用户名: 密码: 验证码:
腰椎手法推拿力的量化研究和有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的(1)研究常用腰椎手法推拿力的大小以及手法过程中出现“咔哒”声响时对腰椎推扳力的值;(2)研究常用推拿手法的体位和角度,为手法的量化提供依据,并为进一步进行腰椎推拿手法的有限元分析提供生物力学的模拟条件;(3)建立一个可视化的腰椎三维有限元模型,模拟常用腰椎推拿手法作用,对其内在应力、矢量、变形和位移进行研究,为研究推拿手法的作用机理,探讨提高手法疗效的方法,减少手法的意外损伤提供一个直观的、可视化的研究平台;(4)探讨常用推拿手法操作时腰椎间盘、腰椎椎体和后部结构的位移、变形及内在应力分布的特点,以分析手法的机理、安全性与合理性。
     方法(1)应用压力传感器系统,测量并记录定点旋转手法作用过程中出现“咔哒”声响时术者拇指推顶颈椎和腰椎棘突的最大推扳力;(2)测量直腰旋转扳法操作时对左、右两侧肩部的推力和扳力;(3)测量进行腰椎斜扳手法、腰椎扭转扳法和腰椎侧卧位定位斜扳法出现“咔哒”声响时对肩部和臀部的最大推扳力;(4)测量腰部后伸扳法、腰椎扭转后伸扳法、按腰扳肩法操作时对腰椎的按压力;(5)在进行手法操作时,对腰椎进行X线摄片,与手法操作前的X线片比较,测量出手法作用时腰椎前屈、后伸、侧弯的位移;(6)使用螺旋CT,以1mm的间隔,对1名男性青年的腰椎沿轴向进行断层扫描,以jpg格式将图像输入计算机。使用L_(4-5)的CT图像,逐层重建L_(4-5)的含有24990个结点,15652个块单元的三维有限元模型;(7)根据手法原理,将常用腰椎推拿手法进行分解,把各项力学参数代入三维有限元模型,利用Ansys 9.0软件进行计算;(8)显示手法作用时腰椎椎体、后部结构、椎间盘的内在应力、内部变形和位移的变化过程;并将其结果与相应的生物力学测试的结果进行对比。
     结果(1)定点旋转手法出现“咔哒”声响时术者左、右手拇指对受试者第4腰椎棘突的推扳力分别为5.07±1.30kg和6.64±1.50kg;左、右手拇指对受试者第4颈椎棘突的推扳力分别为4.73±1.04kg和6.42±1.33kg;(2)直腰旋转扳法时术者对受试者肩部的推力为6.22±1.05kg,扳力为7.47±1.02kg;(3)腰椎斜扳手法出现“咔哒”声响时术者对受试者左、右肩部的推扳力分别为12.55±1.72kg和12.75±1.65kg,对左、右臀部的推扳力分别为13.59±1.63kg和13.27±1.20kg;对高、矮受试者肩部的推扳力分别为12.81±1.26kg和12.41±1.39kg,对高、矮受试者臀部的推扳力分别为13.63±1.35kg和13.50±1.09kg;对胖、瘦受试者肩部的推扳力分别为13.27±1.23kg和11.73±1.26kg,对胖、瘦受试者臀部推扳力分别为13.73±1.00kg和12.92±0.23kg;(4)腰椎侧卧位定位斜扳法出现“咔哒”声响时术者对受试者胸部和臀部的推扳力分别为10.72±1.65kg和11.82±1.33kg;(5)后伸30°和45°进行腰部后伸扳法(双测)时术者对受试者腰部的压力分别为4.84±0.56kg和6.34±0.93kg;(6)腰部后伸扳法(单侧)时术者手掌对受试者腰部的压力为8.49±1.31kg,膝部对受试者腰部的压力为10.56±1.12kg;(7)腰椎扭转后伸扳法时术者手掌对受试者腰部压力的大小分布于3.5-9.7kg之间,平均为5.90±1.58kg;(8)按腰扳肩法术者手掌对受试者腰部的压力的大小分布于6.2-9.4kg之间,平均为7.86±0.92kg;(9)腰部后伸扳法(双测)时L_5下缘后部的相对位移为10.05mm,腰部后伸扳法(单侧)时L_5下缘后部的相对位移分别为7.98mm,坐位腰椎定点旋转手法时L_4上缘前缘向前的相对位移为6.10mm,L_4上缘右侧向右的相对位移为5.35mm;(10)腰椎斜扳手法作用时应力集中点位于关节突、椎弓跟,椎板等处,椎间盘的应力小于后部结构,从椎间盘中心到右侧有一个向后的扭转矢量,使椎间盘产生变形;(11)腰部后伸扳法(双测)作用时应力集中点位于双侧椎弓根,椎板和关节突处;整个椎间盘向后突出;(12)腰部后伸扳法(单侧)作用时应力集中点主要位于椎弓根、椎板、关节突和椎体的左侧,椎间盘左侧的位移矢量为向后向下,右侧的矢量为向前向上;(13)按腰扳肩法作用时应力集中点主要位于椎弓根、椎板和关节突;整个椎间盘向后回缩;(14)腰椎侧卧位定位斜扳法作用时椎间盘没有向后的位移和变形;(15)坐位腰椎定点旋转手法作用时椎间盘出现一个向右侧的扭转的变形,椎间盘左侧后部向前回缩。
     结论(1)在进行定点旋转手法时,术者拇指的推扳力大小与“咔哒”声响的发生无直接关系,对腰椎、颈椎棘突推扳力的大小也无显著性差异(P=0.155),但利手对左、右拇指的推扳力有显著的影响(P<0.001);(2)向左、右分别进行斜扳手法时,对左、右肩部平均推扳力无显著差异(P=0.655),对臀部的左、右侧的推扳力也一样(P=0.410),但对臀部的推扳力大于对肩部的推扳力(P=0.016),斜扳手法操作时所需推扳力的大小与身高无直接关系(P=0.226),但对身材肥胖者的手法操作比瘦弱者更费力(P=0.002);(3)腰椎斜扳手法对椎间盘是安全的,但是对于腰椎滑脱、峡部裂和关节突关节损伤的患者有一定危险,并且在椎间盘突出的对侧进行手法操作更为合理;(4)腰椎侧卧位定位斜扳法对于腰椎间盘突出症和腰椎管狭窄患者是安全的;(5)腰部后伸扳法(双测)并不适用于腰椎间盘突出症、峡部裂、腰椎滑脱和关节突关节损伤的治疗,使用腰部后伸扳法(单侧)治疗腰椎间盘突出症时,应该后伸其健侧的下肢;(6)按腰扳肩法能并不适用于有峡部裂、关节突关节损伤、腰椎滑脱、腰椎间盘突出症和腰椎管狭窄的患者的治疗;(7)坐位腰椎定点旋转手法向健侧操作更为合理。
