用户名: 密码: 验证码:
大尺度断层活动数值模拟及地震学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类已经步入了二十一世纪,但是世纪之初苏门答腊地震引起的印度洋海啸和四川汶川大地震给我们再一次的警示,地震灾害仍然是人类面临的重大灾害之一。虽然很多地震学家对地震预测进行了大量的工作,但是地震预测和预报现今仍然不是很成功。其中有多方面的原因,其中一个原因是对孕震和地震活动性认识不足,理论模型还不够完善。所以地震活动性的研究迫在眉睫,本文对断层的地震活动性进行了数值模拟,希望通过模拟,得到地震活动性的一些规律。本文使用的数值模拟方法是有限元法,由于断层的活动是大尺度和长时间的事件,因此使用准静态的模拟方式近似处理,断层间的作用是借助于有限元中的接触碰撞算法和接触单元来实现的。
     对平直断层和几何弯曲断层分别进行了数值模拟,并进行了对比。模拟结果显示,断层在发生地震之前有一个预滑过程,这一现象和岩石实验的结果是一致的。几何弯曲断层的模拟结果显示了明显的“特征地震”现象,地震呈现准周期的重复发生。平直断层和几何弯曲断层的活动性差异较大,弯曲断层造成了断层应力分布的强烈不均匀,断层弯曲一方面抑制了中小地震的破裂,另一方面也孕育了大震的发生;弯曲断层主震前往往有明显的前震,而平直断层主震前前震不明显,这也是和断层的应力分布均匀与否直接相关的。模拟给出的地震活动是特征地震类型,所以地震频度一震级在大震级处偏离经验公式G-R公式。这些模拟结果对进一步进行地震活动性模拟具有启发意义,为地震危险性分析提供了很好的参考价值。
     G—R公式是人们对某区域或全球发生的大量地震进行统计得出的经验公式,文中介绍了现今对此公式的物理机制解释。近来,有些学者在进行断层活动性研究时,发现了不同于G—R规律的另一个地震活动模型——“特征地震”模型。本文列举了其中一些典型的实例。为了解释G—R模型和特征地震模型之间的矛盾,给出了一些数值模拟实验的结果。这些研究的结论是这样的:单个成熟断层的活动性符合特征地震模型,而对于比较广阔的断层区域,断层活动符合G—R公式。为了解释特征地震的物理机制,引用kostrov震源破裂动力学理论,本文进行了一些推广,并结合数值模拟结果进行了分析和解释。
     本文的最后,对2001年昆仑山8.1级大地震的位错进行了模拟。不同于位错反演,本模拟是建立在一给定的构造应力作用下,建立了昆仑山破裂断层的有限元模型,断层处仍然运用接触单元来模拟断层摩擦和碰撞。根据破裂动力学理论,断层位错的大小与断层处的应力释放有密切关系。以往的模拟都是人为地给定断层处的应力分布和摩擦破裂极限,而与以往的模拟不同,本模型断层应力分布是在构造应力和断层的相互作用下自然给出的,这更接近于实际断层的情况。经过多次参数的调整,最后的结果与SPOT卫星得出的位错分布符合得很好。有一点值得一提,从本模型的结果看,断层在库赛湖段某处有一个低位错量,是由于断层在构造应力下的拉张形变造成应力释放偏低导致的,和Klinger等人的结果不同,他们认为此处的低位错量是因为分支断层的影响所致。但是我们认为,即使不考虑分支断层的影响,断层在构造应力和摩擦作用下的局部形变也导致了断层应力分布的不均匀,甚至出现了局部的拉张区域,这个因素也是不能忽略的。此外,通过改变模型中的一些参数,对各种参数对断层位错的影响也进行了讨论。本模型中运用的方法能够给出不同形态断层在不同的构造应力下的变形和应力分布格局,模拟结果也指出由于构造应力和摩擦作用造成断层变形导致的断层上非均匀的应力分布在地震模拟中(包括地震破裂动力学模拟)是不可忽视的。
In the first decade of the 21~(th) Century, human beings encountered two large disasters: one is 2004 Indian ocean tsunami arose from the Sumatra earthquake , the other is 2008 Wenchuan earthquake in China. We were reminded again that the earthquakes are still one of the most serious disasters in the future we will must face. Although many seismologists endeavored to forecast the earthquakes, it is still not sucessful. There are many reasons : one ? of these reasons is that we are not familiar with the mechanics of the earthquake preparation and the activities of the faults. In order to understand the behavior of the fault,this dissertation simulated the activities of fault by quasistatic finite element method (FEM) in thousands of years. We made use of the Contact technology of FEM to realize the interaction of the two parts of fault.
