用户名: 密码: 验证码:
微地震监测与模拟技术在裂缝研究中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油田注水和压裂微地震实时监测是目前国内外方兴未艾的研究热点课题,在油田的推广应用中主要面临着如何实现自动化监测、提高系统灵敏度和实时精确定位的难题。为此研制了一套以三分量MEMS检波器为核心硬件的微地震监测系统,并结合GPS系统对监测过程进行精确授时。同时编制数据化记录和处理软件,实现网络化自动监测功能,通过开发计算机判别标准和实时定位理论系统,对数据和微震源进行自动化处理和计算。
     利用本系统对花岗岩单轴压裂过程的声发射事件进行了研究。由于当岩石受力变形和断裂时会产生声发射现象(弹性波),因此对其声发射事件的分析可用来研究岩石裂纹形成机制和断裂过程。研究发现岩石试样破裂失稳可划分为四个过程。在整个应力加载过程中,发现声发射事件次数随岩石应变呈增长趋势,后在岩石发生宏观断裂前呈减少趋势;声发射能量一直呈增长趋势,在岩石宏观断裂时达到最大;其声发射信号的频率一般为:0-800Hz;研究同时也表明可通过统计声发射事件数量来判断现场实际应用中岩石断裂发生几率,也可通过对事件本身的定位(微震源定位)来研究岩石断裂位置,因此这套系统可应用于煤矿、水库、和油田压裂等微地震的监测。
     利用该系统对东辛油田营11进行了六个月现场注水微震监测,对监测数据的处理表明营11注水区域裂缝发育方向基本上为NE90°-NE125°;同时营11地区油藏地应力数值模拟结果分析表明其水平最大主应力的方向主要分布在NE90°-NE130°的范围内,研究范围中西北区块的水平最大主应力方向近似为东西向,研究区块的东部边界的水平最大主应力方向近似为NE130°左右,模拟结果与裂缝监测方位相符较好,两者结合给出了这个地区合理开发部署建议。裂缝误差分析表明监测结果可以控制在一个合理的范围内,监测结果表明系统还应该进一步提高监测灵敏度和完善算法功能,以符合在低渗透油田开发管理中的推广应用。
     油田水力压裂是改造低渗透油气藏的重要手段,并且水力压裂的破裂能量更高,更有利于监测。在油田生产过程中,水力压裂产生裂缝有多长,裂缝朝哪个方向延伸,压裂井是否和周围的水井连通等问题在以前都无法即时直接地解决。因此利用微地震监测系统对西南油气分公司新场和马井地区进行了水力压裂监测试验,水力压裂微地震试验研究结果给出了可靠的裂缝三维图像,揭示了裂缝发育状况。同时发现水力压裂裂缝生长速率是不均匀的,在水力压裂的不同时间段,裂缝生长速率差别很大,在开始断裂的一段时间内,裂缝生长的最为迅速,而后裂缝生长速度减慢;通常裂缝两翼常常是不对称的;裂缝面基本上是垂直的。
     研究发现岩石破裂与晶体结构有重要关系,而储层岩石的矿物成分及晶体结构也影响了岩石的破裂,宏观及微观上岩石的裂缝都是呈Z字型发展,具体的发展模式还要看储层的岩石性质。并且水饱和对岩石的波速具有影响,一般水饱和的岩石比干燥岩石波速要大,而与油气饱和的关系有待进一步进行实验研究。水-岩化学作用对岩石的断裂也有重要的影响,一方面可以增强岩石的破裂强度,另一方面也可能降低岩石的破裂强度,具体的影响还要看岩石的结构和成分,以及地层水的化学性质。另外,地温场也能够对岩石的破裂起到一定的辅助作用,其主要表现为高温增加岩石的裂缝孔隙度,从而加剧水-岩作用。
     总之,本文利用自行研制的微地震监测系统对油田生产中的注水和水力压裂诱生微地震进行了监测,监测结果可以合理的解释出裂缝的发育规律,这一技术在未来油田的生产中具有重大的应用价值。
The research of real-time microseismic monitoring used in the waterflood swept area of the oil field and hydraulic fracture is in the ascendant. How to complete automatic monitoring, to improve sensitivity of system and locate precisely in real time are three difficult problems before the technology is used widely. In order to resolve these problems, an independent-developed microseismic monitoring system called MEMS has been developed to aim at this international problem. The system was composed of three components MEMS geophone which was the core hardware, and GPS system that was used to do real-time locating and time service. The digital recording and processing software according with the hardware system and monitoring has been compiled, and automatic monitoring function in network has been realized. Otherwise, the system of computer discriminatory standard and real-time locating concept has been developed and automatic data processing and seismic focus calculating has been realized at the same time.
