用户名: 密码: 验证码:
纵向岭谷区山地气候时空变化及其生态效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
探讨和解释生物多样性的空间分布格局一直是生态学家和生物地理学家所关注的问题,预测气候变化对植物多样性的潜在影响已成为生态学研究的焦点。本研究以纵向岭谷区不同纬度的西双版纳(热带山地)、哀牢山、无量山、高黎贡山和白马雪山(亚热带山地)等5个区域为研究对象,分析了不同区域山地气候要素的时空分布特征、山地面积和植物多样性的垂直分布格局,从气候的角度解释了植物多样性的垂直分布格局,预测了区域气候变化对植物多样性的潜在影响。研究结果表明:
     纵向岭谷区不同纬度山地气温和地表温年较差随海拔的升高而减小,随纬度的增加而增大;地表温年较差高于气温年较差。雨季平均相对湿度在75%以上,干季平均相对湿度在60%以上。降雨的年内变化呈单峰型,有明显的干、湿季之分,雨季降雨量占全年降雨的70%以上。整体而言,纵向岭谷区不同纬度山地,5~10月气温、地表温、相对湿度较高,降雨较多,11~4月气温、地表温、相对湿度较低,降雨较少,体现了纵向岭谷区雨热同期的气候特征。相近海拔高度处东坡的热量状况优于西侧坡面,西坡的水分状况优于东侧坡面。山地气温垂直递减率在0.54~0.78℃/100m之间,地表温垂直变率在0.62~0.66℃/100m之间。气温垂直递减率随纬度的增加而增大,山地东坡的气温垂直递减率大于西坡。气温和地表温垂直变率呈现了雨季>干季、最热月>最冷月的变化特征。降雨随海拔的升高均为线性递增型,均未发现最大降雨高度。除高黎贡山地区以外,随纬度的增加降雨呈减小趋势,山地年降雨量的垂直变率也呈减小趋势,山地东坡降雨垂直变率大于西坡。除西双版纳山区外,相对湿度均随海拔高度的升高而增大,山地东坡相对湿度的垂直变率大于西坡。
     哀牢山地区山顶自然保护区内同样存在显著的增温趋势。山区气候的长期变化特征显著,年、季和月平均气温均呈现显著的升高趋势,气温的显著升高主要发生在干季,增温率为干季>年>雨季。最冷月均温增温率最大,最热月均温变化幅度较小,气温年较差呈减小趋势。∑t≥0℃的有效积温和∑t≥10℃的活动积温显著增加。气温的变化具有显著的空间差异,增温速率为东侧盆地>山顶>西侧盆地。山地迎风坡面(西坡)气温垂直递减率显著减小,背风坡面(东坡)气温垂直递减率整体呈增大趋势。降雨整体呈增加趋势,不同季节间降雨的变化差异显著,年降雨量的变化趋势主要受雨季降雨控制,干季降雨呈微弱上升或下降趋势,降雨的增加率为东侧盆地>山顶>西侧盆地。
     以哀牢山地区群落样方调查数据为基准,乔木层和灌木层物种多样性沿海拔梯度呈单峰型分布格局,中山湿性常绿阔叶林乔木层树高、胸径和物种多样性最大;灌木层物种多样性最大值出现在中山湿性常绿阔叶林与季风常绿阔叶林和半湿性常绿阔叶林的过渡区域;草本层物种多样性沿海拔梯度呈整体减小的趋势;累加乔、灌、草三层的物种多样性指数,哀牢山地区东、西坡不同海拔梯度植物群落的Shannon-Wiener指数和物种丰富度最大值出现在海拔2000m左右。相同海拔高度处,西坡植物群落的物种多样性高于东坡,季风常绿阔叶林的物种多样性大于半湿性常绿阔叶林,干热河谷植被的物种多样性最小。群落间相似性沿海拔梯度呈“S”型分布格局,存在两个明显的转换点,其中一个出现在由季风常绿阔叶林或半湿性常绿阔叶林向中山湿性常绿阔叶林转换的过程中,另一个出现在由干热河谷植被向半湿性常绿阔叶林的转换过程中。
     纵向岭谷区山地种子植物多样性沿海拔梯度存在由平缓至递减(热带山地:西双版纳)和先增后减的单峰型(亚热带山地:哀牢山、无量山、高黎贡山、白马雪山)两种分布格局;随着纬度的增加种子植物多样性沿海拔梯度最大值出现的位置呈升高趋势。西双版纳山区、哀牢山和白马雪山蕨类植物多样性沿海拔梯度均呈单峰型分布格局;蕨类植物最大值出现的海拔高度高于种子植物。以物种分布中心为基准与以物种分布幅度为基准统计分析的物种丰富度垂直分布格局结果一致。物种分布幅度随海拔的升高均呈现先增大后减小的变化趋势,山顶和山谷物种分布幅度较小,最大物种分布幅度出现在中间海拔处。
     在所选取的西双版纳山区、哀牢山、无量山、高黎贡山和白马雪山5个研究区中,面积与物种丰富度的垂直分布格局不同(西双版纳),物种丰富度最大值并未出现在面积最大的海拔范围内(5个地区);在去除面积的影响后,植物分类群密度与丰富度垂直分布格局相同;面积作为单一因子不能很好的解释植物多样性的垂直分布格局。作为环境水分和能量状况的综合体现,实际蒸散量能较好的解释不同地区山地植物物种丰富度垂直分布格局及其异同。从气候的角度而言,亚热带山地植物物种丰富度单峰型分布格局主要受制于山地下部高温、少雨的气候特征,水分的胁迫是山地下部物种丰富度减小的主要原因,随着山地下部环境干燥程度的加剧物种丰富度迅速减小。
     亚热带山地下部干热河谷植被的形成以及不同坡向相同植被类型分布范围的差异与环境的水热平衡状况有很强的相关性。山地的不同位置都呈显著的升温趋势,河谷地区的干燥程度将进一步加剧。气候变化将对植物的分布产生显著的影响,植物的分布范围将沿海拔梯度向上迁移,然而影响的强度在山地的不同坡向及不同位置有所不同。按照“能量-生物多样性理论”,山地的中上部物种丰富度将增加,河谷地区物种丰富度将减小,山顶和河谷地区狭域分布的植物类群将有灭绝的危险。
One of the most significant intellectual challenges to ecologists and biogeographers is to understand spatial patterns in biodiversity. Identifying the potential effects of climate change on plant species richness has become the focus of ecological research. Five mountains in LRGR were selected. Xishuangbanna belongs to the tropical area. Ailao mountains, Wuliang mountains, Gaoligong mountains and Baima snow mountains are subtropical mountains. The elevation patterns of species richness, area and climatic variables are analyzed. This study has explained the variation in species richness patterns along the elevation gradients by climatic variables and explored the potential effects of climate change on plant species richness along elevation gradients. The results have shown that:
     Annual variation of air temperature and soil surface temperature of mountains at different latitude in LRGR decrease monotonically with increasing elevation, and have positive relations with latitude. Annual variation of soil surface temperature is larger than annual variation of air temperature at the same station. Average relative humidity is larger than seventy-five percent in the rainy season and larger than sixty percent in the dry season. The patterns of annual variation of precipitation are unimodal. A major feature in the LRGR region is the clear-cut changes between the two seasons: the dry season (November-April) and the rainy season (May-October). Precipitation of the rainy season makes more than seventy percent of the whole year. In general, air temperature, soil surface temperature and relative humidity are higher from May to October, and are lower from November to April. The main climate condition in the LRGR region is that more energy and precipitation present to the same period. With the parallel elevation, the east