     The geometrical planar fault and geometrical bend fault all have been simulated and compared. The results show before a earthquake takes place, there will be a pre-slip which is resembled with experiments in laboratory .The different of activities of planar and bend faults are large: high heterogeneous stress distribution due to bend fault not only block the ruptures of median-small earthquakes, but also can gestate large earthquakes; high heterogeneous stress on fault also induce more foreshocks on bend fault than planar fault. The result of the bend fault model show the "characteristic earthquakes" distinctly, earthquakes repetition is quasiperiod. The earthquake frequence-size distribution of this "Characteristic earthquakes" is deviate from G-R relationship. These results are very useful to understand the behaviour of faults, furthermore, they provide good references for assessment of seismic risk.
     The G-R relation is a experiential formula based on statistic of lots of earthquakes in one region or global. Many researchers have given some explanations which are cited in this dissertation . Recently some researchers found a new type of earthquake activities of fault which is called "Characteristic earthquakes", this type is different from G-R relationship. Some typical examples of "Characteristic earthquakes" are introduced in this dissertation. The conflict of two types of earthquake activities is resolved by some numerical simulations: Characteristic earthquakes type is adapt to a single mature fault, G-R relationship type is adapt to earthquakes in a wide area. Then in order to explain the mechanism of "Characteristic earthquakes", the Kostrov's theory of dynamical rupture of earthquake is introduced. Some discussion and simulation results are given for more complex models.
     In the end of the dissertation , a simulation for 2001 Ms 8.1 Kunlunshan earthquake's dislocation is made. Different from inversion of dislocation, this model under a tectonic stress which can lead the Kunlunshan fault distort and rupture, the interactions of parts of the fault is still made use of Contact algorithm of FEM. Different from other simulation model in which pre-stress is designated on fault, the stress on the Kunlunshan fault of this model is spontaneously produced by interaction between the fault and the tectonic stress which surround the fault, this distribution of stress is closer to reality. The dislocation of simulation is quite consist with the data from satellite SPOT. From the result of the fault model, dislocation has a low value on one region on the fault near the Kusaihu , this is due to low stress drop during the earthquake ,the low stress drop is due to fault's tensile distortion. Klinger(2004) suggested the sub-fault of Kunlunshan fault caused the low dislocation on this region,but we believe that even not consider the effect of sub-fault, the high heterogeneous distribution of stress on fault due to fault distortion under a certain tectonic stress and friction probably is also a reasonable reason. By changing some parameters in the model, we calculate other models and compare them with each other. The method in the model can be easy to calculate the stress field of the fault and the area surround the fault.The effect of the heterogeneous stress distribution on fault which is caused by distortion of geometrical fault under certain tectonic stress and friction should be emphasized on earthquake simulations.