     The rock sample will generate acoustic emission when it was suffering the external or internal loading. The mechanism and process of rock failure was used to study by analyzing acoustic emission. In this paper, through analyzing the signals of acoustic emission under monoaxial compression loading, the total failure process of sample was carefully divided into four procedures. With the loading increasing, the events of acoustic emission gradually increased with the strain changing in the first and began to decrease afterwards before the sample faulting totally. The energy of acoustic emission continuously increased to the maximum when the sample faulting totally. The frequency of acoustic emission was generally the content 0-800Hz. At the same time, the MEMS geophone can be used to monitor the microseismic event of coal mining, water reservoir and hydraulic fracturing through the research of failure location and the ratio of rock fracture can be predicted by counting numbers of acoustic emission.
     After spent six months to monitor injecting microseism in Ying 11 block of DongXin field using this system and collect abundant microseismic wave files. The result showed that the orientation of injecting fracture was mainly NE90°to NE125°. The maximum horizontal principal stress directions were mainly distributed in NE90°-NE130°range. Analysis of numerical simulation result of reservoir stress in Ying 11 block showed that the maximum horizontal principal stress directions are approximate east-west in central and western region and approximate NE130°at eastern border. It was coincide well between simulated results and monitoring fracture direction.The calculation error analysis of fracture showed that the monitoring result can be controlled in a reasonable extent. Therefore, this system can be further developed to provide important practical reference for the policy and distribution of production in low permeability oil field.
     Hydraulic fracturing in oilfield is an important means of transforming low-permeability reservoirs. The energy of rock failure in hydraulic fracturing is higher than water-flood in oilfield, so it is more conducive to monitoring. In oilfield production process, how long the crack is and how the crack of the fractured wells to extend after hydraulic fracturing cannot estimate at the present time. At the same time, the direction of the crack and the connectivity with wells surrounding can not be immediately resolved. So, a micro-earthquake monitoring test of hydraulic fracturing was carried out in XinChang and MaJing zone of XiNan Oil and Gas Company. The reliable three-dimensional image of the cracks was gained. At the same time, the research showed that hydraulic cracks growth rate is uneven in the process of the hydraulic fracturing in different times and the crack growth rate was greatly speedy at the beginning of the period and then slowed. Usually, the wings of cracks were often asymmetric and the crack is basically vertical.
     Result shows that there was an important relationship between failure of rock and crystal structure and composition and crystal structure of reservoir bed also affects the breakdown of rocks. The macroscopic and microscopic cracks both extended on a Z-shape in the process of hydraulic fracturing and depended on the specific model of rock properties in reservoir. The velocity of the wave in stratum was impact by rock and water saturation and the wave velocity of the water-saturated rock was bigger generally than that of dry rock and the relationship in rock saturated with oil and gas needed be further studied. The crack of rock was also impacted by the chemical acting each other of water and rock in reservoir. On the one hand, it can enhance the rupture strength of rock and on the other hand may also reduce the breakdown strength. The specific impact depended on the structure and composition of rock and formation and the chemical nature of formation water. In addition, the geothermal field can also play an important supporting role in fracture process. The porosity in rock cracks increases under high-temperature and aggravates accordingly the chemical acting each other of water and rock in reservoir.
     In short, this paper reported micro-earthquake induced by oil field water injection or hydraulic fracturing monitoring used by self-developed micro-seismic monitoring system and the monitoring results can be a reasonable explanation for the development of cracks, and this technology is of great values in the future oilfield production.