slope receives more energy inputs than west slope, and water condition of west slope is better than the east. Lapse rates of air temperature are between 0.54℃/100m and 0.78℃/100m. Lapse rates of soil surface temperature fall into the range between 0.62℃/100m and 0.66℃/100m. Lapse rate of air temperature has a positive relationship with latitude and is larger on the east slope than that on the west slope. Lapse rate of air temperature and soil temperature are very different in monthly and seasonal scale and it is bigger in the rainy season and hottest month than it in the dry season and coldest month. Precipitation has a positive relationship with increasing elevation, maximum precipitation-elevation is not observed. Except for Gaoligong Mt., precipitation tends to decrease with increasing latitude. Lapse rates of precipitation also show the same pattern and it’s larger on the east slope than it on the west. Except for Xishuangbanna, relative humidity increase with increasing elevation and the lapse rates are larger on the east slope.
     The field station on the mountaintop is experiencing remarkable temperature increase. Air temperature increases significantly at all the stations owing to the increase in the dry season and the incremental rate is biggest in the dry season, moderate for the whole year and the least in the rainy season. The incremental rate in the hottest month is faster than that in the coldest month and the difference of air temperature in annual scale shows a downward trend. There is also a remarkable increase in the∑t≥0℃accumulative temperature and∑t≥10℃accumulative temperature. The lapse rate of air temperature shows a statistical significant upward trend on the windward slope (west) and it has a slight increase on the leeward slope (east). Precipitation tended more or less to increase owing to the increase in the rainy season. Comparing to the west valley, the east valley is experiencing a much hotter period, then it comes to the mountaintop.
     Based on sample data, the patterns of plant diversity of trees and shrubs along elevation gradients are hump-shaped, the maximum values of height, DBH and biodiversity index present to the transition between mid-mountain humid evergreen broad-leaved forests, monsoon evergreen broad-leaved forests and semi-humid evergreen broad-leaved forests. Plant diversity of herbs tend to decrease with increasing elevation. Maximum total Shannon-Wiener index and species richness (including herbs, shrubs and trees) are observed at 2000m. With the parallel elevation, biodiversity index is higher on the west slope than it on the east slope and biodiversity index of monsoon evergreen broad-leaved forests is higher than that of semi-humid evergreen broad-leaved forests, the minimum biodiversity index is observed in dry and hot valley vegetation. There are two obvious transition of similarity index along elevation gradients, one is between monsoon evergreen broad-leaved forests, semi-humid evergreen broad-leaved forests and mid-mountain humid evergreen broad-leaved forests, the other is between dry and hot valley vegetation and semi-humid evergreen broad-leaved forests.
     The patterns of species richness along elevation gradients can be divided to two types in LRGR. Species richness is higher in the lowlands and then decreases monotonically with increasing elevation in the tropical mountains and has unimodal relationships with elevation in the subtropical mountains. The elevation peaks in family richness, genus richness and species richness of seed plants emerge at higher elevation in the mountains with the increasing latitude. The patterns of fern species along elevation gradients are hump-shaped in Xishuangbanna, Ailao Mt. and Baima Snow Mt.. Elevation peaks of fern species are higher than that of seed plants. The patterns of species richness based on elevation mid-point show good agreement with the results from those based on interpolation. Elevation ranges of species are narrower at both the tops of mountains and the bottom of the gradients, wider elevation ranges are observed at the middle of the gradients.