Objective (1)To study the manipulative forces of the frequently used lumbar spinal manipulations and the manipulative forces during cracking sounds of manipulations. (2)To study the body postures and angles during lumbar spinal manipulations, in order to provide a quantitative basis for the manipulations, and to provide a basis of biomechanics for analyzing lumbar spinal manipulations with finite element. (3)To Set up a three-dimensional and visible finite element system of lumbar spine, and study the displacement, distortion, vector and intra-stress distribution during the manipulations. And to provide a macroscopic basis for visible study of manipulations, study the mechanism of manipulations, exploring the method of optimizing the manipulations, and reducing the accidental injury of manipulations. (4)To study the trait of distortion, displacement and intra-stress distribution of intervertebral disc, vertebral body and posterior area of lumbar during the frequently used lumbar spinal manipulations, in order to analyze the mechanism, security and rationality of manipulations.
     Methods (1)The largest forces of thumb on the spinous process of the fourth cervical vertebra and the fourth lumbar vertebra were tested and recorded with a pressure sensor testing system during cracking sounds of the located and rotatory manipulation. (2) The manipulative forces on the left and right side shoulder were tested during the lumbar erected and rotatory manipulation. (3)The manipulative forces on shoulder and hip were tested during cracking sounds of the obligue-pulling manipulation, the lumbar rotatory-pulling manipulation, the lumbar located and obligue-pulling manipulation. (4)The manipulative forces on the lumbar spine were tested during the lumbar troflexed manipulation, the lumbar rotatory and troflexed manipulation and the lumbar-pushing and shoulder-pulling manipulation. (5)The X-ray films were get during manipulations, and were compared with the X-ray films before manipulations, the displacements of anteflected, troflexed, lateral curvature during manipulation were tested. (6)A young man's lumbar spine was scanned by CT with 1mm interval. Then, the jpg-format data of CT was inputted into computer. Sectional constructed a three-dimensional finite element system of lumbar L4.5 by the CT images. The finite element system contained of 24990 nodes and 15652 elements. (7)The frequently used lumbar spinal manipulations were decomposed by principium of manipulation. The parameters of mechanics were analyzed with the three- dimensional finite element system and computed with software Ansys 9.0. (8)The changes of distortion, displacement and intra-stress distribution in vertebral body, posterior area and intervertebral disc of lumbar spine were displayed during the manipulations. The results were compared with the relevant experimentation of biomechanical.