引文
[1] Claerbout J F. Synthesis of a layered medium from its acoustic transmission response [J]. Geophysics, 1968, 3:64-269
    [2] Daneshvar M R, Clay C S, Savage M K. Passive seismic imaging using micro-earthquake [J]. Geophysics, 1995:60, 1178-1186
    [3]张山,刘清林.微地震监测技术在油田开发中的应用[J].石油物探,2002,41(2): 226-231
    [4]刘建中,王春耘.用微地震法监测油田生产动态[J].石油勘探与开发.2004, 31(2):71-73
    [5]梁兵,朱广生.油气田勘探开发中的微地震监测方法[M].石油工业出版社,2004.
    [6]于克君,骆循,张兴民.煤层顶板“两带”高度的微地震监测技术[J].煤田地质与勘探,2002,30(1):47-51
    [7] Hatherly P, Luo X. Seismic monitoring for mapping longwall caving at Gordonstone Mine [J]. Geological Society of Australia, 1995: 117-126
    [8] Luo X, Hatherly P. Micro-seismic monitoring of longwall caving processes at Gordonstone Mine[M]. Advances in Rock Mechanics, Australia, World Scientific Publishing Co.Pty Lid, 1998:67-79
    [9]刘百红,秦绪英,郑四连等.微地震检测技术及其在油田中的应用现状[J].勘探地球物理进展,2005,28(5):325-329
    [10] Sylvette Bonnefoy-Claudet, Fabrice Cotton, Pierre-Yves Bard,The nature of noise wavefield and its applications for site effects studies[J], Earth-Science Reviews ,2006, 79:205–227
    [11] Li Zhengguang, Yang Runhai, Zhao Jinming, et al. Rock-breaking test research on Earthquake sequence type[J]. Journal of Seismological Research, 2005, 28(4): 388-393
    [12] Zhang Shan, Liu Qinglin, Zhao Qun, et al. Application of microseismic monitoring technology in development of oil field[J]. Geophysical Prospecting for Petroleum, 2002, 41(2): 226-231
    [13] Liu Jianzhong, Wang Chunyun, Liu Jimin, et al. Micro-seismic monitor on the operation of oil fields[J]. Petroleum Exploration and Development, 2004, 31(2): 71-73
    [14] Segall P. Eearthquakes triggered by fluid extraction[J]. Geology,1989,17(10): 942-946
    [15] Block L V, Cheng C H, Fehler M C, et a, Seismic imaging using microearthquakes induced by hydraulic fracturing[J]. Geophysics, 1994,59:102~112
    [16] Fehler M, House L, Kaieda H, Determining planes along which earthquakes occur: method and application to earthquakes accompanying hydraulic fracturing[J]. Geophys Res, 1987,92:9407-9414
    [17] House L. Locating microearthquakes induced by hydraulic fracturing in crystalline rock. [J] Geophys Res, 1987,4: 919~921
    [18] Warpinski N R, Young C J, Peterson L R, et al. Microseismic mapping of hydraulic fracture using Multi-level wireline receivers[R]. Paper SPE 30507, Presented at the 1995 Annual Technical Conference and Exhibition, Dallas, 1995, Oct, 22-25
    [19] Peterson R E, Wolhart S L, Frohne K H. Fracture diagnostics research at the DOE/GRI Multi-site Project: Overview of the concept and results[R]. Paper SPE 36449, Presented at the 1996 Annual Technical Conference and Exhibition, Denber, Colorado, 1996, Oct, 6-9
    [20] Branagan P T, Peterson R E, Warpinski N R. Propagation of a hydraulic fracture into a remote observation wellbore: Results of C-Sand experimentation at the GRI/DOE Multi-Site Project[R]. Paper SPE 36449, Presented at the 1997 Annual Technical Conference and Exhibition, San Antonio, Texas, 1997, Oct, 5-8
    [21] Lumiley D E. The next wave in reservoir monitoring: The instrumented oil field[J], The Leading Edge, 2001,20(6):640-648
    [22]赵向东,陈波,姜福兴,微地震工程应用研究[J].岩石力学与工程学报.2002,20(增2):2609-2612
    [23]董世泰,高红霞.微地震监测技术及其在油田开发中的应用[J].石油仪器.2004,18(5):5~8.