引文
1.马宗晋,活动构造基础与工程地震,1992
    2.茂木清夫,日本的地震预报,地震出版社,1986
    3.蒋海昆,马胜利等,含障碍体平直断层标本变形过程中群体微破裂事件的时空演化特征,地球物理学报,2003,209-216
    4.马胜利,刘力强,马瑾等,均匀和非均匀断层滑动失稳成核过程的实验研究,中国科学(D 辑),2003,45-52
    5.马瑾,马胜利等,断层几何构造与物理场的演化及失稳特征,地震学报,1996,200-207
    6.于泳,洪汉净,刘培洵等,粘弹性有限元与弹簧滑块耦合模型--断层与地块相互作用的数值模拟,中国科学,2003,33,82-90
    7.吴忠良,陈运泰,从弹簧滑块到地震预测:BK模型今昔谈,物理,2002,31(11):719-724
    8.陆远忠,吕悦军.带断层的细胞自动机模型及算法复杂性.地震学报,1994,16(2):183-189
    9.刘杰,刘桂萍,李丽,等.基于大陆地震活动特点建立的简化动力学模型-细胞自动机模型,地震,1999(3):230-238
    10.刘桂萍,傅征祥,刘杰,摩擦时间依从的地震活动性细胞自动机模型.地球物理学报,2000,43(2):203-212
    11.朱守彪,蔡永恩,刘杰等,利用三维细胞自动机模拟地震活动性,北京大学学报,2006,42(2):206-210
    12.唐春安,傅宇方,赵文,震源孕育模式的数值模拟研究,地震学报,1997,19(4):337-346
    13.焦明若,张国民,唐春安等,含预制软弱带的岩石破裂过程的数值模拟,地震学报,2002,24(1):35-41
    14.王勖成,有限单元法,清华大学出版社,2003
    15.何荣昌.断层上的地震成核过程与前兆模拟研究.中国地震,2000,16(1):113
    16.马胜利,刘力强,马瑾等,均匀和非均匀断层滑动失稳成核过程的实验研究,中国科学(D 辑),2003,33:45-52
    17.王凯英、马瑾,2004,川滇地区断层相互作用的地震活动证据及有限元模拟,地震地质,第26卷,第二期,259-271
    18.马胜利、刘力强、马瑾等,2003,均匀和非均匀断层滑动失稳成核过程的实验研究。中国科学(D),33:45-52
    19.马瑾,构造物理学概论,1987,北京:地震出版社
    20.马瑾,马胜利,刘力强,断层几何结构与物理场的演化及失稳特征,地震学报,1996,18:200-207
    21.马胜利,刘力强,马瑾等,基于实验结果讨论断层破裂与强震物理过程的若干问题.地学前缘,2003,10:225-232
    22.M,巴特,地震学引论,地震出版社,1978
    23.陆远忠,地震预报的地震学方法,地震出版社,1985
    24.马瑾,马胜利,刘力强,断层几何结构与物理场的演化及失稳特征,地震学报,1996,18:200-207
    25.罗灼礼、闻学泽、罗伟,中国大陆原地复发强震的基本特征及其预测,地震,1995,1,1-11
    26.李全林等,地震频度-震级关系的时空扫描,地震出版社,北京,1979
    27.宇津德治..对地震频度-震级关系式中参数的估算包含最大震级参数C的情况.1980,国外地震,(3):23-31
    28.孙文富,顾浩鼎,具有独立过程的地震序列震级-频度分布,地震学报,1992,273-280
    29.梅世蓉,地震前兆场物理模式与前兆时空分布机制研究(一)--坚固体孕震模式的由来与证据,地震学报,1995,17:273-282
    30.李如生.非平衡态热力学和耗散结构.北京:清华大学出版社,1986
    31.张济忠.分形.背景:清华大学出版社,1995
    32.崔军文,朱红,武长得,青藏高原岩石圈变形及其动力学,12-13,40-48,地质出版社,北京,1992
    33.姜春发等,昆仑开合构造,地质出版社,北京,1992
    34.刘光勋,东昆仑活动断裂带及其强震活动,中国地震,1996,12(2):119-126
    35.张国民,田勤俭,王辉,可可西里-东昆仑活动构造带强震活动研究,地学前缘,2003,10(1),39-46
    36.徐锡伟,陈文彬,于贵华等,2001年11月14日昆仑山库赛湖地震(Ms8.1)地表破裂带的基本特征,地震地质,2002,24(1):1-13
    37.Aki,K.,Asperities,barriers,characteristic earthquakes and strong motion prediction,J.Geophys.Res.,1984,89,5867-5872
    38.Andrews,D.J,,Rupture velocity of plane strain shear cracks,J.Geophys.Res.,197681,no.32,5679-5687
    39.Andrews,D.J.,Rupture velocity of plane strain shear cracks,J.Geophys.Res.,1976,81,no.32,5679-5687
    40.Antolik,M.,R.E.,Abercrombie,and G.Ekstrorn,The 14 November 2001 Kokoxili(Kunlunshan),Tibet,earthquake:rupture transfer through a large extensional step-over,Bull.Seism.Soc.Am.,2004,94,no.4,1173-1194
    41.Aochi,H.,Fukuyama,E.And Matsu'ura,M.,Selectivity of spontaneous rupture propagation on a branched fault,Geophys.Res.Lett.,2000,27,3635-3638
    42.Archuleta,R.J.,Experimental and numerical three-dimensional simulations of strike-slip earthquakes,PhD Thesis,University of California,San Diego,1984
    43.Archuleta,R.J.,and Frazier,G.A.,Three-dimensional numerical simulations of dynamic faulting in a half-space,Bull.Seism.Soc.,Am.,1978,68,541-572