     As the patterns of area and species richness along elevation gradients are not the same in Xishuangbanna and species richness does not peak at the elevation where the area is largest for all the five mountains. After adjusted of its area, the patterns of species density are the same as that in species richness along elevation gradients. So the effect of area on the patterns of species richness along elevation gradients is not remarkably. Among the climate variables, actual evapotranspiration (AET) as a measurement of water-energy balance has strong relationships with species richness. The decline in species richness is due to the higher temperature and less precipitation in the lowlands of the subtropical mountains. Species richness decreases significantly with increasing MI as the reinforcements of the arid climate conditions in the lowlands of the subtropical mountains.
     Water-energy balance should be an exclusive elucidative climatic variable for the distributive ranges of vegetation type. Air temperature increased significantly at all the locations of the mountains and the valleys are experiencing a much more severe dry and hot period especially in the dry season. Climate change would be expected to affect species distribution along the whole elevation gradient as the reinforcement of the“inferior”climatic conditions (temperature increase and drought development), but the intensity would not be uniform among different locations in the mountains. As a result of climate change, plant species may be pushed upwards along elevation gradient and may be eliminated if already at mountains’summit. Based on the“Species-Energy Theory”, species richness may decrease in the lower part of the mountains. Some species with narrow elevation ranges currently found in the valleys may be extinct.
引文
哀牢山自然保护区综合考察团.哀牢山自然保护区综合考察报告集.昆明:云南民族出版社,1988.
    丁一汇,任国玉,赵宗慈,徐影,罗勇,李巧萍,张锦.中国气候变化的检测及预估.沙漠与绿洲气象,2007,1(1):1—10.
    何大明,吴绍洪,彭华,杨志峰,欧晓昆,崔保山.纵向岭谷区生态系统变化及西南跨境生态安全研究.地球科学进展,2005,20(3):338—344.
    金振洲.滇川干热河谷与干暖河谷植物区系特征.昆明:云南科技出版社,2002, 1—12.
    李恒,郭辉军,刀志灵主编.高黎贡山植物.北京:科学出版社,2000.
    马克平.生物多样性研究的原理与方法.北京:科技出版社,1994.141—156.
    彭华,吴征镒.无量山中山湿性常绿阔叶林及其植物区系的初步研究.云南植物研究,1997,20(1):12—22.
    彭华.滇中南无量山种子植物.昆明:云南科技出版社,1998.
    秦大河,陈振林,罗勇,丁一汇,戴晓苏,任贾文,翟盘茂,张小曳,赵宗慈,张德二,高学杰,沈永平.气候变化科学的最新认知.气候变化研究进展,2007, 3(2):63—73.
    任国玉,徐铭志,初子莹,郭军,李庆祥,刘小宁,王颖.近54年中国地面气温变化.气候与环境研究,2005,10(4):717—727.
    王叶,延晓冬.全球气候变化对中国森林生态系统的影响.大气科学,2006,30(5): 1009-1018.
    王英,曹明奎,陶波,李克让.全球气候变化背景下中国降水量空间格局的变化特征.地理研究,2006,25(6):1031—1041.
    王宇.云南省农业气候资源及区划.北京:气象出版社,1990.87-122.
    王宇.云南山地气候.昆明:云南科技出版社,2006.62—263.
    吴绍洪,戴尔阜,何大明.我国西南纵向岭谷区环境与发展问题初步研究.地理科学进展,2005,24(1):31-40.
    徐永椿,姜汉侨,全复兴.西双版纳自然保护区综合考察报告.昆明:云南科技出版社,1987.
    云南省林业厅等.白马雪山国家级自然保护区.昆明:云南民族出版社,2003.
    云南植被编写组.云南植被.北京:科学出版社,1987.
    张晶晶,陈爽,赵昕奕.近50年中国气温变化的区域差异及其与全球气候变化的联系.干旱区资源与环境,2006,20(4):1-6.
    张克映,马友鑫,李佑荣,刘玉洪.哀牢山过山气流的气候效应.地理研究,1992, 11(3):65—70.
    中国科学院昆明分院生态研究室.云南哀牢山森林生态系统研究.昆明:云南科技出版社,1983.
    中国科学院《中国自然地理》编辑委员会.中国自然地理.北京:科学技术出版社,1984.
    中国气象局国家气象信息中心.2007,(http://cdc.cma.gov.cn/index.jsp).
    朱华,蔡琳.澜沧江流域植被.《人与自然》增刊,2004,(7):26—31.
    Adams J M and Woodward F I. Patterns in tree species richness as a test of the glacialextinction hypothesis. Nature, 1989, 339: 699—701.
    Allen A P, Brown J H and Gillooly J F. Global biodiversity, biochemical kinetics, andthe energetic-equivalence rule. Science, 2002, 297: 1545—1548.
    Bhattarai K R and Vetaas O R. Variation in plant species richness of different lifeforms along a subtropical elevation gradient in the Himalayas, east Nepal. GlobalEcology and Biogeography, 2003, 12: 327—340.
    Bhattarai K R, Vetaas O R and Grytnes J A. Fern species richness along a centralHimalayan elevational gradient, Nepal. Journal of Biogeography, 2004, 31: 389-400.
    Bhattarai K R and Vetaas O R. Do fern and fern-allies show a similar response alongthe ecological gradient in the Himalayas? Bulletin Department of PlantResources, 2005, 26: 24—29.
    Bhattarai K R and Vetaas O R. Can Rapoport' s rule explain tree species richnessalong the Himalayan elevation gradient, Nepal? Diversity and Distributions,2006, 12:373-378.