    [24] Yong R P. Seismic and micromechanical studies of rock fracture in Granite[J]. Pure and Applied Geophysics, 1995, 145(1): 3-27
    [25] Hazzard J F, Yong R P. Simulating acoustic emissions in bonded particle models of rock[J]. International Journal of Rock Mechanics, 2000, 37:867-872
    [26] Hazzard J F, Yong R P. Seismic validation of micromechanical models[R], DCRocks[A]. In:38th U.S.Rock Mechanics Symposium[C], 2001:1327-1334
    [27]宋元合,张少标,丁振红等.微震监测技术在濮城油田沙三上油藏的应用[J].石油仪器.2003,11(4):11~13.
    [28]刘建宏,崔勤元,王亚鹏等.微震监测技术在南泥湾油田长六油藏的应用[J].西北地质.2004,37(2):80~82.
    [29]李民河,廖健德,赵增义等.微地震波裂缝监测技术在油田裂缝研究中的应用——以克拉玛依八区下乌尔禾组油藏为例[J].油气地质与采收率.2004,11(3):16~18.
    [30]周婕,高敬文,何平等.微地震裂缝监测系统在鄯善油田的应用[J].油气井测试.2005,14(6):62~64.
    [31]刘继民,刘建中,刘志鹏等.用微地震法监测压裂裂缝转向过程[J].石油勘探与开发.2005,32(2):75~77.
    [32]刘云彬,安广柱,张烈辉.用微地震波法确定松辽盆地头台油田地应力场特征[J].大庆石油地质与开发.2006,25(3):29~30.
    [33]伍藏原,李汝勇,张明益等.微地震监测气驱前缘技术在牙哈凝析气田的应用[J].天然气地球科学.2005,16(3):390~393.
    [34]刘百红,秦绪英,郑四连,等.微地震监测技术及其在油田中的应用现状[J].勘探地球物理进展.2005,28(5):325~329.
    [35]徐晓会,杨树敏,张淑珍.微地震监测技术在油藏实时特征描述中的应用[J].国外测井技术.2006,21(6):64~68.
    [36]刘建中,王春耘,刘继民,等.用微地震法监测油田生产动态[J].石油勘探与开发.2004,31(2):71~73.
    [37] Dong Shitai, Gao Hongxia. Microseismic monitering technology and its application to oilfield development[J] Petroleum Instruments, 2004, 18(5): 5~8
    [38] Withers R. J., Zinno R., Dart R., Overview: microseismic imaging of cotton valley hydraulic fractures[R]. SRG Expanded Abstract, New Orleans, 1998, 968~971
    [39]梁宏军,张兴社.MEMS与MEMS光开关[J].应用光学.2005,26(1):60-62
    [40]杨友文,王建华.MEMS技术现状及应用[J].微纳电子技术.2003,3:29-32
    [41]王渭源,鲍敏杭.微电子机械系统进展和趋势[J].功能材料与器件学报.1996,2(3):129-136
    [41]周兆英,叶雄英,胡敏等.微型机电系统的进展[J].仪器仪表学报.1996,17(1):20-26
    [43]董景新.微惯性仪表―微机械加速度计[M].北京:清华大学出版社.2003:21-36
    [44]王立鼎,刘冲.微机电系统科学与技术发展趋势[J].大连理工大学学报.2000,40(5):505-508
    [45]余丹铭,梁利华,许杨剑.微电子机械技术的研究和发展趋势[J].机械工程师.2004,7:13-17
    [46]周兆英,杨兴.微/纳机电系统[J].仪表技术与传感器.2003,2:1-5
    [47]中国地震局监测预报司.数字地震观测技术[M].地震出版社,2003
    [48]赵新.MEMS虚拟加工工艺研究与实现[M].南开大学硕士学位论文.2003:1-5
    [49]杨友文,王建华.MEMS技术现状及应用[j].微纳电子技术.2003,3:29-32
    [50]李圣怡,刘宗林,吴学忠.微加速度计研究的进展[J].国防科技大学学报.2004,26(6):34-37
    [51]王强.高g值微硅加速度计的研制[M].硕士学位论文.东南大学.2001:8-14
    [52]王立森.微机械加速度计的设计、模拟及力学分析[M].硕士学位论文.中国科学院力学研究所.2001:15-20
    [53]樊尚春,刘广玉.热激励谐振式硅微结构压力传感器闭环系统[J].测控技术.2000,19(2):34-36