    44.Arvhuleta,R.J.and Day,S.M.,Dynamic rupture in a layered medium:the 1966 Parkfield earthquake,Bull.Seism.Soc.Am,1980,70,671-689
    45.Bak,R,and Tang,C.,Earthquakes as a self-organized critical phenomenon,J.Geophys.Res.,1989,94,15635-15637
    46.Bak,P.,C.Tang,and K.Wiesenfeld,Self-organized criticality,Phys.Rev.1988A,38,364-374
    47.Bakun,W.H.and McEvilly T.V.,Recurrence Models and Parkfield,California,Earthquakes,J.Geophys.Res.,1984,89,3051-3958
    48.Barriere B,Turcotte D L.,A Scale-Invariant Cellular Automata Model for Distributed Seismicity.Geophys Res Lett,1991,18(11):2011-2014
    49.Berryman,K.,and Beanland,S.,Variation in fault behaviour in different tectonic provinces of New Zealand,J.Struct.Geol.,1991,13,177-189
    50.Ben-Zion Y.,Stress,slip,and earthquakes in models of complex single-fault systems incorporating brittle and creep deformations,J.Geophys.Res.,1996,5677-5706
    51.Berryman,K.,Beanland,S.,Copper,A.,Cutten,H.,Norris,R.And Wood,P.,Ann.Tecton.1992,6,126-163
    52.Brebbia,C.A.,Tadeu,A.and Ppouv,V.,eds.Boundary Elements ⅩⅩⅣ,24th International Conference on Boundary Element Methods(WIT Press,Southampton,U.K.),2002
    53. Burridge, R., and Knopoff L., Bull. Seism. Soc. Amer., 1967,57:341
    54. Burridge, R., Admissible speeds for plane-strain self-similar shear cracks with friction but lacking cohesion , Geophys . J . R. Astr. Soc. ,35,439-455,1973
    
    55. Byerlee J D. Static and kinetic friction of granite at high normal stress: International Journal of Rock Mechanics and Mining Science. 1970,7(6):577-582
    56. Byerlee , J. D., Friction of rocks,PAGEOPH,116,615-620,1978
    57. Cao T,Aki K. Seismicity simulation with rate- and state-dependent friction law. Pure Appl Geophys, 1986,124:487-513.
    58. Chen J., Chen Y.,G Ding,Z. Wang,Q. Tian,G. Yin, X. Shan,Z. Wang, Surficail slip distribution and segmentation of the 426km long surface rupture of the 14 November, 2001, Ms 8.1 earthquake on the east Kunlun fault, northern Tibetan plateau, China, Seismology and Geology 26(3):378-392(in Chinese with English abstract)
    59. Chen, X. F. and Aki, K., An effective approach to determine the dynamic source parameters, Pure Appl. Geophys.,1996,146,689-696
    60. Cochard, A. and Madariaga, R., Dynamic faulting under rate-dependent friction,Pure Appl. Geophys., 1994,142,419-445
    61. Crook,C.Theis(Univ. Of London ,London), 1984
    62. Day, S. M., Three-dimensional simulation of spontaneous rupture : the effect of nonuniform prestress ,Bull. Seismol. Soc. Am., 1982,72,1881-1902
    63. Dieterich J. H. Modeling of Rock Friction 1. Experiment Results and Constitutive Equations, J.Geophys. Res.,1979,84,2161-2168
    64. Dieterich J H. A model for the nucleation of earthquake slip. Geophys Monogr,1986,6:37-47
    65.Dieterich J H. Earthquake nucleation on faults with rate- and state-dependent strength. Tectonophysics, 1992,211:115-134