    Blagodatsky S A, Blagodatskaya E V and Anderson T -H. Kinetics of the respiratoryof the soil and rhizosphere of the soil and rhizosphere microbial communities ina field experiment with an elevated concentration of atmospheric CO2. EurasianSoil Science, 2006, 39(3): 290-297.
    Bradley R S, Diaz H F, Eischeid J K, Jones P D, Kelly P M and Goodness C M.Precipitation fluctuations over northern hemisphere land areas since the mid-19thcentury. Science, 1987,237(4811): 171-175.
    Bravo D N and Araujo M B. Species richness, area and climate correlates. GlobalEcology and Biogeography, 2006, 15: 452—460.
    Brown J H. Two decades of homage to Santa Rosalia: towards a general theory ofdiversity. American Zoologist, 1981, 21: 877—888.
    Brown J H. Mammals on mountainsides, elevational patterns of diversity. GlobalEcology and Biogeography, 2001, 10: 101—109.
    Briihl C A, Mohamed M and Linsenmair K E. Altitudinal distribution of leaf litter antsalong a transect in primary forests on Mount Kinabalu, Sabah, Malaysia. Journalof Tropical Ecology, 1999, 15: 265-277.
    Brunetti M, Buffoni L, Mangianti F, Maugeri M and Nanni T. Temperature,precipitation and extreme events during the last century in Italy. Global andPlanetary Change, 2004, 40(1-2): 141-149.
    Cao M, Zhang J H, Feng Z L, Deng J W and Deng X B. Tree species composition of aseasonal rain forest in Xishuangbanna, Southe-West China. Tropical Ecology,1996,37: 183-192.
    Cao M and Zhang J H. Tree species diversity of tropical forest vegetation inXishuangbanna, SW China. Biodiversity and Conservation, 1997, 6: 995—1006.
    Cao M, Zou X M, Warren M and Zhu H. Tropical forests of Xishuangbanna, China.Biotropica, 2006, 38(3): 306-309.
    Carpenter C. The environmental control of plant species density on a Himalayanelevation gradient. Journal of Biogeography, 2005, 32: 999—1018.
    Clinebell R R, Phillips O L, Gentry A H, Stark N and Zuring H. Prediction ofneotropical tree and liana species richness from soil and climatic data.Biodiversity and Conservation, 1995, 4: 56—90.
    Colwell R K and Hurtt G C. Nonbiological gradients in species richness and aspurious Rapoport effect. American Naruralist, 1994, 144: 570—595.
    Colwell R K and Lees D C. The mid-domain effect: geometric constrains on thegeography of species richness. Trends in Ecology and Evolution, 2000, 15: 70—76.
    Connell J H and Orias E. The ecological regulation of species diversity. AmericanNaruralist, 1964, 98: 339-414.
    Currie D J and Paquin V. Large-scale biogeographical patterns of species richness oftrees. Nature, 1987, 329: 326-327.
    Currie D J. Energy and large scale patterns of animal and plant species richness.American Naturalist, 1991, 137: 27—49.
    Dufour-Dror J M and Ertas A. Bioclimatic perspectives in the distribution of Quercusithaburensis Decne. Subspecies in Turkey and in the Levant. Journal ofBiogeography, 2004, 31: 461—474.
    Dynesius M and Jansson R. Evolutionary consequences of changes in species'geographical distributions driven by Milankovitch climate oscillations.Proceedings of the National Academy of Sciences of the United States ofAmerica, 2000, 97: 9115-9120.Fleishman E, Austin G T and Weiss A D. An empirical test of Rapoport's rule:elevational gradients in mountane butterfly communities. Ecology, 1998, 79:2482-2493. Fossa A M, Sykes M T, Lawesson J E and Gaard M. Potential effects of climatechange on plant species in the Faroe Islands. Global Ecology and Biogeography,2004, 13:427-437.
    Francis A P and Currie D J. Global patterns of tree species richness in moist forests:another look. Oikos, 1998, 81: 598—602.
    Francis A P and Currie D J. Global patterns of tree species richness in moist forests:another look. Oikos, 2003, 161: 523-536. Fraser D M, Smith May R M and Harvey P H. Geographical ranges of Australianmammals. Journal of Animal Ecology, 1994, 63: 441—451.
    Frich P, Alexander L V, Della-Marta P, Gleason B, Haylock M, Klein Tank A M G andPeterson T. Observed coherent changes in climatic extremes during the secondhalf of the twentieth century. Climate Research, 2002, 19: 193—212.
    Ganzhorn J U, Mai comber S, Andrianantoanina O and Goodman S M. Habitatcharacteristics an lemur species richness in Madagascar. Biotropica, 1997, 29:331-343.
    Gaston K J, Blackburn T M and Spicer J I. Rapoport's rule: time for an epitaph?Trends in Ecology and Evolution, 1998, 13: 70—74.
    Gaston K J. Global patterns in biodiversity. Nature, 2000, 405: 220—227.
    Genner M J, Sims D W, Wearmouth V J, Southall E J, Southward A J, Henderson P Aand Hawkins S J. Regional climatic warming drives long-term communitychanges of British marine fish. Proceedings of the Royal Society B: BiologicalSciences, 2004, 271: 655-661.
    Gentry A H. Patterns of neotropical plant-species diversity. Evolutionary Biology,1982, 15: 1-85.
    Gentry A H. Changes in plant community diversity and floristic composition onenvironmental and geographical gradients. Annals of the Missouri BotanicalGarden, 1988,75: 1-34.