    [54] Murphy.H.D. and Fehler,M.C. Hydraulic fracturing of jointed formations[M]. Paper SPE 14088, presented at Int. Meeting on Peroleum Engineering, Soc. Pet. Eng. Beijin. 1986: 17~20
    [55] Sorells G. G., and Mulcahy C.C. Adances in the Microseism Method of Hydraulic Fracture Azimuth Estima-tion[R], Paper SPE 15216, presented at the, Unconventional Gas Technology Symposium, Louisille, KY, 1986: 18~21
    [56] Stewart L. Cassell B.R. and Bol.G.M. Acoustic Emission Monitoring During Hydraulic Fracturing[J], SPE For-mation Evaluation, 1992, 7(2):139~144
    [57] Schemeta J.E, Minner W.B. , Hickman R.G., et al. Geophysical monitoring during hydraulic fracture in a fractured reservoir: Tiltmeter and passive seismic results[R]. Paper SPE 28145, presented at the 1994 Annual Tech-nical Conference and Exhibition, New Orleans, LA 1994:25~28,
    [58] Sleefe G. E., Warpinski N R., and Engler B P. et al. The use of broadband microseismsfor hydraulic fracture mapping[R]. Paper SPE 26485, presented at the 1993 Annual Technical Conference and Exhibition, Houston, Texas, 1993: Oct.3~6,
    [59] Warpinski N R. Interpretation of hydraulic fracture mapping experiments[R]. Paper SPE 27985, presented at the Tulsa Centennial Petroleum Engineering Symposium, Tulsa, OK, August 29~31,1994
    [60] Warpinski N R., Young C J., and Peterson L.R., et al. Microseismic mapping of hydraulic fractures using multi-level wireline receivers[R]. Paper SPE 30507, presented at the 1995 Annual Technical Conference and Ex-hibition, Dallas, 1995: 22~25,
    [61] Warpinski N R., Wright T B, and Uhi J E., et al. Microseismic monitoring of the B-Sand hydraulic fracture experiment at the DOE/GRI Multi-Site Project[R].Paper SPE 36450, presented at the 1996 Annual Technical Conference and Exhibition, Denver, Colorado, 1996: 6~9,
    [62]滕召胜.智能监测系统与数据融合[M].北京:机械工业出版社. 2000:150-167
    [63]何丽华,刘强.谈智能化仪器仪表的抗干扰[]J.工业仪表与自动化装置.1999;1(4):48
    [64]王洪叶.传感器工程[M].国防科技大学出版社. 1997:460-505
    [65]赵兴东,田军,李元辉,唐春安.花岗岩破裂过程中的声发射活动性研究[J].中国矿业,2006,15(7):74-76
    [66]陶纪南,张克利,郑晋峰.岩石破裂过程声发射特征参数的研究[J].岩石力学与工程学报,1996,15:452-455
    [67] Geiger L. Probability method for the determination of earth-quake epicenters from the arrival time only [J]. Bull. St .Louis Unic. 1912, 8, 60-71.