     Results (1)As the cracking sound, the forces to the fourth spinous process of lumbar vertebra were 5.07±1.30kg and 6.64±1.50kg respectively in left and right thumbs, the forces to the fourth spinous process of cervical vertebra were 4.73±1.04kg and 6.42±1.33kg respectively in left and right thumbs during the rotatory and localized manipulation. (2)The pushing force was 6.22±1.05kg and the pulling force was 7.47±1.02kg during the lumbar erected and rotatory manipulation. (3)As the cracking sound, the manipulative forces were 12.55±1.72kg and 12.75±1.65kg respectively to the left and right shoulder, and the manipulative forces were 13.59±1.63kg and 13.27±1.20kg respectively to the left and right hip during the lumbar obligue-pulling manipulation. The manipulative forces were 12.81±1.26kg and 12.41±1.39kg respectively to the tail's and the short's shoulder, and the manipulative forces were 13.73±1.00kg and 12.92±0.23kg respectively to the tail's and the short's hip. The manipulative forces were 13.27±1.23kg and 11.73±1.26kg respectively to the fat's and the thin's shoulder, and the manipulative forces were 13.73±1.00kg and 12.92±0.23kg respectively to the fat's and the thin's hip. (4)As the cracking sound, the manipulative forces were 10. 72±1. 65kg and 11.82±1.33kg respectively to the thoraces and hip during the lumbar located and obligue-pulling manipulation. (5)The pressures to the lumbar were 4.84±0.56kg and 6.34±0.93kg during the lumbar troflexed manipulation (two sides) respectively with 30°and 45 troflexed body postures. (6)The pressure of palm to lumbar was 8.49±1.31 kg and the pressure of genua to lumbar was 10.56±1.12kg during the lumbar troflexed manipulation (one side). (7)The pressure of palm to lumbar was in 3.5-9.7kg, and the average pressure was 5.90±1.58kg during the lumbar rotatory and troflexed manipulation. (8)The pressure of palm to lumbar was in 6.2-9.4kg, and the average pressure was 7.86±0.92kg during the lumbar-pushing and shoulder-pulling manipulation. (9) The displacement of inferior of L_5 vertebral body was 10.05mm during the lumbar troflexed manipulation (two sides). The displacement of inferior of L_5 vertebral body was 7.98mm during the lumbar troflexed manipulation (one side). The displacement toward anterior of the superior of L_4 vertebral body was 6.1mm and the displacement toward right of the superior of L_4 vertebral body was 5.35mm during lumbar located and rotatory manipulation. (10)The centers of intra-stress were distributed in facet joint, pedicle of vertebral arch and lamina of vertebral arch during the lumbar obligue-pulling manipulation. The intra-stress of posterior area was larger than that of intervertebral disc. There was a palinal vector from center of the intervertebral disc to the right, which distorted the intervertebral disc. (11)The centers of intra-stress were distributed in both side of facet joint, pedicle of vertebral arch and lamina of vertebral arch during the lumbar troflexed manipulation (two sides). The intervertebral disc protruded posterior. (12)The centers of intra-stress were distributed in left side of facet joint, pedicle of vertebral arch, vertebral body and lamina of vertebral arch during the lumbar troflexed manipulation (one side). The displacement vector of the left intervertebral disc was toward posterior and inferor. The displacement vector of the right intervertebral disc was toward anterior and superior. (13)The centers of intra-stress were distributed in left side of facet joint, pedicle of vertebral arch and lamina of vertebral arch during the lumbar-pushing and shoulder- pulling manipulation. The intervertebral disc distorted toward posterior. (14)These was not distortion and displacement in intervertebral disc toward posterior during the lumbar located and obligue-pulling manipulation. (15)These was a distortion of rotatory in intervertebral disc toward right during the lumbar rotatory and localized manipulation. The left intervertebral disc distorted toward anterior.