    Glaser P H. Raised bogs in eastern North America: regional controls for speciesrichness and floristic assemblages. Journal of Ecology, 1992, 80: 535—554.
    Gleason H A. On the relation of species and area. Ecology, 1922, 6: 66—74.
    Gonzalez A S and Mata L L. Plant species richness and diversity along an altitudinalgradient in the Sierra Nevada, Mexico. Diversity and Distributions, 2005, 11:567-575.
    Grabherr G, Gottfried M and Pauli H. Climate effects on mountain plants. Nature,1994, 369: 448.
    Gruza G, Rankova E, Razuvaev V and Bulygina O. Indicators of climate change forthe Russian Federation. Climatic Change, 1999, 42(1): 219—242.
    Grytnes J A and Vetaas O R. Species richness and altitude, a comparison betweensimulation models and interpolated plant species richness along the Himalayanaltitudinal gradient, Nepal. American Naturalist, 2002, 159: 294—304.
    Grytnes J A. Species richness patterns of vascular plants along seven altitudinaltransects in Norway. Ecography, 2003, 26: 291—300.
    Grytnes J A and Beaman H. Elevational species richness patterns for vascular plantson Mount Kinabalu, Borneo. Journal of Biogeography, 2006, 33: 1838—1849.
    Hansen A and Dale V. Biodiversity in US forests under global climate change.Ecosystems, 2001,4: 161—163.
    Hawkins B A and Diniz-Filho J A F. The mid-domain effect cannot explain thediversity gradient of Nearctic birds. Global Ecology and Biogeography, 2002, 11:419-426.
    Hawkins B A, Porter E E and Diniz-Filho J A F. Productivity and history as predictorsof the latitudinal diversity gradient for terrestrial birds. Ecology, 2003a, 84: 1608-1623.
    Hawkins B A, Field R, Cornell H V, Currie D J, Guegan J-F, Kaufman D M, Kerr J T,Mittelbach G G, Oberdorff T, O'Brien E M, Porter E E and Turner R G. Energy,water and broad-scale geographic patterns of species richness. Ecology, 2003b,84:3105-3117.
    He F, Legendre P and Lafrankie J V. Spatial pattern of diversity in a tropical rainforest in Malaysia. Journal of Biogeography, 1996, 23: 57—74.
    He Y L and Zhang Y P. Climate Change from 1960 to 2000 in the Lancang RiverValley China. Mountain Research and Development, 2005, 25(4): 341—348.
    Heaney L R. Small mammal diversity along Elevational gradients in the Philippines:and assessment of patterns and hypotheses. Global Ecology and Biogeography,2001, 10: 15-39.
    Hill J K, Thomas C D and Huntley B. Climate and habitat availability determine 20thcentury changes in a butterfly's range margins. Proceedings of the Royal SocietyB: Biological Sciences, 1999, 266: 1197—1206.
    Hoffmann M H. Biogeography and climatic differentiation of tow annual species ofTeesdalia R. Br. (Brassicaceae). Journal of Biogeography, 2000, 27: 989—999.
    Holdridge L R, Grenke W C and Hatheway W H. Forest environment in tropical lifezones—a pilot study. New York: Pergamon Press, 1971.
    Holzinger B, Hiilber K, Camenisch M and Grabher G. Changes in plant speciesrichness over the last century in the eastern Swiss Alps: elevational gradient,bedrock effects and migration rates. Plant Ecology, 2008, 195: 179—196.
    Hughes L. Biological consequences of global warming: is the signal already apparent.Trends in ecology and evolution, 2000, 15(2): 56—61.
    Hulme M. A 1951-80 global land precipitation climatology for the evaluation ofgeneral circulation models. Climate Dynamics, 1992, 7(2): 57—72.
    Huston M A. A general hypothesis of species diversity. American Naturalist, 1979,113: 81-101. Huston M A. Biological diversity. Cambridge, UK: Cambridge University Press,1994.
    Hutchinson G E. Homage to Santa Rosalia or why are there so many kinds of animals?American Naturalist, 1959,93: 145—159.
    IPCC. Summary for Policymakers of Climate Change 2007: The Physical ScienceBasis. Contribution of Working Group I to the Fourth Assessment Report of theIntergovernmental Panel on Climate Change. Cambridge: Cambridge UniversityPress, 2007. Iverson L R and Prasad A M. Potential changes in tree species richness and forestcommunity types following climate change. Ecosystems, 2001, 4: 186—199.
    Jeffree E P and Jeffree C E. Temperature and the biogeographical distribution ofspecies. Functional Ecology, 1994, 8(5): 640—650.
    Kammer P A and Mohl A. Factors controlling species richness in alpine plantcommunities: an assessment of the importance of stress and disturbance. Arctic,Antarctic, and Alpine Research, 2002, 34: 398—407.
    Kay R F, Madden R H, Van Schaik C and Higdon D. Primate species richness isdetermined by plant productivity: implications for conservation. Proceedings ofthe National Academy of Sciences of the United States of America, 1997, 94:13023-13027.
    Keller F, Kienast F and Beniston M. Evidence of response of vegetation toenvironmental change on high-elevation sites in the Swiss Alps. RegionalEnvironmental Change, 2000, 1: 70—77.
    Kerr J T. Weak links: 'Rapoport's rule' and large scale species richness patterns.Global Ecology and Biogeography, 1999, 8: 47—54.
    Kessler M. Pteridophyte species richness in Andean forests in Bolivia. Biodiversityand Conservation, 2001, 10: 1473—1495.
