1.497~1.517μm with the maximum average signal power of 330mW was obtained, and the corresponding efficiency from diode power to signal power was 5.5%;
     5. The room-temperature mid-infrared QPM-OPO based on PPMgLN was demonstrated experimentally. The mid-infrared coherent light over 1W was achieved with the conversion efficiency of 26.7%.
引文
[1] P. A. Franken, A. E. Hill, C. W. Peters, Generation of Optical Harmonics, Phys. Rev. Lett, 1961, Vol. 7: p118~119;
    [2] R. C. Miller, A. Savage, Harmonic Generation and Mixing of CaWO4: Nd3+ and Ruby Pulsed Laser Beams in Piezoelectric Crystals, Phys. Rev., 1962, Vol. 128: p2175~2179;
    [3] A.W. Smith, N. Braslau, IBM J. Res. Develop, 1962, Vol. 6, p361;
    [4] N. I. Adams, P. B. Schoefer, Continuous optical sum frequency generation, Proc. IEEE, 1963, Vol. 51, p1366~ 1367;
    [5] J. A. Giordmaine, Phys. Rev. Lett., 1962, Vol. 8: p19;
    [6] J. A. Armstrong, N. Bloembergen, J. Ducuing, et al., Interactions between Light Waves in a Nonlinear Dielectric, Phys. Rev., 1962, vol. 127, p1918~1939;
    [7] R. C. Miller, Optical Harmonic Generation in Single Crystal BaTiO3, Phys. Rev., 1964, Vol. 134: pA1313~A1319;
    [8] L. O. Hocker and C. F. Jr. Dewey, Enhancement of second-harmonic generation in zinc selenide by crystal defects, Appl. Phys. Lett, 1976, Vol. 28: p267~270;
    [9] C. F. Dewey. Jr. and L. O. Hocker, Enhanced nonlinear optical effects in rotationally twinned crystals, Appl. Phys. Lett., 1975, Vol. 26: p442~444;
    [10] D. E. Thompson, J. D. McMullen and D. B. Anderson, Second-harmonic generation in GaAs ''stack of plates'' using high-power CO2 laser radiation, Appl. Phys. Lett., 1976, Vol. 29: p113~115;
    [11] Mcmullen, J. D., Optical parametric interactions in isotropic materials using a phase-corrected stack of nonlinear dielectric plates, J. Appl. Phys., 1975, Vol. 46: p3076~3081;
    [12] Szilagyi, A., Hordvik, A., and Schlossberg, H., A quasi-phase-matching technique for efficient optical mixing and frequency doubling, J. Appl. Phys., 1976, Vol. 47: p2025~2032;
    [13] Feng Duan, Min Nai-Ben, Hong Jing-Fen, et al., Enhancement of second-harmonic generation in LiNbO3 crystal with periodic laminar ferroelectric domains, Appl. Phys. Lett., 1980, Vol. 37: p607~609;
    [14] N. B. Ming, J. F. Hong, and D. Feng, The growth striations and ferroelectric domain structures in Czochralski-grown LiNbO3 single crystals, Journal of Materials Science, 1982, Vol. 17:p1663;
    [15] A. Feisst and P. Koidl, Current induced periodic ferroelectric domain structures in LiNbO3 applied for efficient nonlinear optical frequency mixing, Appl. Phys. Lett., 1985, Vol.47: p1125~1127;
    [16] D. H. Jundt, G. A. Magel, M. M. Fejer, and R. L. Byer, Periodically poled LiNbO3 for high-efficiency second-harmonic generation, Appl. Phys. Lett., 1991, Vol. 59:p2657~2659;
    [17] Ya-Lin Lu, Lun Mao, and Nai-ben Ming, Blue-light generation by frequency doubling of an 810-nm cw GaAlAs diode laser in a quasi-phase-matched LiNbO3 crystal, Opt. Lett., 1994, Vol.19: p1037~1039;
    [18] E. J. Lim, M. M. Fejer and R. L. Byer, Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide, Electronics letters, 1989, Vol.25: p174~175;
    [19] E. J. Lim, M. M. Fejer, R. L. Byer and W. J. Kozlovsky, Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide, Electronics letters, 1989, Vol. 25: p731~732;
    [20] J. Webj?rn, F. Laurell and G. Arivdsson, Blue light generated by frequency doubling of laser diode light in a lithium niobate channel waveguide, IEEE photonics technology letters, 1989, Vol.1: p316~318;
    [21] M.Yamada, N. Nada and K. Watanabe, Integ. Photon. Res. Tech Dig.,1992, 10, TuC 2;
    [22] M.Yamada, N. Nada, M.Saitoh, M. Saitoh and K. Watanabe, First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient field blue second-harmonic generation, Appl. Phys. Lett., 1993, Vol.62: p435~p436;
    [23] H. D. Megaw, Acta Cryst, 1954, Vol. 7: p187;
    [24] W. K. Burns, W. McElhanon and L. Goldberg, Second Harmonic Generation in field poled, quasi-phase-matched, bulk LiNbO3, IEEE Photonics Technology Letters, 1994, Vol.6: p252~254;
    [25] L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, Quasi-phase-matched 1.064-μm-pumped optical parametric oscillator in bulk periodically poled LiNbO3, Opt. Lett., 1995, Vol.20: p52~54;
    [26] L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3, J. Opt. Soc. Am. B, 1995, Vol. 12: p2102~2115;
    [27] Hideki Ishizuki and Takunori Taira, High-energy quasi-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5mm×5mm aperture, Opt. Lett., 2005, Vol. 30, No.21: p2918~2920;
    [28] M. Peltz, U. B?der, A. Borsutzky, et al., Optical parametric oscillators for high pulse energy and high average power operation based on large aperture periodically poled KTP and RTA, Applied Physics B, 2001, Vol.73, No.7: p663~670;
    [29] A. Shy, B. Pinhas, P. Shaul, A. Ady, Optical parametric generation at extremely low pump irradiance in a long periodically poled lithium niobate, Proceedings of SPIE, 2007, p64551A;
    [30] Masayuki Maruyama, Hirochika Nakajima, Sunao Kurimura, Nan Ei Yu and Kenji Kitamura, 70-mm-long periodically poled Mg-doped stoichiometric LiNbO3 devices for nanosecond optical parametric generation, Appl. Phys. Lett., Vol.89: 011101-1~3;
    [31] Jun Liao, Jing-Liang He, Hui Liu, Hui-Tian Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, Simultaneous generation of red, green, and blue quasi-continuous-wave coherent radiationbased on multiple quasi-phase-matched interactions from a single, aperiodically-poled LiTaO3, Appl. Phys. Lett., 2003, Vol. 82, No. 19: p3159~3160;
    [32] Liao. J, Wang. H. T, Zhu. S. N, Zhu. Y. Y, Ming. N. B, Red, yellow, green and blue-four-color light from a single, aperiodically poled LiTaO3 crystal, Applied Physics B: Lasers and Optics, 2004, Vol. 78, No. 3-4: p 265~267;
    [33] Ming Lu, Xianfeng Chen, Yuping Chen, and Yuxing Xia, Algorithm to design aperiodic optical superlattice for multiple quasi-phase matching, Applied Optics, 2007, Vol. 46, No.19: p4138~4143;
    [34] Boqin Ma, Yan Sheng, Junhong Dou, Bingying Cheng, Daozhong Zhang, Higher order quasi-phase matched harmonics in two-dimensional quasiperiodic superlattice, Opt. Comm., 2007, Vol. 274: p429~432;
    [35] Boqin Ma, Ting Wang, Yan Sheng, Peigen Ni, Yiquan Wang, Bingying Cheng, and Daozhong Zhang, Quasiphase matched harmonic generation in a two-dimensional octagonal photonic superlattice, Appl. Phys. Lett., 2005, Vol. 87: 251103-1~3;
    [36] G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, 42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate, Opt. Lett., 1997, Vol. 22, No. 24: p1834~1836;
    [37] K. Mizuuchi, K. Yamamoto, and M. Kato, Electron. Lett., 1996, Vol. 32: p2091;
    [38] N. Pavel, I. Shoji, T. Taira, K. Mizuuchi, A. Morikawa, T. Sugita and K. Yamamoto, Room-temperature, continuous-wave 1-W green power by single-pass frequency doubling in a bulk periodically poled MgO:LiNbO3 crystal, Opt. Lett, 2004, Vol. 29, No.8: p830~832;
    [39] H. Furuya, A. Morikawa, K. Mizuuchi and K. Yamamoto, Jpn. J. Appl. Phys., Part 1, 2006, Vol. 45: p6704;
    [40] S. Kurimura, N. E. Yu, Y. Nomura, M. Nakamura, K. Kitamura, and T. Sumiyoshi, Advanced Solid-State Photonics(ASSP), TOPS(OSA, Washington, D. C. 2005), Vol. 98, p.92;
    [41] D. S. Hum, R. K. Route, K. Urbanek, R. L. Byer, and M. M. Fejer, CLEO, 2006, Paper No. CThG2.