    66. Dieterich J H. Time-dependence friction as a possible mechanism for aftershocks. J Geophys Res,1972,77:3771-3781
    67. Dieterich J H. A model for the nucleation of earthquake slip in Das S, Boatwright J, Geophys Mongor ,37,1986.37-47.
    68. Fukuyama, E. and Madariaga, R., Rupture dynamics of a planar fault in a 3D elastic mediunrrate- and slip-weakening friction, Bull. Seism. Soc. Am., 1998,88,1-17
    69. Gu G.,L. Tinghuang, and S. Zhenliang,Catalogue of Chinese Earthquakes(1831 BC-1969 AD) ,Science Press, Beijing ,China,1989
    70. Gutenberg, B., and C. F. Richter, Magnitude and energy of earthquakes, Ann. Geofis.,9,1,1956
    71. Harris,R. A. and Day, S. M.,Dynamics of fault interaction: parallel strike-slip faults, J. Geophys. Res., 1993,98,4461-4472
    72. Harsha S. Bhat, Marion Olives, Renata Dmowska , and James R. Rice. Role of fault branches in earthquake rupture dynamics, Journal of Geophysical Research ,2007,112,B 11309
    73. Hartzell ,S. H. and Heaton ,T. H., Rupture history of the 1984 Morgan Hill, California,earthquake from the inversion of strong motion records,Bull. Seismol. Soc. Am., 1986,76,649-674
    74. Hartzell,S. And Heaton, T., Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1979 imperial valley, California, earthquake Bull. Seismol. Soc. Am.,1983,72,1553-1583
    75. Haskell,N.A., Total energy and energy spectral density of elastic wave radiation from propagating faults, Seismol. Soc. Am. ,1964,54,1811-1841
    76. Haskell ,N.A., Elastic displacements in the near-field of a propagating fault,Bull.Seismol.Soc,Am., 1969,59,865-908
    77. Heaton, T. H., Evidence for and implications of self-healing pulses of slip in earthquake rupture,Phys. Earth Planetary Interiors ,1990,64,1-20
    78. Hough,S., Southern surface rupture associated wiht the M 7.3 1992 Landers, California ,earthquake, Bull.,Seismol. Soc. Am., 1994,84,817-825
    79. Ito K, Matsuzaki M. Earthquake as Self-Organized Critical Phenomena. J. Geophys. Res.,1990,93:6853-6860
    80. Jia Y.,H. Dai, and X. Su,Tuosuo Lake earthquake fault in Qinghai province, in Research on Earthquake Faults in China,X. S. Bureau,Xinjiang Press,Wurumuqi, 1988,66-77
    81. Kagan,Y.Y., and Knopoff, L. Statistical short-term earthquake prediction,Science, 1987, 236,1563- 1567
    82. Kagan,Y., Statistics of characteristic earthquakes,Bull. Seism. Soc. Am.,1993,83,7-24
    
    83. Kato, N., Lei, X. L., Wen, X. Z.,A synthetic seismicity model for the Xianshuihe fault,southwestern China: simulation using a rate- and state- dependent friction law
    84. Kato N,Yamamoto K, Yamamoto H,et al. Strain-rate effect on frictional strength and the slip nucleation process. Tectonophysics, 1992,211:269-282
    85. Keiiti Aki, Characterization of Barriers on an Earthquake Fault, J. Geophys. Res.,1979, 84, 6139 -6148
    86. King G. C. P., Speculations on the geometry of the initiation and termination processs of earthquake rupture and its relation to morphology and geological structure, Pure Appl. Geophys., 1986,124,567-585
    87. King,G.,J. Nabelek,Role of fault bends in the initiation and termination of earthquake rupture,Science, 1985,228,984-987
    88. Klinger Y, Xu X. W., Tapponnier P., et al., High-Resolution Satellite Imagery Mapping of the Surface Rupture and Slip Distribution of the Mw~7.8 , 14 November 2001 Kokoxili Earthquake, Kunlun Fault, Northern Tiber,China,Bull. Seismol. Soc. Am.,2005,95(5):1970-1987
    89. Klinger Y, Michel R., King G.C.P., Evidence for an earthquake barrier model from Mw~7.8 Kokoxili (Tibet ) earthquake slip-distribution,Earth and Planetary Science Letters,2006,242,354- 364
    90. Kostrov,B. V., Unsteady propagations of longitudinal shear cracks, Prikl. Mat. i Mek.,30 (English transl. ),1966
    91. Lasserre, C., G. Peltzer, Y. Klinger, J. Van der Woerd, and P. Tapponnier, Coseismic deformation of the 2001 Mw=7.8 Kokoxili earthquake in Tibet, measured by SAR interferometry, J. Geophys. Res.,2005,1-17
    92. Levander, A., Fouth-order finite-difference P-SV seismograms,Geophysics,1988,53,1425-1436