    [68] Slawomir Jerzy Gibowicz, Andrzej Kijko.修济刚,徐平,杨心平译.矿山地震学引论[M].北京:地震出版社,1998
    [69]雷兴林,佐藤隆司,西泽修.花岗岩变形破坏的阶段性模型[J].地震地质,2004,26(3):436-447
    [70]冷雪峰,杨天鸿,国怀专,李连崇.单孔岩石水压致裂过程的数值模拟分析[J].世界有色金属,2002,10:32-34
    [71]谭云亮,李芳成,周辉,韩宪军.冲击地压声发射前兆模式初步研究[J].岩石力学与工程学报,2000.7,19(4):425~428
    [72] Bruno M.S, and Nakagawa F.M. Pore pressure influence on tensile fracture propagation in sedimentary rock [J]. Int. J. Rock Mech.Min .Sci. & Geomech. Abstr. 1991,28(4):261~273
    [73] Lockner D. The role of acoustic emission in the study of rock fracture[J]. Int. J. RockMech. Min. Sci. 1993, 30(7): 883~899
    [74] Lou M. and Crampin S. draulic fractures in Carthage tight sands:A pilot study[J]. The Leading Edge, 1996, 15(3):218~224
    [75] Lou M. and Crampin S. Guided-wave propagation etween boreholes[J]. The Leading Edge, 1992,11(7):34~37
    [76] Lou, M. and Crampin, S. Modelling guided wave in cross-ole surveys in uncracked and cracked rock[J]. Geophysical Prospecting, 1993, 41(3):241~265
    [77] Lou M, Rial J A and Malin P E. Modeling fault-zone guided wave of microearthquakes in a geothermal reservoir[J]. Geophysics, 1997, 62(4):1278~1284
    [78] Walker R N and Phillips W S. Cotton Valley hydraulic fracture imagin project[R]. Paper SPE 38577, presented at the 1997 Annal Technical Conference and Exhibition, San Antonico, Texas, 1997: 5~8
    [79] Rutledge J. T, Albright J N and Fairband T D et al. Microseismic monitoring of the Chaveroo Oil Field[R]. New Mexco. Abst.60th Ann. Internat. Mtg, SEG, 1990
    [80] Rutldedge J T and Phillips W S. Hydraulic stimulation of natural fractures as revealed induced micro-earthquakes, Carthage Cotton Valley gas field[J]. east Texas, Geophysics, 2003, 68(2):441~452
    [81] Fehler M, House L and Kaieda H. Determining planes along which earthquakes occur, method and application to earthquakes accompanying hydraulic fracturing[J]. Geophys. Res., 1987,92:9407~9414
    [82] Fehler M, House L and Phillips W S. Identifying structures in clouds of induced micro-seismic events. Abst[R] 67th. Ann. Internat. Mtg. SEG.1997,800~803
    [83] Fehler M, Jupe A and Asanuma H. More Than Cloud: New techniques for characterizing reservoir structure using induced seismicity[J]. The Leading Edge, 2001, 20(3):324~328
    [84]许征宇,陈颙. B值的实验研究[J].地球物理学报,1989,32(Supp,Ι):144~154
    [85]陈颙.,于小红.岩石样品变形时的声发射[J].地球物理学报,1984,27(4):392~401
    [86]陈颙.岩石破坏过程的降维现象[J].地球物理学报,1989,32(Supp,Ι):132~143
    [87] Block L., Cheng C.H. and Fehler M. et al. Inversion of microearthquake arrival time data at the Los Alamos Hot Dry Rock reservoir[R]. Abst. 60th Ann. Internet. Mtg. SEG.1990
    [88] Block L.V, Cheng.C.H, Felher M C. and Phillips W S. Seismic image using micro-earthquakes induced hydraulic fracturing[J]. Geophysics. 1994.59(1): 102-112
    [89] House L, Flores, Withers R. Micro-earthquakes induced by a hydraulic injection in sedimentary rock[R]. East Texas, Abst. 66th Ann. Internat. Mtg. SEG. 1996, 110~113
    [90] House L, Phillips W S, Fehler M, et al. Using waveforms of induced micro-earthquakes to image hydraulic fracture systems[R]. Abst. 67th Ann. Internat. Mth. SEG. 1997,234~237
    [91] Ying-ping Li, Cheng C H and Toksoz M N. Seismic-monitoring of the growth of a hydraulic fracture zone at Fenton Hill[R]. New Mexico. Geophysics, 1998,63(1):120~131
    [92]孙传友,潘正良.地震勘探仪器原理[M].东营:石油大学出版社.1996:38-40