    [42] S. V. Tovstonog, S. Kurimura, and K. Kitamura, High power continuous-wave green light generation by quasi-phase matching in Mg stoichiometric lithium tantalite, Appl. Phys. Lett., 2007, Vol. 90: 051115-1~3;
    [43] A. G. Getman, S. V. Popov, and J. R. Taylor, 7W average power, high-beam-quality green generation in MgO-doped stoichiometric periodically poled lithium tantalite, Appl. Phys. Lett., 2004, Vol. 85, No. 15: p3026~3028;
    [44] M. Katz, R. K. Route, D. S. Hum, K. R. Parameswaran, G. D. Miller, and M. M. Fejer, Vapor-transport equilibrated near-stoichiometric lithium tantalite for frequency-conversion applications, Opt. Lett., 2004, Vol. 29, No.15: p1775~1777;
    [45] A. Bruner, D. Eger, and S. Ruschin, Second-harmonic generation of green light in periodically poled stoichiometric LiTaO3 doped with MgO, Journal of Applied Physics, 2004, Vol. 96, No.12: p7445~7449;
    [46] D. Taverner, P. Britton, P. G. R. Smith, D. J. Richardson, G. W. Ross, and D. C. Hanna,Highly efficient second-harmonic and sum-frequency generation of nanosecond pulses in a cascaded erbium-doped fiber: periodically poled lithium niobate source, Opt. Lett., 1998, Vol. 23, No. 3: p162~164;
    [47] A. Jechow, M. Schedel, S. Stry, J. Sacher, and R. Menzel, Highly efficient single-pass frequency doubling of a continuous-wave distributed feedback laser diode using a PPLN waveguide crystal at 488nm, Opt. Lett., 2007, Vol. 32, No. 20: p3035~3037;
    [48] A. Bouchier, G. Lucas-Leclin, P. Georges, and J. M. Maillard, Frequency doubling of an efficient continuous wave single-mode Yb-doped fiber laser at 978nm in a periodically-poled MgO:LiNbO3 waveguide, Optics Express, 2005, Vol. 13, No.18: p6974~6979;
    [49] R. G. Batchko, M. M. Fejer, and R. L. Byer, Continuous-wave quasi-phase-matched generation of 60mW at 465nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate, Opt. Lett., 1999, Vol.24, No.18: p1293~1295;
    [50] M. Pierrou, F. Laurell, H. Karlsson, T. Kellner, C. Czeranowsky, and G. Huber, Generation of 740mW of blue light by intracavity frequency doubling with a first-order quasi-phase-matched KTiOPO4 crystal, Opt. Lett., 1999, Vol. 24, No. 4: p205~207;
    [51] M. Maiwald, S. Schwerfeger, R. Güther, B. Sumpf, K. Paschke, C. Dzionk, G. Erbert, and G. Tr?nkle, 600mW optical output power at 488nm by use of a high-power hybrid laser diode system and a periodically poled MgO:LiNbO3 bulk crystal, Opt. Lett., 2006, Vol. 31, No.6: p802~804;
    [52] A. Jechow, D. Skoczowsky, and R. Menzel, 100mW high efficient single pass SHG at 488nm of a single broad area laser diode with external cavity using a PPLN waveguide crystal, Optics Express, 2007, Vol. 15, No.11: p6976~6981;
    [53] K. Sakai, Y. Koyata, and Y. Hirano, Blue light generation in a ridge waveguide MgO:LiNbO3 crystal pumped by a fiber Bragg grating stabilized laser diode, Opt. Lett., 2007, Vol. 32, No. 16: p2342~2344;
    [54] T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, 31%-efficient blue second-harmonic generation in a periodically poled MgO:LiNbO3 waveguide by frequency doubling of an AlGaAs laser diode, Opt. Lett., Vol. 24, No.22: p1590~1592;
    [55] Ya-lin Lu, Lun Mao, and Nai-ben Ming, Blue-light generation by frequency doubling of an 810-nm cw GaAlAs diode laser in a quasi-phase-matched LiNbO3 crystal, Opt. Lett., 1994, Vol.19, No.14: p1037~1039;
    [56] J. Webj?rn, F. Laurell, and G. Arvidsson, Blue light generated by frequency doubling of laser diode light in a lithium niobate channel waveguide, IEEE Photonics Technology Letters, 1989, Vol.1, No. 10, p316~318;
    [57] A. Jechow, V. Raab, and R. Menzel, Tunable diffraction-limited light at 488nm by single-pass frequency doubling of a broad area diode laser, Applied Optics, 2007, Vol. 46, No. 6: p943~946;
    [58]马莹,彭显楚,1342nm激光通过周期极化坦酸锂产生红光和蓝光的研究,中国激光,2005, Vol. 32, No.2: p262~264;
    [59] Hong-xia Li, Ping Xu, Ya-xian Fan, Peng Lu, Zhi-da Gao, Sheng Liu, Shi-ning Zhu, Jing-liang He, All-solid-state red and green laser by temperature tuning, J. Phys. D: Appl.Phys., 2004, Vol. 37: L21~L24;
    [60] D. Krennrich, and R. Wallenstein, Powerful red and blue laser radiation generated by frequency doubling and tripling the output of a mode locked 1342nm Nd:YVO4 laser in pp-KTP, CLEO, 2002, CTuG4;
    [61] Alphan. Sennaroglu, Continuous-wave broadly tunable intracavity frequency-doubled Cr4+: Forsterite laser, IEEE Journal of Selected Areas in Quantum Electronics, 2002, Vol. 8, No. 3: p474~478;
    [62] K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, Generation of 360-nm ultraviolet light in first-order periodically poled bulk MgO:LiNbO3, Opt. Lett., 2003, Vol. 28, No. 11: p935~937;
    [63] K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, Jpn. J. Appl. Phys. 2003, Vol.42, L90;
    [64] S. Wang, V. Pasiskevicius, J. Hellstr?m, and F. Laurell, First-order type II quasi-phase-matched UV generation in periodically poled KTP, Opt. Lett., 1999, Vol. 24, No. 14: p978~980;
    [65] J.–P. Meyn, and M. M. Fejer, Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalite, Opt. Lett., 1997, Vol. 22, No.16: p1214~1216;
    [66] K. Mizuuchi, K. Yamamoto, and M. Kato, Generation of ultraviolet light by frequency doubling of a red laser diode in a first-order periodically poled bulk LiTaO3, Appl. Phys. Lett., 1997, Vol. 70, No. 10: p1201~1203;
    [67] K. Mizuuchi, K. Yamamoto, Generation of 340nm light by frequency doubling of a laser diode in bulk periodically poled LiTaO3, Opt. Lett., Vol. 21, No. 2: p107~109;
    [68] K. Kintaka, M. Fujimura, T. Suhara, and H. Nishihara, Efficient ultraviolet light generation by LiNbO3 waveguide first-order quasi-phase-matched second-harmonic generation devices, Electronics Letters, 1996, Vol. 32, No. 24: p2237~2238;
    [69] Chao Zhang, Hong Wei, Yong-Yuan Zhu, Hui-Tian Wang, Shi-Ning Zhu, and Nai-Ben Ming, Third-harmonic generation in a general two-component quasi-periodic optical superlattice, Opt. Lett., 2001, Vol. 26, No. 12: p899~901;
    [70] Guo-Ding Xu, Yue-Hua Wang, Yong-Yuan Zhu, Shi-Ning Zhu, and Nai-Ben Ming, Third-harmonic generation in a LiNbO3 channel waveguide with a quasi-periodic grating, J. Opt. Soc. Am. B, 2004, Vol.21, No. 3: p568~573;
    [71] Nan Ei Yu, Jung Hoon Ro, Myoungsik Cha, and Sunao Kurimura, Broadband quasi-phase-matched second-harmonic generation in MgO-doped periodically poled LiNbO3 at the communications band, Opt. Lett., 2002, Vol. 27, No.12: p1046~1048;
    [72] J. Zimmermann, J. Struckmeier, M. R. Hofmann, and Jan-Peter Meyn, Tunable blue laser based on intracavity frequency doubling with a fan-structured periodically poled LiTaO3 crystal, Opt. Lett., 2002, Vol.27, No.8: p604~606;