    Kluge J, Kessler M and Dunn R R. What drives elevational patterns of diversity? Atest of geometric constraints, climate and species pool effects for pteridophyteson an elevational gradient in Costa Rica. Global Ecology and Biogeography,2006, 15:358-371.
    Kikkawa J and Williams E E. Altitude distribution of land birds in New Guinea.Search, 1971,2:64-65.
    Kimball S, Wilson P and Crowther J. Local ecology and geographic ranges of plantsin the Bishop Creek watershed of eastern Sierra Nevada, California, USA.Journal of Biogeography, 2004, 31: 1637—1657.
    Laurie H and Silander Jr. Geometric constraints and spatial patterns of speciesrichness: critique of range-based models. Diversity and Distribution, 2002, 8:351-364.
    Leathwich J R. Climatic relationships of some New Zealand forest tree species.Journal of Vegetation Science, 1995, 6: 237—248.
    Leathwich J R. Are New Zealand's Nothofagus species in equilibrium with theirenvironment? Journal of Vegetation Science, 1998, 9, 719—732.
    Lemoine N and Bohning-Gaese K. Potential impacts of global climate change onspecies richness of long-distance migrants. Conservation Biology, 2002, 17: 577-586.
    Li X W, Zhou X J, Li W L and Chen L X. The cooling of Sichuan province in recent 40 years and its probable mechanisms. Acta Meteorologica Sinica, 1995, 9: 57—68Liu Y, Zhang Y P, He D M, Cao M and Zhu H. Climatic control of plant speciesrichness along elevation gradients in Longitudinal Range-Gorge Region. ChineseScience Bulletin, 2007, 52: 50—58.
    Lomolino V M. Elevation gradients of species density: historical and prospectiveviews. Global Ecology and Biogeography, 2001, 10: 3—13.
    Magurran A E. Ecological Diversity and its Measurement. New Jersey: PrincetonUniversity Press, 1988.
    McCain C M. Could temperature and water availability drive elevational speciesrichness patterns? A global case study for bats. Global Ecology andBiogeography, 2007, 16: 1—13.
    McCarty J P. Ecological consequences of recent climate change. ConservationBiology, 2001, 15(2): 320-331.
    Md. Nor S. Elevational diversity patterns of small mammals on Mount Kinabalu,Sabah, Malaysia. Global Ecology and Biogeography, 2001, 10: 41—62.
    Menendez R, Megias A G, Hill J K, Braschler B, Willis S G, Collingham Y, Fox R,Roy D B and Thomas C D. Species richness changes lag behind climate change.Proceedings of the Royal Society B: Biological Sciences, 2006, 273: 1465—1470.
    Meserve P L and Glanz W E. Geographical ecology of small mammals in the northernChilean arid zone. Journal of Biogeography, 1978, 5: 135—148.
    Midgley G F, Hannah L, Millar D, Rutherford M C and Powrie L W. Assessing thevulnerability of species richness to anthropogenic climate change in abiodiversity hotspot. Global Ecology and Biogeography, 2002, 11: 445—451.
    Mittelbach G G, Steiner C F, Scheiner S M, Gross K L, Reynolds H L, Waide R B,Willig M R, Dodson S I and Gough L. What is the observed relationship betweenspecies richness and productivity? Ecology, 2001, 82: 2381—2396.
    Moen J, Aune K, Edenius L and Angerbjn A. Potential effects of climate change ontreeline position in the Swedish mountains. Ecology and Society, 2004, 9: 16—26.
    Morison J I L and Lawlor D W. Interactions between increasing CO2 concentrationand temperature on plant growth. Plant, Cell and Environment, 1999, 22: 659—682.
    Mourelle C and Ezcurra E. Species richness of Argentine cacti: a test ofbiogeographic hypotheses. Journal of Vegetation Science, 1996, 7: 667—680.
    Myers N, Mittermeier R A, Mittermeier C G, da Fonseca GAB and Kent J.Biodiversity hotspots for conservation priorities. Nature, 2000, 403: 853—858.
    Naeem S and Li S. Biodiversity enhances ecosystem reliability. Nature, 1997, 390:507-509.
    O'Brien E M. Climatic gradients in woody plant species richness: towards anexplanation based on analysis of southern Africa's woody flora. Journal ofBiogeography, 1993,20: 181—198.
    O' Brien E M. Water-energy dynamics, climate and prediction of woody plant speciesrichness: an interim general model. 1998, 25: 379—398.
    O' Brien E M, Field R and Whittaker R J. Climatic gradients in woody plant (tree andshrub) diversity: water energy dynamics, residual variation, and topography.Oikos, 2000, 89: 588-600.
    Odland A and Birks H J B. The altitudinal gradient of vascular plant species richnessin Aurland, western Norway. Ecography, 1999, 22: 548—566.
    Onate J J and Pou A. Temperaturevariations in Spain since 1901: a preliminaryanalysis. International Journal of Climatology, 1996, 16(7): 805—815.
    Parmesan C, Ryrholm N, Stefanescu C, Hill J K, Thomas C D, Descimon H, HuntleyB, Kaila L, Kullberg J, Tammaru T, Tennent W J, Thomas J A and Warren M.
    Poleward shifts in geographical ranges of butterfly species associated withregional warming. Nature, 1999, 399: 579—583.
    Parmesan C and Yohe G. A globally coherent fingerprint of climate change impactsacross natural systems. Nature, 2003, 421: 37—42.