    93. Lei X., Kusunose K., M. Rao, O. Nishizawa, T. Satoh,Quasi-static fault growth and cracking in homogeneous brittle rock under triaxial compression using acoustic emission monitoring. J.Geophys. R.,2000,6127-6139
    94. Lei X L, Kusunose K, Satho T ,et al . The hierarchical rupture process of a fault: An experimental study[J]. Phys Earth Planet Inter,2003,137:213-228
    95. Li and Jia, Characteristic of deformation band of the 1937 Tuosuohu earthquake (M=7.5) in Qinghai, Northwest, Seis. J.1981,3,61-65
    96. Li H. B., Van der Woerd J., Tapponnier P.,et al., Slip rate on the Kunlun fault at Hongshui Gou, and recurrence time of great events comparable to the 14/11/2001, Mw~7.9 Kokoxili earthquake,2005,237:285-299
    97. Li ,Q. and Liu, M. Geometrical impact of the San Andreas Fault on stress and seismicity in California ,Geophys. Res. Letter. 33,2006, L08302
    98. Lindvall , S., Rockwell, T. And Hudnut, K., Evidence for prehistoric earthquakes on the superstition hills fault form offset geomorphic features,Bull. Seismol. Soc. Am., 1989,79,342-361
    99. Ma S. L.,He C. R.,Period doubling as a result of slip complexities in sliding surfaces with strength heterogeneity,Tectonophysics,2001,337:135-145
    100. Madariaga, R.,Dynamics of an expanding circular fault, Bull. Seismol. Soc. Am. ,1976,66,639-666
    101. Madariaga, R., Olsen, K. B. and Archuleta, R. J., Modeling dynamic rupture in a 3D earthquake fault model, Bull. Seism. Soc. Am., 1998,88,1182-1197
    102. Mandelbrot, B., The Fractal Geometry of Nature, W. H. Freeman, New York,1982
    103. Marone, C.,Laboratory-derived Friction Laws and their Application to Seismic Faulting, Annu. Rev. Earth Planet. Sci., 1998,26,643-696
    104. Matsu'ura,M.,Kataoka,H., and Shibazaki,B. Slip-dependence Friction Law and Nucleation Processes in Earthquake Rupture, Tectnophysics, 1992,211,13 5-148
    105. Miyatake, T., Reconstruction of dynamic rupture process of an earthquake with constrains of kinematic parameters, Geophys. Res. Lett.,1992,19,349-352
    106. Nishenko, S. P. And Buland, R. , A Generic Recurrence Interval Distribution for Earthquake forecasting, Bull. Seism. Soc. Am., 1987,77,1382-1399
    107. Oglesby, D. D., Archuleta, R. J. and Nielsen, S. B., Earthquakes on dipping faults: the effects of broken symmetry, Science,1998,280,1055-1059
    108. Oglesby, D. D., Archuleta, R. J. and Nielsen, S. B., The three dimensional dynamics of dipping faults, Bull. Seism. Soc. Am.,90,616-628
    109. Oglesby,D.D., Earthquake Dynamics on Dip-Slip Faults ,PhD thesis,University of California ,Santa Barbara, 1999
    110. Ohnaka, M. and Shen, L. Scaling of the Shear Rupture Process from Nucleation to Dynamic Propagation:Implications of Geometric Irregularity of the Rupturing Surfaces, J. Geophs. Res., 1999,104(B1),817-844
    111. Ohnake M, Kuwahara Y, Yamamoto K, et al. Dynamic breakdown processes and the generating mechanism for high-frequency elastic radiation during stick-slip instabilities. Geophys Monogr, 1986,6: 13-24
    112. Ohnake M. Earthquake source nucleation : a physical model for short-term precursors. Tectonophysics, 1992,211:149-178
    113. Ozacar, A. A., and S. Beck, The 2002 Denali fault and 2001 Kunlun fault earthquakes: complex rupture processes of two large stricke-slip events, Bull. Seism. Soc. Am.,2004,94,no.6B,S278-s292
    114. Peltzer G, Crampe F, King P., Evidence of nonlinear elasticity of the crust from the Mw 7.6 Manni earthquake, Science ,286:272-276
    115. Prigogine I. Structure , Dissipation and life. Communication presented at the first international conference "The Oretical Physics And Biology", Versailles( 1967). Amsterdam:North-Holland Pub., 1969
    116. Raub, M. L., Cutten, H. N. C. And Hull. A. G., Seimotectonic Hazard Analysis of the Mohaka Fault North Island, New Zealand, Vol. 3, pp. 219-230
    117. Reid,H.F.,1910,The mechanics of the earthquake, v. 2 of The California Earthquake of April 18,1906:Report of the State Earthquake Investigation Commission ,Carnegie Institution of Washington Publication 87, C192 p.2 vols.