    [73] S. T. Yang, R. C. Eckardt, and R. L. Byer, Continuous-wave singly resonant optical parametric oscillator pumped by a single-frequency resonantly doubled Nd:YAG laser, Opt. Lett., 1993, Vol. 18, No. 12: p971~973;
    [74] W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer,Continuous-wave singly resonant optical parametric oscillator based on periodically poled LiNbO3, Opt. Lett., 1996, Vol.21, No. 10: p713~715;
    [75] G. K. Samanta, G. R. Fayaz, Z. Sun, and M. Ebrahim-Zadeh, High-power, continuous-wave, singly resonant optical parametric oscillator based on MgO: sPPLT, Opt. Lett., 2007, Vol. 32, No.4: p400~402;
    [76] M. E. Klein, P. Gross and K.-J. Boller, Rapidly tunable continuous-wave optical parametric oscillator pumped by a fiber laser, Opt. Lett., 2003, Vol. 28, No. 11: p920~922;
    [77] M. M. J. W. van Herpen, S. E. Bisson, and F. J. M. Harren, Continuous-wave operation of a single-frequency optical parametric oscillator at 4-5μm based on periodically poled LiNbO3, Opt. Lett., 2003, Vol. 28, No. 24: p2497~2499;
    [78] L. D. Lindsay, D. J. M. Stothard, C. F. Rae and M. H. Dunn, Continuous-wave, pump-enhanced optical parametric oscillator based on periodically-poled RbTiOAsO4, Optics Express, 2003, Vol. 11, No.2: p134~140;
    [79] H. Abitan and P. Buchhave, Continuous-wave singly resonant optical parametric oscillator placed inside a ring laser, Applied Optics, 2003, Vol. 42, No. 33: p6630~6635;
    [80] P. Gross, M. E. Klein, T. Walde, K.–J. Boller, M. Auerbach, P. Wessels, and C. Fallnich, Fiber-laser-pumped continuous-wave singly resonant optical parametric oscillator, Opt. Lett., 2002, Vol. 27, No. 6: p418~420;
    [81] G. A. Turnbull, D. McGloin, I. D. Lindsay, M. Ebrahimzadeh, and M. H. Dunn, Extended mode-hop-free tuning by use of a dual-cavity, pump-enhanced optical parametric oscillator, Opt. Lett., 2000, Vol. 25, No. 5: p341~343;
    [82] T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, Continuous-wave, singly-resonant, optical parametric oscillator based on periodically poled KTiOPO4, Optics Express, 2000, Vol. 6, No. 3: p58~63;
    [83] T. J. Edwards, G. A. Turnbull, M. H. Dunn, M. Ebrahimzadeh, H. Karlsson, G. Arvidsson, and F. Laurell, Continuous-wave, singly-resonant, optical parametric oscillator based on periodically poled RbTiOAsO4, Opt. Lett., 1998, Vol. 23, No. 11: p837~839
    [84] R. G. Batchko, D. R. Weise, T. Plettner, G. D. Miller, M. M. Fejer, and R. L. Byer, Continuous-wave 532-nm-pumped singly resonant optical parametric oscillator based on periodically poled lithium niobate, Opt. Lett., 1998, Vol. 23, No. 3: p168~170;
    [85] P. E. Powers, T. J. Kulp, and S. E. Bisson, Continuous tuning of a continuous-wave periodically poled lithium niobate optical parametric oscillator by use of a fan-out grating design, Opt. Lett., 1998, Vol. 23, No. 3: p159~161;
    [86] W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, 93% pump depletion, 3.5-W continuous-wave, singly resonant optical parametric oscillator, Opt. Lett., 1996, Vol. 21, No. 17: p1336~1338;
    [87] J. M. Melkonian, High spectral purity and tunable operation of a continuous singly resonant optical parametric oscillator emitting in the red, Opt. Lett., 2007, Vol. 32, No. 5, p518~520;
    [88] L. E. Myers, R. C. Eckardt, M. M. Fejer, and R. L. Byer, Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3, Opt. Lett., 1996, Vol. 21, No. 8: p591~593;
    [89] Bo Wu, Yonghang Shen, Shuangshuang Cai, Widely tunable high power OPO based on a periodically poled MgO doped lithium niobate crystal, Optics and Laser Technology, 2007, Vol. 39: p1115~1119;
    [90] L. Neagu, C. Ungureanu, R. Dabu, A. Stratan, C. Fenic, L. Rusen, Compact eye-safe laser sources based on OPOs with KTP or PPKTP crystals, Optics and Laser Technology, 2007, Vol. 39: p973~979;
    [91] K. A. Tillman, and D. T. Reid, Monolithic optical parametric oscillator using chirped quasi-phase matching, Opt. Lett., 2007, Vol. 32, No. 11: p1548~1550;
    [92] Bo Lin, H. Sang Lee and Coorg R. Prasad, Temporal behavior of the laser pulse for intracavity optical parametric oscillator, Optics Express, 2007, Vol. 15, No. 8: p4902~4908;
    [93] Y. L. Chen, J. W. Yuan, C. F. Yan, J. J. Xu, G. Y. Zhang, Low-pump-threshold tunable optical parametric oscillator using periodically poled MgO: LiNbO3, Opt. Comm., 2007, Vol. 273: p560~563;
    [94] J. A. C. Terry, G. Tsiminis, M. H. Dunn, and C. F. Rae, Eye-safe broadband output at 1.55μm through the use of a fan-out grating structure in MgO:PPLN, Journal of Optics A: Pure and Applied Optics, 2007, Vol. 9: p229~234;
    [95] H. C. Guo, S. H. Tang, Z. D. Gao, Y. Q. Qin, S. N. Zhu, and Y. Y. Zhu, Multiple-channel mid-infrared optical parametric oscillator in periodically poled MgO:LiNbO3, Journal of Applied Physics, 2007, Vol. 101: p113112-1~5;
    [96] Zhang Xing-Bao, Yao Bao-Quan, Ju You-Lun, and Wang Yue-Zhu, A 2.048-μm Tm, Ho:GdVO4 laser pumped doubly resonant optical parametric oscillator based on periodically poled lithium LiNbO3, Chin. Phys. Lett., 2007, Vol. 24, No. 7: p1953~1954;
    [97] Xingbao Zhang, Baoquan Yao, Yuezhu Wang, Youlun Ju, and Yunjun Zhang, Middle-infrared intracavity periodicall poled MgO:LiNbO3 optical parametric oscillator, Chinese Optics Letters, 2007, Vol. 5, No. 7: p426~427;
    [98] L. Y. Tsai. Y. F. Chen, S. T. Lin, Y. Y. Lin, and Y. C. Huang, Compact efficient passively Q-switched Nd:GdVO4/PPLN/Cr4+:YAG tunable intracavity optical parametric oscillator, Optics Express, 2005, Vol. 13, No. 23: p9543~9547;
    [99]吴波,蔡双双,沈剑威,沈永行,基于镁掺杂的周期性畴反转铌酸锂的宽调谐光参量振荡器,物理学报,2007,Vol. 56, No. 5: p2684~2688;
    [100]彭跃峰,鲁燕华,谢刚,王卫民,准相位匹配PPMgLN光参量振荡技术,强激光与粒子束,2007,Vol. 19, No. 3: p377~380;
    [101]姚江宏,薛亮平,颜博霞,贾国治,许京军,张光寅,周期极化掺镁铌酸锂晶体的光学参量振荡,中国激光,2007,Vol. 34, No. 2: p209~213;
    [102]蔡双双,吴波,沈永行,基于高品质PPMgLN器件的中红外光参量振荡器,红外与激光工程,2007,Vol. 36, No. 2: p160~162;
    [103] A. Zavadilova, V. Kubecek, and J. Diels, Picosecond optical parametric oscillator pumped synchronously, intracavity, by a mode-locked Nd:YVO4 laser, Laser Physics Letters, 2007, Vol. 4, No. 2: p103~108;
    [104] N. A. Naz, H. S. S. Hung, M. V. O’Connor, D. C. Hanna, and D. P. Shepherd, Adaptively shaped mid-infrared pulses from a synchronously pumped optical parametric oscillator,Optics Express, 2005, Vol. 13, No. 21: p8400~8405;
    [105] S. Forget, F. Balembois, G. Lucas-Leclin, P. Georges, Picosecond laser source at 1MHz with continuous tenability in the visible red band, Optics Communications, 2003, Vol. 220: p187~192;
    [106] C. W. Hoyt, M. Sheik-Bahae, M. Ebrahimzadeh, High-power picosecond optical parametric oscillator based on periodically poled lithium niobate, Opt. Lett., 2002, Vol. 27, No. 17: p1543~1545;