    [93]康光华,陈大钦.电子技术基础模拟部分[M].北京:高等教育出版社.2001:233-236
    [94]姚福安,徐衍亮.高性能多阶有源带通滤波器设计[J].电子测量与仪器学报.2005;19(2):20-23
    [95] Murphy.H.D. and Fehler,M.C. Hydraulic fracturing of jointed formations[R]. Paper SPE 14088, presented at Int. Meeting on Peroleum Engineering, Soc. Pet. Eng. Beijin, 1986: 17~20
    [96] Sorells,G.G., and Mulcahy, C.C. Adances in the Microseism Method of Hydraulic Fracture Azimut6h Estima-tion[R]. Paper SPE 15216, presented at the Unconventional Gas Technology Symposium, Louisille, KY, 1986:18~21
    [97] Sarda J P, Wittrisch C, Perreau P, et al. Downhole Fracture monitoring System Developed[J]. Oil and Gas Journal, 1987, 85(14):40~46
    [98] Sarda J P, Perreau P J and Deflandre J P, Acoustic Emission Interpretation for Estimating hydraulic Fracture Extent[R]. Paper SPE 17723, presented at the 1988 SPE Gas Technology Symposium, Dallas, 1988, 13~15
    [99] Sleefe G E, Warpinski N R and Engler B P, et al. The use of broadband micro-seismicfor hydraulic fracture mapping[R]. Paper SPE 26485, presented at the 1993 Annual Technical Conference and Exhibition, Houston, Texas, 1993:3~6
    [100]Segall, P. Earthquakes triggered by fluid extraction, Geoloy, 1989, 17(10):942~946
    [101]Maxwell,S.C., Urbancic,T.I., Falls,S.D., et al. Real-time microseismic mapping of hydraulic fractures in Carthage, Texas, Abst. 70th. Ann. Internat. Mtg. SEG. 2000
    [102]Maxwell,S., and Urbancic, T.I. The rale of passive microseismic monitoring in the instrumented oil field. The Leading Edge,2001,20(6):636~639
    [103]Jupe,A., Cowles,J., and Jones, R., et al. Microseismic monitoring: Listen and see the reservoir. World Oil,1998, 219(12):171~174
    [104] Warpinski N R, Young C J, Peterson L R, et al. Microseismic mapping of hydraulic fracture using Multi-level wireline receivers[R]. Paper SPE 30507, Presented at the 1995 Annual Technical Conference and Exhibition, Dallas, 1995, Oct, 22-25
    [105] Peterson R E, Wolhart S L, Frohne K H. Fracture diagnostics research at the DOE/GRI Multi-site Project: Overview of the concept and results[R]. Paper SPE 36449, Presented at the 1996 Annual Technical Conference and Exhibition, Denber, Colorado, 1996, Oct, 6-9
    [106] Branagan P T, Peterson R E, Warpinski N R. Propagation of a hydraulic fracture into a remote observation wellbore: Results of C-Sand experimentation at the GRI/DOE Multi-Site Project[R]. Paper SPE 36449, Presented at the 1997 Annual Technical Conference and Exhibition, San Antonio, Texas, 1997, Oct, 5-8
    [107] Lumiley D E. The next wave in reservoir monitoring: The instrumented oil field[J], The Leading Edge, 2001,20(6):640-648
    [108]Rutldedge J T and Phillips W S. Hydraulic stimulation of natural fractures as revealed induced micro-earthquakes[J]. Carthage Cotton Valley gas field, east Texas, Geophysics, 2003, 68(2):441~452
    [109]王泽云,刘立,刘保县.岩石微结构与微裂纹的损伤演化特征[J].岩石力学与工程学报.2004,23(10):1599~1603.
    [110]刘斌,王宝善,席道瑛.水饱和裂纹对地壳岩样中地震波速及各向异性的影响[J].地球物理学报.1999,42(5):703~710.
    [111]楼沩涛.干燥和水饱和花岗岩的动态断裂特性[J].爆炸与冲击.1994,14(3):249~254.
    [112]汤连生,张鹏程,王思敬.水-岩化学作用之岩石断裂力学效应的试验研究[J].岩石力学与工程学报.2002,21(2):822~827.
    [113]汤连生,张鹏程,王思敬.水-岩化学作用的岩石宏观力学效应的试验研究[J].岩石力学与工程学报.2002,21(4):526~531.
    [114]汤连生,王思敬.水-岩化学作用对岩体变形破坏力学效应研究进展[J].地球科学进展.1999,14(5):433~439
    [115]吴小东.岩石热开裂的实验研究[M].地质大学博士论文2005
    [116]张渊,张贤,赵阳升.砂岩的热破裂过程[J].地球物理学报.2005,48(3):656~659

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700