    118. Rice,J.R.,Spatio-temporal complexity of slip on a fault ,J. Geophys. R.,1993,98:9885-9907
    
    119. Rice, J. R.,and Ben-zion, Y.,Slip complexity in earthquake fault models,Proc. Natl. Acad. Sci. USA, 1996,93,3811-3818
    120. Rice J R.The mechanics of earthquake rupture[A]. Physics of the Earth's Interior[M]. Bologna: Italian Physical Society. 1980,555-549
    121. Rice J R,Gu J-C .Earthquake after effects and triggered seismic phenomena. Pure Appl Geophys,1983,121:187-219
    122. Richard M. Allen and Hiroo Kanamori, The Potential for Earthquake Early Warning in Southern California, Science,2003,vol300,786-789
    123. Ruina,A.L.,Slip instability and State Variable Friction Laws, J. Geophys. Res. ,1983,88,10359- 10370
    124. Rundle,J., A physical model for Earthquakes 2. Application to Southern California, J. Geophys. Res., 1988,93,6255-6274
    125. Rundle,J. B., Rundle, P. B.,Donnellan, A.,et al.,A simulation-based approach to forecasting the next great San Francisco earthquake,PNAS,2005,25(102):15363-15367
    126. Sonia Fliss, Harsha S. Bhat et al. Fault branching and rupture directivity , 2005,110,B06312
    127. Scholz C.H., The mechanics of earthquakes and faulting,Cambridge University Press, Cambridge, 1990
    128. Schwartz, D. P., and Coppersmith, K. J., Fault behavior and characteristic earthquakes: examples from the Wasatch and San Andreas Fault zones, J. Geophys. Res.,89,5981 -5698,1984
    129. Sharp, R. V. ,Surface displacement on the Imperial and Superstition Hills faults triggered by the Westmorland, California, earthquake of 26 April 1981,U.S. Geol. Surv. Prof. Pap.,1982,1254,213- 221
    
    130. Shiann-Jong Lee, Kuo-Fong Ma, How-Wei Chen, Effects of fault geometry and slip style on near- fault static displacements caused by the 1999 Chi-Chi ,Taiwan earthquake,2006,241:336-250
    
    131. Sibson ,R. H., Stopping of earthquake ruptures at dilational fault jogs, Nature, 1985,316,248-251
    132. Sibson R H, Rupture interaction with fault jogs. In: Das S , Boatright J and Scholz(eds), Earthquake Source Mechanics. AGU Geophys Mono, 1986,37:157-168
    133. Sowers, J. M., Unruh, J. R.,Lettis, W. R.,and Rubin T. D., Relationship of the Kickapoo fault to the Johnson Valley and Homestead Valley Faults, San Bemadino County, California, Bull .Seism. Soc. Am.,1994,84,528-536
    134. Sieh, K., Lateral offsets and revised dates of large prehistoric earthquakes at Pallett Creek,Southern California,J. Geophys. Res.,1984,83,3907-3939
    135. Sieh, K., The repetition of large-earthquake ruptures , Proc. Natl. Acad. Sci. USA,1996, 93, 3764-3771
    136. Stefan B. Nielsen, J. M. Carlson , Influence of friction and fault geometry on earthquake rupture, Journal of Geophysical Research,2000,Vol 105,6069-6088
    137. Stuart,W. D.(1986),Forecast model for large and Great earthquakes in Southern CaliforniaJ. Geophys. Res.91,13771-13786
    138. Tada, T., Fukuyama, E. and Madariaga, R., Non-hypersingular boundary integral equations for 3-D non-planar crack dynamics, Comput. Mech., 2000,25,613-626
    139. Tapponnier ,P., Molnar,P.,Active faulting and Cenzoic tectonics of China,J. Geophys. Res., 1977,82, 2905-2931