    [107] K. Finsterbusch, R. Urschel, H. Zacharias, Fourier-transform-limited, high-power picosecond optical parametric oscillator based on periodically poled lithium niobate, Applied Physics B, Vol. 70, No. 2-6: p741~746;
    [108] D. C. Hanna, M. V. O’Connor, M. A. Watson, and D. P. Shepherd, Synchronously pumped optical parametric oscillator with diffraction-grating tuning, Journal of Physics D, 2001, Vol. 34: p2440~2454;
    [109] L. Kornaszewski, N. Gayraud, J. M. Stone, W. N. MacPherson, A. K. George, J. C. Knight, D. P. Hand, and D. T. Reid, Mid-infrared methane detection in a photonic bandgap fiber using a broadband optical parametric oscillator, Optics Express, 2007, Vol. 15, NO. 18: p11219~11224;
    [110] Chang-Ki Min, and Taiha Joo, Near-infrared cavity-dumped femtosecond optical parametric oscillator, Opt. Lett., 2005, Vol. 30, No. 14: p1855~1857;
    [111] Ye Liu, and Jean-Claude Diels, Group-velocity matched femtosecond parametric oscillation by noncollinear quasi-phase matching, IEEE Journal of Quantum Electronics, 2006, Vol. 42, No. 8: p760~764;
    [112] W. R. Bosenberg and D. R. Guyer, Single-frequency optical parametric oscillator, Appl. Phys. Lett., 1992, Vol. 61, No.4: p387~389;
    [113] G. W. Baxter, Y. He, B. J. Orr, A pulsed optical parametric oscillator, based on periodically poled lithium niobate (PPLN), for high-resolution spectroscopy, Appl. Phys. B., 1998, Vol. 67: p753~756;
    [114] P. Schlup, S. D. Butterworth, I. T. McKinnie, Efficient single-frequency pulsed periodically poled lithium niobate optical parametric oscillator, Opt. Comm., 1998, Vol. 154: p191~195;
    [115] P. Schlup, I. T. McKinnie, and S. D. Butterworth, Single-mode, singly resonant, pulsed periodically poled lithium niobate optical parametric oscillator, Applied Optics, 1999, Vol. 38, No. 36: p7398~7401;
    [116] D.-H. Lee, M. E. Klein, J.–P. Meyn, P. Grob, R. Wallenstein, and K.–J. Boller, Self-injection-locking of a CW-OPO by intracavity frequency-doubling the idler wave, Optics Express, 1999, Vol. 5, No. 5: p114~119;
    [117] Y. He, G. W. Baxter, and B. J. Orr, Locking the cavity of a pulsed periodically poled lithium niobate optical parametric oscillator to the wavelength of a continuous-wave injection seeder by a“intensity-dip”method, Rewiew of Scientific Instruments, 1999, Vol. 70, No. 8: p3203~3213;
    [118] G. W. Baxter, P. Schlup, I. T. McKinnie, Efficient, single frequency, high repetition rate,PPLN OPO pumped by a prelase Q-switched diode-pumped Nd:YAG laser, Appl. Phys. B., 2000, Vol. 70: p301~304;
    [119] G. W. Baxter, M. A. Payne, B. D. W. Austin, C. A. Halloway, J. G. Haub, Y. He, A. P. Milce, J. F. Nibler, B. J. Orr, Spectroscopic diagnostics of chemical processes: applications of tunable optical parametric oscillators, Appl. Phys. B, 2000, Vol. 71: p651~663;
    [120] B. A. Richman, K. W. Aniolek, T. J. Kulp, and S. E. Bisson, Continuously tunable, single-longitudinal-mode, pulsed mid-infrared optical parametric oscillator based on periodically poled lithium niobate, J. Opt. Soc. Am. B, 2000, Vol. 17, No. 7: p1233~1239;
    [121] P. Schlup, G. W. Baxter, I. T. McKinnie, Single-mode near- and mid-infrared periodically poled lithium niobate optical parametric oscillator, Opt. Comm., 2000, Vol. 176: p267~271;
    [122] P. Schlup, G. W. Baxter, I. T. McKinnie, Single-mode visible and mid-infrared periodically poled lithium niobate optical parametric oscillator amplified in perylene red doped poly (methyl methacrylate), Opt. Comm., 2000, Vol. 184: p225~230;
    [123] Y. He, and B. J. Orr, Tunable single-mode operation of a pulsed optical parametric oscillator pumped by a multimode laser, Applied Optics, 2001, Vol. 40, No. 27: p4836~4848;
    [124] K. Finsterbusch, R. Urschel, H. Zacharias, Tunable, high-power, narrow-band picosecond IR radiation by optical parametric amplification in KTP, Appl. Phys. B, 2002, Vol. 74: p319~322;
    [125] R. T. White, Y. He, B. J. Orr, M. Kono, and K. G. H. Baldwin, Pulsed injection-seeded optical parametric oscillator with low frequency chirp for high-resolution spectroscopy, Opt. Lett., 2003, Vol. 28, No. 14: p1248~1250;
    [126] R. T. White, Y. He, B. J. Orr, M. Kono, and K. G. H. Baldwin, Control of frequency chirp in nanosecond-pulsed laser spectroscopy. 2. A long-pulse optical parametric oscillator for narrow optical bandwidth, J. Opt. Soc. Am. B., 2004, Vol. 21, No. 9: p1586~1594;
    [127] R. T. White, Y. He, B. J. Orr, M. Kono, and K. G. H. Baldwin, Transition from single-mode to multimode operation of an injection-seeded pulsed optical parametric oscillator, Optics Express, 2004, Vol. 12, No. 23: p5655~5660;
    [128] Y. He, and B. J. Orr, Narrowband tuning of an injection-seeded pulsed optical parametric oscillator based on a self-adaptive, phase-conjugate cavity mirror, Opt. Lett., 2004, Vol. 29, No. 18: p2169~2171;
    [129] I. D. Lindsay, C. Petridis, M. H. Dunn, and M. Ebrahimzadeh, Continuous-wave pump-enhanced singly resonant optical parametric oscillator pumped by an extended-cavity diode laser, Appl. Phys. Lett., 2001, Vol. 78, No.7: p871~873;
    [130] A. J. Henderson, P. M. Roper, L. A. Borschowa, and R. D. Mead, Stable, continuously tunable operation of a diode-pumped doubly resonant optical parametric oscillator, Opt. Lett., 2000, Vol. 25, No. 17: p1264~1266;
    [131] D. J. M. Stothard, M. Ebrahimzadeh, and M. H. Dunn, Low-pump-threshold continuous-wave singly resonant optical parametric oscillator, Opt. Lett., 1998, Vol. 23, No. 24: p1895~1897;
    [132] I. D. Lindsay, G. A. Turnbull, M. H. Dunn, and M. Ebrahimzadeh, Doubly resonantcontinuous-wave optical parametric oscillator pumped by a single-mode diode laser, Opt. Lett., 1998, Vol. 23, No. 24: p1889~1891;
    [133] M. E. Klein. D.-H. Lee, J.–P. Meyn, B. Beier, K.–J. Boller, and R. Wallenstein, Diode-pumped continuous-wave widely tunable optical parametric oscillator based on periodically poled lithium tantalite, Opt. Lett., 1998, Vol. 23, No.11: p831~833;
    [134] C. W. Hsu, and C. C. Yang, Broadband infrared generation with noncollinear optical parametric processes on periodically poled LiNbO3, Opt. Lett., 2001, Vol. 26, No. 18: p1412~1414;
    [135] C. W. Hsu, C. T. Chen, and C. C. Yang, Retracing behavior and broadband generation based on quasi-phase-matched optical parametric processes, J. Opt. Soc. Am. B., 2002, Vol. 19, No. 5: p1150~1156;
    [136] Yang Lu, Baigang Zhang, Enbang Li, and Jianquan Yao, Design of a broadband source by using the retracing behavior of a collinear quasi-phase-matching optical parametric generator, Optics Express, 2006, Vol. 14, No. 25: p12316~12326;