    Patterson B D, Pacheco V and Solari S. Distribution of bats along an elevationgradient in the Andes of south-eastern Peru. Journal of Zoology, 1996, 240: 637-658,
    Patterson B D, Stotz D F, Solari S, Fitzpatrick J W and Pacheco V. Contrastingpatterns of elevational zonation for birds and mammals in the Andes ofsoutheastern Peru. Journal of Biogeography, 1998, 25: 593—607. Pauli H, Gottfried M and Grabherr G. Effects of climate change on the alpine andnival vegetation of the Alps. Journal of Mountain Ecology, 2003, 7: 9—12.
    Pepin N, Losleben M. Climate change in the Colorado rocky mountains: free airversus surface temperature trends. International Journal of Climatology, 2002,22(3): 311-329.
    Peterson G D, Cumming G S and Carpenter S R. Scenario planning: a tool forconservation in an uncertain world. Conservation Biology, 2003, 17: 358—366. Pianka E R. Latitudinal gradients in species diversity: a review of concepts. AmericanNaturalist, 1966, 100: 33-46.
    Qian H. Large scale biogeographic patterns of vascular plant richness in NorthAmerica: an analysis at the generic level. Journal of Biogeography, 1998, 25: 829-836. Qian H and Ricklefs R E. Large scale processes and the Asian bias in species diversityof temperate plants. Nature, 2000, 407: 180—182.
    Qian W H and Zhu Y F. Climate change in Chinafrom 1880 to 1998 and its impact onthe environmental condition. Climatic Change, 2001, 50(4): 419—444. Rahbek C. The elevational gradient of species richness: a uniform pattern? Ecography,1995, 18:200-205.
    Rahbek C. The relationship among area, elevation and regional species richness inneotropical birds. American Naturalists, 1997, 149: 875—902. Rahbek C. The relationship among area, elevation and regional species richness inneotropical birds. American Naturalists, 2001, 98: 875—902.
    Rahbek C and Graves G R. Multiple scale assessment of patterns of avian speciesrichness. Proceedings of the National Academy of Sciences of the United Statesof America, 2001, 98: 4534-4539. Rahbek C. The role of spatial scale and the perception of large-scale species-richnesspatterns. Ecology Letters, 2005, 8: 224—239.
    Rapoport E H. Areografia: estrategias geograficas des las especies. Mexico City:Fondo de Cultura Economica, 1975.
    Rapoport E H. Areografla: geographical strategies of species.Pergamon, New York:Trans. B. Drausal, 1982, 1. Richerson P J and Lum K. Patterns of plant species diversity in California: relation toweather and topography. American Naturalist, 1980, 116: 504—536.
    Rind D. Complexity and climate. Science, 1999, 284: 105—107. Ritchie M E and Olff H. Spatial scaling laws yield a synthetic theory of biodiversity.Nature, 1999, 400: 557-560. Rohde K. Latitudinal gradients in species diversity: the search for the primary cause.Oikos, 1992,65: 514-527.
    Rohde K, Heap M and Heap D. Rapoport's rule does not apply to marine teleosts andcannot explain latitudinal gradients in species richness. American Naturalist,1993, 142: 1-16.
    Rohde K. Rapoport's rule is a local phenomenon and can not explain latitudinalgradients in species diversity. Biodiversity Letters, 1996, 3: 10—13.
    Root T L, Price J T, Hall K R, Schneider S H, Rosenzweig C and Pounds J A.Fingerprints of global warming on wild animals and plants. Nature, 2003, 421:57-60. Rosenzweig M L. Species diversity gradients we know more and less than we thought.American Society of Mammalogist, 1992, 73: 715—730.
    Rosenzweig M L. Species diversity in space and time. Cambridge, UK: Cambridge University Press, 1995. Rosenzweig M L. Species diversity in space and time, 2nd edn. Cambridge:Cambridge University Press, 1997.
    Rowe R J. Elevational gradient analyses and the use of historical museum specimens:a cautionary tale. Journal of Biogeography, 2005, 32: 1883—1897. Rustad L, Campbell J, MarionG, Norby R, Mitchell M, Hartley A, Cornelissen J andGurevitch J. A meta-analysis of the response of soil respiration, net nitrogenmineralization, and aboveground plant growth to experimental ecosystemwarming. Oecologia, 2001, 126(4): 543—562.
    Sanders N J. Elevational gradients in ant species richness: area, geometry andRapoport's rule. Ecography, 2002, 25: 25—32.
    Scheiner S M and Rey-Benayas J M. Global patterns of plant diversity. EvolutionaryEcology, 1994,8: 331-347.
    Schonwiese C D, Grieser J and Tromel S. Secular change of extreme monthlyprecipitation in Europe. Theoretical and Applied Climatology, 2003, 75(3-4): 245-250.
    Schulze E D, Ellis R, Schulze W, Trimborn P and Ziegler. Diversity, metabolic typesand delta C-13 carbon isotope ratios in the grass flora of Namibia in relation togrowth form, precipitation and habitat conditions. Oecologia, 1996, 106: 352—369. Smith F D M, May R M and Harvey P H. Geographical ranges of Australianmammals. Journal of Animal Ecology, 1994, 63: 441—450. Specht A and Specht R L. Biodiversity of overstory trees in relation to canopyproduction and stand density in the climatic gradient from warm temperature totropical Australia. Biodiversity Letters, 1994, 2: 39—45. Stevens G C. The latitudinal gradientin geographical range: how so many speciescoexist in the tropics. American Naturalist, 1989, 133: 240—256.
    Stevens G C. The Elevational gradient in altitudinal range, an extension of Rapoport'slatitudinal rule to altitude. American Naturalist, 1992, 140: 893—911.