    140. Tapponnier, P.,Xu Z.,Roger F.,et al.,Oblique stepwise rise and growth of the Tibet Plateau, Science, 2001,294:1671-1677
    
    141. Tapponnier P., Ryerson F. J., J. Van der Woerd,et al., Long-term slip rates and characteristic slip: keys to active fault behaviour and earthquake hazard, C. R. Acad. Sci.,2001,333,483-494
    
    142. Thomas, A. And Rockwell, T.,J. ,A 300- to 550- year history of slip on the Imperial fault near the U. S.-Mexico border: Missing slip at the Imperial fault bottleneck,J. Geophys. Res., 1996, 101,5987-5997
    
    143. Trifunac, M. D., and Brune, J. N.,Complexity of energy release during the imperial valley, California, earthquake of 1940,Bull. Seismol. Soc. Am.,1970,60,137-160
    144. Van-der-Woerd, J.,Ryerson F. J., Tapponnier P., et al., Holocene left lateral slip rate determined by cosmogenic surface dating on Xidatan segment of the Kunlun Fault(Qinghai, China)., Geology, 26(8): 695-698
    145. Van der Woerd J.,Ryerson F. J.,Tapponnier P.,et al., Uniform slip-rate along the Kunlun fault: implications for seismic behaviour and large-scale tectonics, Geophys. Res. Lett., 2000,27:2353-2356
    146. Velasco A. A.,Broadband source modeling of the November 8,1997,Tibet (Mw=7.5) earthquake and its tectonic, 2000, J. Goephys. Res.,105,28065-28080
    147. Vireux,J. and Madariaga, R., Dynamic faulting studied by a finite difference method ,Bull. Seism. Soc. Am. 1982,72,345-369
    148. Wald, D. J. And Heaton, T. H.,Spatial and temproal distribution of slip for the 1992 Landers, California, Earthquake,Bull. Seismol. Soc. Am., 1994,84,668-691
    149. Wang Q., Zhang P., Freymueller J. T.,et al., Present -day crustal deformation in China constrained by global positioning system measurements,Science,2001,294,574-577
    150. Ward, S. N. and Goes, S. D. B. Geophys. Res. Lett. 1993,20:2131-2134
    151. Ward, S. N., A synthetic seismicity model for the middle America Trench,J. Geophys. Res. 1991,96,21433-21442
    152. Wen Xueze. Character of rupture segmentation of the Xianshuihe -Anninghe-Zemuhe fault zone,western Sichuan[j].Seismology and Geology,2000,22(3):239-249.
    153. Wesnousky,S.G., Seismological and structural evolution of strikeslip faults, Nature, 1988,335,340-343
    154. Wesnousky, S. G.,The Gutenberg-Richter or Characteristic Earthquke Distribution,Bull. Seism. Soc. Am.,1994,84(6),1940-1959
    155. Wittlinger G.,Vergne J.,Tapponnier P.,et al., Teleseismic imaging of subducting lithosphere and Moho offsets beneath western Tibet,2004,Earth and planetary science letters,2004,221,117-130
    156. Xu, X.W., Chen, W, Ma, G. Yu, and G. Chen, Surface rupture of the Kunlunshan earthquake(Ms 8.1), northern Tibetan plateau, China, Seism. Res. Lett., 2002,73 (6):884-892
    157. Xu Z, Yang R. ,Zhao J., et al., Experimental Study of the Process Zone, Nucleation Zone and Plastic Area of Earthquakes by the Shadow Optical Method of Caustics,Pure and Applied Geohysics ,2002,1951-1966
    158. Zhang, H. M. and Chen, X. F., Dynamic rupture on a planar fault in 3D half space-I,2006a,Geophys. J. Int., 2006,164,633-652
    159. Zhang, H. M. and Chen, X. F., Dynamic rupture on a planar fault in 3D half space-II,2006b,Geophys. J. Int., 2006,, 167,917-932

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700