    [137] J. J. Zayhowski, Periodically poled lithium niobate optical parametric amplifiers pumped by high-power passively Q-switched microchip lasers, Opt. Lett., 1997, Vol. 22, No. 3: p169~171;
    [138] P. E. Powers, K. W. Aniolek, T. J. Kulp, A. Richman, and S. E. Bisson, Periodically poled lithium niobate optical parametric amplifier seeded with the narrow-band filtered output of an optical parametric generator, Opt. Lett., 1998, Vol. 23, No. 24: p1886~1888;
    [139] Yan-qing Lu, Jian-jun Zheng, Ya-lin Lu, and Nai-ben Ming, Frequency tuning of optical parametric generator in periodically poled optical superlattice LiNbO3 by electro-optic effect, Appl. Phys. Lett., 1999, Vol. 74, No. 1: p123~125;
    [140] Sheng Wu, V. A. Kapinus, and G. A. Blake, A nanosecond optical parametric generator/amplifier seeded by an external cavity diode laser, Opt. Comm., 1999, Vol. 159: p74~79;
    [141] U. B?der, J.–P, Meyn, J. Bartschke, T. Weber, A. Borsutzky, and R. Wallenstein, Nanosecond periodically poled lithium niobate optical parametric generator pumped at 532 nm by a single-frequency passively Q-switched Nd:YAG laser, Opt. Lett., 1999, Vol. 24, No. 22: p1608~1610;
    [142] M. J. Missey, V. Dominic, P. E. Powers, and K. L. Schepler, Periodically poled lithium niobate monolithic nanosecond optical parametric oscillators and generators, Opt. Lett., 1999, Vol. 24, No. 17: p1227~1229;
    [143] K. W. Aniolek, R. L. Schmitt, T. J. Kulp, B. A. Richman, S. E. Bisson, and P. E. Powers, Microlaser-pumped periodically poled lithium niobate optical parametric generator-optical parametric amplifier, Opt. Lett., 2000, Vol. 25, No. 8: p557~559;
    [144] G. Hansson, and D. D. Smith, Optical parametric generation in 2-μm-wavelength-pumped periodically poled LiNbO3, Opt. Lett., 2000, Vol. 25, No. 24: p1783~1785;
    [145] B. Kohler, U. B?der, A.Nebel, J.-P. Meyn, R. Wallenstein, A 9.5-W 82-MHz-repetition-rate picosecond optical parametric generator with cw diode laser injectionseeding, Applied Physics B, 2002, Vol. B75, No. 1: p31~34;
    [146] M. Rahm, U. B?der, G. Anstett, J.–P. Meyn, R. Wallenstein, A. Borsutzky, Pulse-to-pulse wavelength tuning of an injection seeded nanosecond optical parametric generator with 10 kHz repetition rate, Applied Physics B, 2002, Vol. 75: p47~51;
    [147] Yen-Chieh Huang, An-Chung Chiang, Yen-Yin Lin, and Yen-Wen Fang, Optical parametric generation covering the sodium D1, D2 lines from a 532-nm pumped periodically poled lithium niobate (PPLN) crystal with ionic-nonlinearity enhanced parametric gain, IEEE Journal of Quantum Electronics, 2002, Vol. 38, No. 12: p1614~1619;
    [148] M. J. Orozco-Arellanes, R. S. Cudney, Indirectly-seeded optical parametric generation in periodically poled lithium niobate, Optics Express, 2003, Vol. 11, No. 1: p20~26;
    [149] U. B?der, T. Mattern, T. Bauer, J. Bartschke, M. Rahm, Pulsed nanosecond optical parametric generator based on periodically poled lithium niobate, Opt. Comm., 2003, Vol. 217: p375~380;
    [150] Fragemann, V. Pasiskevicius, G. Karlsson, and F. Laurell, High-peak power nanosecond optical parametric amplifier with periodically poled KTP, Opt. Express, 2003, Vol. 11, No. 11: p1297~1302;
    [151] J.–P. Fève, B. Boulanger, B. Ménaert, O. Pacaud, Continuous tuning of a microlaser-pumped optical parametric generator by use of a cylindrical periodically poled lithium niobate crystal, Opt. Lett., 2003, Vol. 28, No. 12: p1028~1030;
    [152] S. Haidar, T. Usami, J. Shikata, and H. Ito, Seed-source tuning of a broadband noncollinear optical parametric generator based on periodically poled LiNbO3, Opt. Eng., 2003, Vol.42, No. 1: p143~147;
    [153] Zhang Bai-Gang, Yao Jian-Quan, Ding Xin, Zhang Hao, Wang Peng, Xu De-Gang, Yu Guo-Jun, and Zhang Fan, Low-threshold, high-efficiency, high-repetition-rate optical parametric generator based on periodically poled LiNbO3, Chin. Phys.,2004, Vol. 13, No. 3: p364~368;
    [154] Xiuping Xie, A. M. Schober, C. Langrock, R. V. Roussev, J. R. Kurz, and M. M. Fejer, Picojoule threshold, picosecond optical parametric generation in reverse proton-exchanged lithium niobate waveguides, J. Opt. Soc. Am. B., 2004, Vol. 21, No. 7: p1397~1402;
    [155] Zhang Bai-Gang, Yao Jian-Quan, Lu Yang, Xu De-Gang, Ji Feng, Zhang Tie-Li, Zhao Xin, Wang Peng, Xu Ke-Xin, High-average-power nanosecond quasi-phase-matched single-pass optical parametric generator in periodically poled lithium niobate, Chin. Phys. Lett., 2005, Vol. 22, No. 7: p1691~1693;
    [156] Ye Pu, Jie Wu, Mankei Tsang, and Demetri Psaltis, Optical parametric generation in periodically poled KTiOPO4 via extended phase matching, Appl. Phys. Lett., 2007, Vol. 91: p131120-1~3;
    [157] M. Marangoni, R. Osellame, R. Ramponi, G. Cerullo, A. Steinmann, and U. Morgner, Near-infrared optical parametric amplifier at 1MHz directly pumped by a femtosecond oscillator, Opt. Lett., 2007, Vol. 32, No. 11: p1489~1491;
    [158] Y. Lee, T. Meade, M. DeCamp, T. Norris, A. Galvanauskas, Temperature dependence of narrow-band terahertz generation from periodically poled lithium niobate, Appl. Phys. Lett.,2000, Vol. 77: p1244~1246;
    [159] Y. Lee, T. Meade, V. Perlin, H. Winful, T. Norris, A. Galvanauskas, Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate, Appl. Phys. Lett., 2000, Vol. 76: p2505~2507;
    [160] Y. Lee, T. Meade, T. Norris, A. Galvanauskas, Tunable narrow-band terahertz generation from periodically poled lithium niobate, Appl. Phys. Lett., 2001, Vol. 78: p3583~3585;
    [161] Y. H. Avetisyan, K. N. Kocharian, A new method of terahertz difference frequency generation using periodically poled waveguide, in CLEO 1999, Tech. Dig., 1999: p380~381;
    [162] C. Weiss, G. Torosyan, Y. Avetisyan, R. Beigang, Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate, Opt. Lett., 2001, Vol. 26, p563~565;
    [163] J. A. L’Huillier, G. Torosyan, M. Theuer, C. Rau, Y. Avetisyan, and R. Beigang, Generation of THz radiation using bulk, periodically and aperiodically poled lithium niobate-part 2: experiments, Applied Physics B, 2007, Vol. 86: p197~208;
    [164] Y. Lee, and T. Norris, Terahertz pulse shaping and optimal waveform generation in poled ferroelectric crystals, J. Opt. Soc. Am. B, 2002, Vol. 19, No. 11: p2791~2794;
    [165] Y. Lee, N. Amer, and W. Hurlbut, Terahertz pulse shaping via optical rectification in poled lithium niobate, Appl. Phys. Lett., 2003, Vol. 82, No. 2: p170~172;
    [166] X. Liu, J. Wu, W. Duan, B. Gu, Generation of narrow-band terahertz radiation with preset frequency components in poled ferroelectric materials, J. Appl. Phys., 2005, Vol. 97: 114108-1~7;