    Stock W D, Chuba D K and Verboom G A. Distribution of South African C3 and C4species of Cyperaceae in relation to climate and phylogeny. Austral Ecology,2004,29:313-319. Sykes M T, Prentice I C and Cramer W. A bioclimatic model for the potentialdistributions of north European tree species under present and future climates.Journal of Biogeography, 1996, 23: 203—233. Tebaldi C, Hayhoe K, Arblaster J M and Meehl G A. Going to the extremes: An intercomparison of model-simulated historical and future changes in extremeevents. Climatic Change, 2006, 79: 185—211.
    Terborgh J. Bird species diversity on an Andean elevation gradient. Ecology, 1977, 58:1007-1019.
    Theurillat J-P and Guisan A. Potential impact of climate change on vegetation in theEuropean Alps: a review. Climatic Change, 2001, 50: 77—109.
    Thomas C D, Camern A, Green R E, Bakkenes M, Beaumont L J, Collingham Y C,Erasmus B F N, de Siqueira M F, Grainger A, Hannah L, Hughes L, Huntley B,van Jaarsveld A S, Midgley G F, Miles L, Ortega-Huerta M A, Peterson A T,Phillips O L and Williams S E. Extinction risk from climate change. Nature,2004a, 427: 145-148.
    Thomas J A, Telfer M G, Roy D B, Preston C D, Greenwood J J D, Asher J, Fox R,Clarke R T and Lawton J H. Comparative losses of British butterflies, birds, andplants and the global extinction crisis. Science, 2004b, 303: 1879—1881.
    Thuiller W. BIOMOD: optimizing predictions of species distributions and projectingpotential future shifts under global change. Global Change Biology, 2003, 9(10):1353-1362.
    Tilman D, Reich P B and Knops J M H. Biodiversity and ecosystem stability in adecade long grassland experiment. Nature, 2006, 441: 629—632.
    Turc L. Le bilan d'eau des sols: relation entre les precipitation, l'evaporation etl'ecoulement. Annales Agronomiques, 1954, 5: 491—596.
    Turner J RQ Gatehouse C M and Corey C A. Does solar energy control organicdiversity? Butterflies moths and the British climate. Oikos, 1987, 48: 195—205.
    Turner J R G, Lennon J and Greenwood J D. Does climate cause the globalbiodiversity gradient? PP 199—220 in Hochberg M E, Clobert J and Barbault R,editors. Aspects of genesis and maintenance of biological diversity. Oxford, UK:Oxford University Press, 1996.
    Turner J R G. Explaining the global biodiversity gradient: energy, area, history andnatural selection. Basic and Applied Ecology, 2004, 5: 435—448.
    Vetaas O R. Realized and potential climate niches: a comparison of fourRhododendron tree species. Journal of Biogeography, 2002, 29: 545—554.
    Vetaas O R and Grytnes J A. Distribution of vascular plant species richness andendemic richness along the Himalayan elevation gradient in Nepal. GlobalEcology and Biogeography, 2002, 11: 291—301.
    Visser M E. Variable respinses to large-scale climate change in European Pantspopulations. Proceedings of the Royal Society B: Biological Sciences, 2003, 270:367-372. Vitousek P M. Beyond global warming: Ecology and global change. Ecology, 1994,75: 1861-1876.
    von Humboldt A. Ansichten der Natur mit wissenschaftlichen Erlauterungen.Germany: J G Cotta, Tubingen, 1808.
    Walther G R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJ C, Fromentin J M,Hoegh-Guldberg O and Bairlein F. Ecological responses to recent climate change.Nature, 2002,416:389-395.
    Walther G R, Beissner S and Burga C A. Trends in the upward shift of alpine plants.Journal of Vegetation Science, 2005, 16: 541—548.
    Whittaker R J, Willis K J and Field R. Scale and species richness: towards a generalhierarchical theory of species diversity. Journal of Biogeography, 2001, 28: 453-470.
    Willig M R, Kaufman D M and Stevens R D. Latitudinal gradients of biodiversity:patterns, process, scale and synthesis. Annual Review of Ecology, Evolution, andSystematics. 2003, 34: 273—309.
    Woodward F I. Climate and Plant Distribution.Cambridge, UK: CambridgeUniversity Press, 1987, 174.
    Woodward F I and Williams B G Climate and plant distribution at global and localscales. Plant Ecology, 1987,69: 189—197.
    Worm B, Barbier E B, Beaumont N, Duffy J E, Folke C, Halpern B S, Jacksson J B C,Lotze H K, Micheli F, Palumbi S R, Sala E, Selkoe K A, Stachowicz J J andWatson R. Impacts of Biodiversity Loss on Ocean Ecosystem Services. Science,2006,314:787-790.
    Wright D H. Species energy theory: an extension of species area theory. Oikos, 1983,41:496-506.
    Wright D H, Currie D J and Maurer B A. Energy supply and patterns of speciesrichness on local and regional scales. PP 66—74
    in Ricklefs R E and Schluter D,editors. Species diversity in ecological communities: historical and geographicalperspectives. Chicago, Illinois, USA: University of Chicago Press, 1993.Yoda K. A preliminary survey of the forest vegetation of eastern Nepal. Journal of Artand Science. Chiba University National Science, 1967, 5: 99—140.
    Zapata F A, Gaston K J and Chown S L. Mid-domain models of species richnessgradients: assumptions, methods, and evidence. Journal of Animal Ecology, 2003,72: 677-690.
    Zhu H. Forest vegetation of Xishuangbanna, south China. Forestry Studies in China,2006,8(2): 1-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700