    [167] G. H. Ma, Q. B. Zhu, G. Kh. Kitaeva, I. I. Naumova, Narrow-band terahertz wave generation and detection in one periodically poled lithium niobate crystal, Opt. Comm., 2007, Vol. 273: p549~553;
    [168] K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y.–S. Lee, W. C. Hurlbut, V. G. Kozolov, D. Bliss, and C. Lynch, Terahertz-wave generation in quasi-phase-matched GaAs, Appl. Phys. Lett., 2006, Vol. 89: 141119-1~3;
    [169] G. Imeshev, M. E. Fermann, K. L. Vodopyanov, M. M. Fejer, X. Yu. J. S. Harris, D. Bliss, and C. Lynch, High-power source of THz radiation based on orientation-patterned GaAs pumped by a fiber laser, Optics Express, 2006, Vol. 14, No. 10: p4439~4444;
    [170] I. Tomita, H. Suzuki, H. Ito, H. Takenouchi, K. Ajito, R. Rungsawang, and Y. Ueno, Terahertz-wave generation from quasi-phase-matched GaP for 1.55μm pumping, Appl. Phys. Lett., 2006, Vol. 88: 071118-1~3;
    [171] Y. Sasaki, A. Yuri, K. Kawase, and H. Ito, Terahertz-wave surface-emitted difference frequency generation in slant-stripe-type periodically poled LiNbO3 crystal, Appl. Phys. Lett., 2002, Vol. 81, No. 18: p3323~3325;
    [172] T. Hatanaka, K. Nakamura, T. Taniuchi, and H. Ito, Dual signal-wave optical parametric oscillator using periodically poled LiNbO3 with series gratings, Electronics Letters, 2000, Vol. 36, No. 16: p1409~1411;
    [173] K. Kawase, T. Hatanaka, H. Takahashi, K. Nakamura, T. Taniuchi, and H. Ito, Tunable terahertz-wave generation from DAST crystal by dual signal-wave parametric oscillation ofperiodically poled lithium niobate, Opt. Lett., 2000, Vol. 25, No. 23: p1714~1716;
    [174] P. E. Powers, R. A. Alkuwari, and J. W. Haus, Terahertz generation with tandem seeded optical parametric generators, Opt. Lett., 2005, Vol. 30, No. 6: p640~642;
    [175] J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, Intracavity terahertz-wave generation in a synchronously pumped optical parametric oscillator using quasi-phase-matched GaAs, Opt. Lett., 2007, Vol. 32, No. 10: p1284~1286;
    [176] Tieli Zhang, Jianquan Yao, Xueyu Zhu, Baigang Zhang, Enbang Li, Pu Zhao, Haifeng Li, Feng Ji, Peng Wang, Widely tunable, high-repetition-rate, dual signal-wave optical parametric oscillator by using two periodically poled crystals, Opt. Comm., 2007, Vol. 272: p111~115;
    [177] I. Breunig, R. Sowade, and K. Buse, Limitations of the tunablility of dual-crystal optical parametric oscillators, Opt. Lett., 2007, Vol. 32, No. 11: p1450~1452;
    [178] Y. Sasaki, H. Yokoyama, and H. Ito, Surface-emitted continuous-wave terahertz radiation using periodically poled lithium niobate, Electronics Letters, 2005, Vol. 41, No. 12: 20050587;
    [179] Y. Sasaki, H. Yokoyama, and H. Ito, Dual-wavelength optical-pulse source based on diode lasers for high-repetition-rate, narrow-bandwidth terahertz-wave generation, Optics Express, 2004, Vol. 12, No. 14: p3066~3071;
    [180] Y. Sasaki, Y. Avetisyan, H. Yokoyama, and H. Ito, Surface-emitted terahertz-wave difference-frequency generation in two-dimensional periodically poled lithium niobate, Opt. Lett., 2005, Vol. 30, No. 21: p2927~2929;
    [181] K. Suizu, Y. Suzuki, and Y. Sasaki, H. Ito, and Y. Avetisyan, Surface-emitted terahertz-wave generation by ridged periodically poled lithium niobate and enhancement by mixing of two terahertz waves, Opt. Lett., 2006, Vol. 31, No. 7: p957~959;
    [182] K. Kawase, J. Shikata, H. Ito, Terahertz wave parametric source, J. Phys. D: Appl. Phys., 2002, Vol. 35: R1~R14;
    [183] J. Shikata, K. Kawase, K. Karino et al., Tunable terahertz-wave parametric oscillators using LiNbO3 and MgO:LiNbO3 crystals, IEEE Transactions on Microwave Theory Techniques, 2000, Vol. 48, No. 4: p653~661;
    [184] Yujie Ding, J. B. Khurgin, A new scheme for efficient generation of coherent and incoherent submillimeter to THz waves in periodically-poled lithium niobate, Opt. Comm., 1998, Vol. 148: p105~109;
    [185] I. Brener, M. H. Chou, E. Chaban, Polarization-insensitive wavelength converter based on cascaded nonlinearities in LiNbO3 waveguides, Electronics Letters, 2000, Vol. 36, No. 1: p66~67;
    [186] M. H. Chou, I. Brener, G. Lenz, et al., Efficient wide-band and tunable midspan spectral inverter using cascaded nonlinearities in LiNbO3 waveguides, IEEE Photonics Technology Letters, 2000, Vol. 12, No. 1: p82~84;
    [187] C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, M. Kawahara, Wavelength conversions of ~1.5μm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides, Applied Physics Letters, 1993, Vol. 63, No. 9: p1170~1172;
    [188] Chang-Qing Xu, H. Okayama, T. Kamijoh, Broadband multichannel wavelength conversions for optical communication systems using quasiphase matched difference frequency generation, Japanese Journal of Applied Physics. B, 1995, Vol. 34, No. 11: pt2;
    [189] K. Gallo, G. Assanto, G. I. Stegeman, Efficient wavelength shifting over the erbium amplifier band width via cascaded second order processes in lithium niobate waveguides, Applied Physics Letters, 1997, Vol. 71, No. 8: p1020~1022;
    [190] K. Gallo, G. Assanto, Analysis of lithium niobate all-optical wavelength shifters for the third window, J. Opt. Soc. Am. B., 1999, Vol. 16, No. 5: p741~753;
    [191] L. S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D. B. Ostrowsky, and N. Gisin, Highly efficient photon-pair source using a periodically poled lithium niobate waveguide, Electronics Letter, 2001, Vol. 37: p26~28;
    [192] M. A. Arbore, O. Marco, M. M. Fejer, Pulse compression during second-harmonic generation in aperiodic quasi-phase-matching grating, Opt. Lett., 1997, Vol. 22, No. 12: p865~867;
    [193] M. A. Arbore, A. Galvanauskas, D. Harter, M. H. Chou, and M. M. Fejer, Engineerable compression of ultrashort pulses by use of second-harmonic generation in chirped-period-poled lithium niobate, Opt. Lett., 1997, Vol. 22: p1341~1343;
    [194] A. Galvanauskas, D. Harter, M. A. Arbore et al., Chirped-pulse amplification ciruits for fiber amplifiers, based on chirped-period quasi-phase-matching gratings, Opt. Lett., 1998, Vol. 23, No. 21: p1695~1697;
    [195] http://www.hcphotonics.com/
    [196] http://www.crystaltechnology.com/
    [197] http://www.raicol.com/
    [198] http://www.opt-oxide.com/english/
    [199] http://www.isowave.com/
    [200] http://www.stratophase.com/index.shtml
    [201] http://www.gkoe.com/index_cn.php
    [202] http://www.hcphotonics.com/ppxx.htm
    [203] D. H. Jundt, Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate, Opt. Lett., 1997, Vol. 22, No. 20: p1553~1555;
    [204] Y. S. Kim, R. T. Smith, Thermal expansion of lithium tantalite and lithium niobate single crystal, Journal of Applied Physics, 1969, Vol. 40, No. 11: p4637~4641;
    [205] Based on data from HC Photonics Corp.
    [206] J. A. Giordmaine, R. C. Miller, Tunable coherent parametric oscillation in LiNbO3 at optical frequencies, Phys. Rev. Lett., 1965, Vol. 14: p973~976;
    [207] G. Hansson, D. D. Smith, Mid-infrared-wavelength generation in 2-μm pumped periodically poled lithium niobate, Appl. Opt., 1998, Vol. 37: p5743~5746;
    [208] P. E. Britton, D. Taverner, K. Puech, D. J. Richardson, P. G. R. Smith, G. W. Ross, D. C. Hanna, Optical parametric oscillation in periodically poled lithium niobate driven by a diode-pumped Q-switched erbium fiber laser, Opt. Lett., 1998, Vol. 23: p582~584;
    [209] G. Bellomont, A. Grisard, L. Becouarn, and E. Lallier, High efficiency mid-infraredoptical parametric oscillation in thick periodically poled lithium niobate, CLEO 2000, p332;
    [210] J. Hellstr?m, V. Pasiskevicius, F. Laurell,and H. Karlsson, Efiicient nanosecond optical parametric oscillators based on periodically poled KTP emitting in the 1.8~2.5μm spectral region, Opt. Lett., 1999, Vol. 24: p1233~1235;
    [211] G. Hansson, H. Karlsson, and F. Laurell, Unstable resonator optical parametric oscillator based on quasi-phase-matched RbTiOAsO4, Appl. Opt., 2001, Vol. 40: p5446;
    [212] G. Rosenman, A. Skliar, Y. Findling, P. Urenski, A. Englander, P. A. Thomason, and Z. W. Hu, Periodically poled KTiOAsO4 crystals for optical parametric oscillation, J. Phys. D: Appl. Phys., 1999, Vol. 32: L49~L52;
    [213] M. E. Klein, D. H. Lee, J.–P. Meyn, K.–J. Boller, R. Wallenstein, Singly resonant continuous-wave optical parametric oscillator pumped by a diode laser, Opt. Lett., 1999, Vol. 24: p1142~1144;
    [214] http://www.stanford.edu/group/ginzton/index.html
    [215] http://www.stanford.edu/group/fejer/
    [216] http://wisteria.ims.ac.jp/LC/index.html
    [217] http://www.riken.go.jp/engn/index.html
    [1]钱士雄,王恭明编著,《非线性光学——原理与发展》,复旦大学出版社,2001年10月第一版
    [2] L. E. Myers, R. C. Eckardt, M. M. Fejer, and R. L. Byer, et al. Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3, J. Opt. Soc. Am. B, 1995, Vol. 12, No. 11: p2102~2116;
    [3]张百钢,《周期极化晶体准相位匹配倍频和光学参量转换的研究》,博士学位论文,天津大学,2004年7月;
    [4] M. Schall, H. Helm and S. R. Keiding, Far infrared properties of electro-optic crystals measured by THz time-domain spectroscopy, International Journal of Infrared and millimeter waves, 1999, 20 (4): 595~604;
    [5] D. H. Jundt, Temperature-dependent of the refractive index of pure lithium niobate, Physics Letters, 1996, 22(3): 243~244;
    [6] S. E. Harris, Proposed backward wave oscillation in the infrared, Appl. Phys. Lett., 1966, 9: 114~116;
    [1] M. J. T. Milton, T. D. Gardiner, F. Molero, and J. Galech, Opt. Commun. 142 (1997) 153;
    [2] T. Taniuchi, J. Shikata and H. Ito, Electronics Letters. 36, (2000), 1414;
    [3] K. Kawase, T. Hatanaka, H. Takahashi, K. Nakamura, T. Taniuchi and H. Ito, Opt. Letters.25 (2000) 1714;
    [4] Y. Sasaki, A. Yuri, K. Kawase and H. Ito, Appl. Phys. Lett. 81 (2002) 3323;
    [5] M. H. Chou, K. R. Parameswaran, M. M. Fejer and I. Brener, Opt. Letters. 24 (1999) 1157;
    [6] G. J. Hall, M. Ebrahimzadeh, A. Robertson, G. P. A. Malcolm, and A. I. Ferguson, Opt. Soc. Am. B. 10 (1993), 2168;
    [7] S. Huang, C. Hsu, D. Huang, and C. C. Yang, J. Opt. Soc. Am. B. 15 (1998), 1375;
    [8] T. Hatanaka, K. Nakamura, T. Taniuchi and H. Ito, Electronics Letters. 36 (2000), 1409;
    [9] T. Taniuchi, S. Okada and H. Nakanishi, J. Appl. Phys 95 (2004), 5984;
    [10] Tieli Zhang, Jianquan Yao, Xueyu Zhu, Baigang Zhang, Enbang Li et al, Widely tunable, high-repetition-rate, dual signal-wave optical parametric oscillator by using two periodically poled crystals, Optics Communications, 2007, 272, 111~115;
    [11] I. Breunig, R. Sowade, and K. Buse, Limitations of the tunablility of dual-crystal optical parametric oscillators, Opt. Lett., 2007, Vol. 32, No. 11: p1450~1452;
    [12] D. H. Jundt, Temperature-dependent of the refractive index of pure lithium niobate, Physics Letters, 1996, 22(3): 243~244;
    [13] L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3, J. Opt. Soc. Am. B, 1995, Vol. 12: p2102~2115;
    [1]郑权,曲川利,钱龙生,LD泵浦全固体单频激光器研究取得新进展,光机电信息,2001,No.6:29~31;
    [2]林岳明,何慧娟,陆雨田,激光二极管泵浦单频连续工作的Nd: YAG激光器,光学学报,1994,Vol. 14, No. 8:p891~893;
    [3] Pedersen Christian, Hansen Peter Lichtenberg, Skettrup Torben et al., Diode-pumped single-frequency Nd:YVO4 laser with a set of coupled resonators, Opt. Lett., 1995, Vol. 20, No. 12: p1389~1391;
    [4] H. G. Danielmeyer, Stabilized efficient single-frequency Nd:YAG laser, IEEE J. of Quantum Electron., 1970, QE-6, No. 2: p101~104;
    [5]徐荣青,陆耀东,蓝信钜,一种新型单纵模连续Nd:YAG激光器,华东船舶工业学院学报,2000,Vol. 14, No. 4:p83~86;
    [6] Tanya K. Lake, Alan J. Kemp, Graham J. Friel et al., Compact and efficient single-frequency Nd:YVO4 laser with variable longitudinal-mode discrimination, IEEE Photonics Technology Letters, 2005, Vol. 17, No. 2: p417~419;
    [7] K. I. Martin, W. A. Clarkson, D. C. Hanna, High-power single-frequency operation, at 1064nm and 1061.4nm of a Nd:YAG ring laser end-pumped by a beam-shaped diod bar, Opt. Comm., 1997, Vol. 135: p89~92;
    [8] M. Tr?bs and T. Graf, Compact, dual-configuration, single-frequency, Q-switched Nd:YAGlaser, Opt. Comm., 2001, Vol. 187: p385~388;
    [9] Benjamin A. Thompson, Ara Minassian, and Michael J. Damzen, Unidirectional single-frequency operation of a Nd:YVO4 ring laser with and without a Faraday element, Appl. Opt., 2004, Vol. 43, No. 15: p3174~3177;
    [10]王欣,杨苏辉,孙文峰等,激光二极管抽运单块高斜度效率环形腔单频固体激光器,中国激光,2005,Vol. 32, No. 2:p149~152;
    [11] Shaokai Wang, Yongming Li, Zehui Zhai et al. High power single-frequency Nd: YVO4 laser, Proceedings of SPIE, 2002, Vol. 4914: p161~164;
    [12]赵晶云,张宽收,LD双端端面泵浦的高功率连续单频Nd:YVO4激光器,量子光学学报,2004,Vol. 10, No. 2:p87~92;
    [13] L. De. Shazer, Laser Focus World, 1994: p88;
    [14] A. Brignon, G. Feugnet, J. P. Huignard, J. P. Pocholle, IEEE J. QE, 1998, Vol. 34: p577;
    [15] Innocenzi M E, Yura H T, Fincher C L et al.. Appl. Phys. Lett., 1990, Vol. 56, No. 19: p1831-1833;
    [16] E. C. Honea, R. J. Beach, S. G. Mitchell, et al., Opt. Lett., 2000, Vol. 25, No. 11: p805-807;
    [17]周炳琨,高以智,陈倜嵘,陈家骅,《激光原理》,国防工业出版社,2000年,第4版;
    [18]蓝信钜,《激光技术》,科学出版社,2000年,第一版;
    [19]吕百达.《激光光学——光束描述、传输变换与光腔技术物理》.第3版.北京,高教出版社,2002年: p81~83。
    [1]钱士雄,王恭明编著,《非线性光学——原理与发展》,复旦大学出版社,2001年10月第一版;
    [2] Yan-qing Lu, Jian-jun Zheng, Ya-lin Lu, and Nai-ben Ming, Frequency tuning of optical parametric generator in periodically poled optical superlattice LiNbO3 by electro-optic effect, Appl. Phys. Lett., 1999, Vol. 74, No. 1: p123~125;
    [3] Sheng Wu, V. A. Kapinus, and G. A. Blake, A nanosecond optical parametric generator/amplifier seeded by an external cavity diode laser, Opt. Comm., 1999, Vol. 159: p74~79;
    [4] U. B?der, J.–P, Meyn, J. Bartschke, T. Weber, A. Borsutzky, and R. Wallenstein, Nanosecond periodically poled lithium niobate optical parametric generator pumped at 532 nm by a single-frequency passively Q-switched Nd:YAG laser, Opt. Lett., 1999, Vol. 24, No. 22: p1608~1610;
    [5] M. J. Missey, V. Dominic, P. E. Powers, and K. L. Schepler, Periodically poled lithium niobate monolithic nanosecond optical parametric oscillators and generators, Opt. Lett., 1999, Vol. 24, No. 17: p1227~1229;
    [6] K. W. Aniolek, R. L. Schmitt, T. J. Kulp, B. A. Richman, S. E. Bisson, and P. E. Powers, Microlaser-pumped periodically poled lithium niobate optical parametric generator-opticalparametric amplifier, Opt. Lett., 2000, Vol. 25, No. 8: p557~559;
    [7] G. Hansson, and D. D. Smith, Optical parametric generation in 2-μm-wavelength-pumped periodically poled LiNbO3, Opt. Lett., 2000, Vol. 25, No. 24: p1783~1785;
    [8] B. Kohler, U. B?der, A.Nebel, J.-P. Meyn, R. Wallenstein, A 9.5-W 82-MHz-repetition-rate picosecond optical parametric generator with cw diode laser injection seeding, Applied Physics B, 2002, Vol. B75, No. 1: p31~34;
    [9] M. Rahm, U. B?der, G. Anstett, J.–P. Meyn, R. Wallenstein, A. Borsutzky, Pulse-to-pulse wavelength tuning of an injection seeded nanosecond optical parametric generator with 10 kHz repetition rate, Applied Physics B, 2002, Vol. 75: p47~51;
    [10] M. J. Orozco-Arellanes, R. S. Cudney, Indirectly-seeded optical parametric generation in periodically poled lithium niobate, Optics Express, 2003, Vol. 11, No. 1: p20~26;
    [11] U. B?der, T. Mattern, T. Bauer, J. Bartschke, M. Rahm, Pulsed nanosecond optical parametric generator based on periodically poled lithium niobate, Opt. Comm., 2003, Vol. 217: p375~380;
    [12] J.–P. Fève, B. Boulanger, B. Ménaert, O. Pacaud, Continuous tuning of a microlaser-pumped optical parametric generator by use of a cylindrical periodically poled lithium niobate crystal, Opt. Lett., 2003, Vol. 28, No. 12: p1028~1030;
    [13] S. Haidar, T. Usami, J. Shikata, and H. Ito, Seed-source tuning of a broadband noncollinear optical parametric generator based on periodically poled LiNbO3, Opt. Eng., 2003, Vol.42, No. 1: p143~147;
    [14] Zhang Bai-Gang, Yao Jian-Quan, Ding Xin, Zhang Hao, Wang Peng, Xu De-Gang, Yu Guo-Jun, and Zhang Fan, Low-threshold, high-efficiency, high-repetition-rate optical parametric generator based on periodically poled LiNbO3, Chin. Phys.,2004, Vol. 13, No. 3: p364~368;
    [15] Xiuping Xie, A. M. Schober, C. Langrock, R. V. Roussev, J. R. Kurz, and M. M. Fejer, Picojoule threshold, picosecond optical parametric generation in reverse proton-exchanged lithium niobate waveguides, J. Opt. Soc. Am. B., 2004, Vol. 21, No. 7: p1397~1402;
    [16] Zhang Bai-Gang, Yao Jian-Quan, Lu Yang, Xu De-Gang, Ji Feng, Zhang Tie-Li, Zhao Xin, Wang Peng, Xu Ke-Xin, High-average-power nanosecond quasi-phase-matched single-pass optical parametric generator in periodically poled lithium niobate, Chin. Phys. Lett., 2005, Vol. 22, No. 7: p1691~1693;
    [17] Ye Pu, Jie Wu, Mankei Tsang, and Demetri Psaltis, Optical parametric generation in periodically poled KTiOPO4 via extended phase matching, Appl. Phys. Lett., 2007, Vol. 91: p131120-1~3;
    [18]姚建铨著,《非线性光学频率变换及激光调谐技术》,科学出版社,1995年3月第一版;
    [19] W.克希耐尔著,《固体激光工程》,科学出版社,2002年5月第一版;
    [1] L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. M. Devi, J. M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth: The HITRAN molecular data base: editions of 1991 and 1992, J. Quantum Spectrosc. Radiat. Transfer, 1992, Vol. 48: p469;
    [2] D. Z. Garbuzov, H. Lee, V. Khalfin, R. Martinelli, J. C. Connolly, G. L. Belenky, 2.3~2.7μm room temperature CW operation of InGaAsSb-AlGaAsSb broad waveguide SCH-QW diode lasers, IEEE Photon. Technol. Lett., 1999, Vol. 11: p794~796;
    [3] I. T. Sorokina, and K. L. Vodopyanov, Solid-state mid-infrared laser source, Springer-Verlag Berlin Heidelberg New York, 2003, p122;
    [4] L. F. Johnson, R. E. Dietz, and H. J. Guggenheim, Optical maser oscillation from Ni2+ in MgF2 involving simultaneous emission of phonons, Phys. Rev. Lett., 1963, Vol. 11: p318~320;
    [5] L. F. Johnson, R. E. Dietz, and H. J. Guggenheim, Spontaneous and stimulated emission from Co2+ ions in MgF2 and ZnF2, Appl. Phys. Lett., 1964, Vol. 5: p21~22;
    [6] L. F. Johnson, H. J. Guggenheim, R. A. Thomas, Phonon terminated optical masers, Phys. Rev., 1966, Vol. 149: p179~185;
    [7] L. F. Johnson, H. J. Guggenheim, D. H. Bahnck, Phonon terminated laser emission from Ni2+ ions in KMgF3, Opt. Lett., 1983, Vol. 8: p371~373;
    [8] D. Welford, P. F. Moulton, Room-temperature operation of a Co:MgF2 laser, Opt. Lett., 1988, Vol. 13: p975~977;
    [9] W. Gellermann, Color center laser, J. Phys. Chem. Solids, 1991, Vol. 52: p249~297;
    [10] F.Kenneth,Nonlinear material extend the range of high-power lasers. Laser focus world, 1995, Vol. 31: p87~93;
    [11] D. T. Reid, M. Ebrabhmzadeh, W. Sibbett, Design criteria and comparison of femtosecond optical parametric oscillators based on KTiOPO4 and RbTiLAsO4, J. Opt. Soc. Am. B, 1995, Vol. 12: p2168~2179;
    [12] Lin Xue-Chun, Kong Yu-Peng, Zhang Ying, Zhang Jie, Yao Ai-Yun, Bi Yong, Sun Zhi-Pei, Cui Da-Fu, Li Rui-Ning, Wu Ling-An, Xu Zu-Yan, Mid-infrared generation based on a periodically poled LiNbO3 optical parametric oscillator, Chinese Physics, 2004, Vol. 13: p1042~1045;
    [13]蔡双双,吴波,徐海斌,沈剑威,沈永行,基于PPMgLN晶体的红外光参量振荡器研究,红外与毫米波学报,2006,Vol.5: p338;
    [14] H. P. Li, D. Y. Tang, S. P. Ng, J. Kong, Temperature-tunable nanosecond optical parametric oscillator based on periodically poled MgO:LiNbO3, Optics and laser Technology, 2006, Vol. 38: p192~195;
    [15] H. C. Guo, S. H. Tang, Z. D. Gao, Y. Q. Qin, S. N. Zhu, and Y. Y. Zhu, Multiple-channel mid-infrared optical parametric oscillator in periodically poled MgO:LiNbO3, Journal of Applied Physics, 2007, Vol. 101: p113112-1~5;
    [16] Y. Hirano, S. Yamamoto and H. Taniguchi, Highly efficient and high power 2μm generation with PPMgLN OPO, Proceedings of the CLEO 2001, CFH2 p579;
    [17] Bo Wu, Yonghang Shen, and Shuangshuang Cai, Widely tunable high power OPO based on a periodically poled MgO doped lithium niobate crystal, Optics and Laser Technology, 2007, Vol. 39: p1115~1119;
    [18]吴波,蔡双双,沈剑威,沈永行,基于镁掺杂的周期性畴反转铌酸锂的宽调谐光参量振荡器,物理学报,2007,Vol. 56, No. 5: p2684~2688;
    [19]彭跃峰,鲁燕华,谢刚,王卫民,准相位匹配PPMgLN光参量振荡技术,强激光与粒子束,2007,Vol. 19, No. 3: p377~380;
    [20] S. J. Brosnan, and R. L. Byer, Optical parametric oscillator threshold and Linewidth studies, IEEE Journal of Quantum Electronics, 1979, Vol. QE-15, No. 6: p415~431;
    [21]梁晓燕,侯玮,吕军华,许祖彦,低阈值宽调谐PPLN光参量振荡,中国激光,2002,Vol. A29, No. 1: p1~3;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700