     Conclusion: (1)There wasn't directly relationship between the manipulative forces of thumbs and cracking sound during rotatory and localized manipulation, and had much effect of dominant and subdominant hand on the largest manipulative force(P<0.001). (2)There wasn't significance difference in manipulative forces to shoulder between the left and right during the lumbar obligue-pulling manipulation (P=0.655), just as the hip (P=0.410); but the force to hip was larger than the shoulder(P=0.016). There wasn't directly relationship between stature and the manipulative forces of the lumbar obligue-pulling manipulation (P=0. 226), but it was harder to manipulate the fat than the thin during manipulation (P=0. 002). (3)The lumbar obligue-pulling manipulation was safe to the intervertebral disc, but it was danger to lumbar vertebrae olisthy, isthmus fracture and facet joint damage, and it was more rational for manipulation in the healthy side. (4)The lumbar located and obligue-pulling manipulation was safe to the lumbar intervertebral disc protrusion and lumbar spinal stenosis. (5)The lumbar troflexed manipulation (two sides) was not suitable for lumbar intervertebral disc protrusion, lumbar vertebrae olisthy, isthmus fracture and facet joint damage. It was more rational for troflexing the healthy side leg in treat lumbar intervertebral disc protrusion during the lumbar troflexed manipulation (one side). (6)The lumbar-pushing and shoulder-pulling manipulation was not suitable for lumbar vertebrae olisthy, isthmus fracture, facet joint damage, lumbar intervertebral disc protrusion and spinal stenosis. (7)It was more rational for rotatory manipulation toward the healthy side during the lumbar rotatory and localized manipulation.
引文
[1]杨谦.中医脊柱手法与西医手法的对比研究[J].云南中医学院学报,2003,26(4):12-14.
    [2]喻慧荣.按摩手法生物力学析微[J].按摩与导引,2002,18(5):4-6.
    [3]詹红生.脊柱整复手法的力学效应研究[J].中国中医骨伤科杂志,2006,14(2):13-16.
    [4]Zhao Na Mu Lal,Li Gen quan,Su He ping,et al.Ideas on Chinese traditional osteopathy,biomechanics mechanism of manipulation and mathematics-physics expressions[J].Chinese Journal of Clinical Rehabilitation.2005,14(4):12-17.
    [5]李博文.脊柱力学的共轭原理与李氏—YBL正骨手法[J].按摩与导引,2005,77(4):47-50.
    [6]毕胜,李义凯,汪爱媛,等.不同推拿手法下腰椎小关节应力变化的观察[J].中国康复医学杂志,2001,16(3):144-145.
    [7]张勇,毕胜,李义凯,等.腰椎旋转手法对髓核内压力和神经根位移的影响[J].颈腰痛杂志,2001,22(3):189-191.[13]
    [8]毕胜,李义凯,赵卫东,等.推拿手法治疗腰椎间盘突出症的机制[J].中国康复医学杂志,2001,16(1):8-10.
    [9]章莹.手法治疗腰椎间盘突出和生物力学研究[J].中国骨伤,1992,5(2):7-10.
    [10]李义凯,钟世镇.脊柱推拿基础研究的新思路:计算机模拟与可视化技术[J].中国康复医学杂志,2003,18(7):431-432.
    [11]冯天有主编.中西医结合治疗软组织损伤[M].北京:人民卫生出版社,1977:37-40.
    [12]北京按摩医院.中国按摩全书[M].北京:华夏出版社,1993,112.
    [13]李义凯,陈建华,邱桂春.脊柱推拿时咔哒声响的测量技术分析与设计[J].第一军医大学学报,2005,25(4):419-422.
    [14]Brodeur R.The audible release associated with joint m anipulation[J].JM anipulatire Physiol Ther,1995,18:155-160.
    [15]沈国权,严隽陶.二十一世纪推拿学科建设的若干学术问题[M].上海:全国推拿流派与文献交流会论文集,2001,6,3-9.
    [16]陈立民,姚猛,孙崇毅,等.旋转手法治疗老年人椎动脉型颈椎病安全性探讨[J].颈腰痛杂志,2004,25(5):320-322.
    [17]李义凯,赵卫东,钟世镇.两种颈部旋转手法“咔嗒”声的比较研究[J].中医正骨,1998,10(6):9-10.
    [18]王华兰主编,推拿学[M].北京:人民军医出版社,2004,1:126-127.
    [19]李义凯,中国脊柱推拿的一些基本问题[J].颈腰痛杂志,2004,25(2):129-131.
    [20]金义成,彭坚.中国推拿[M].长沙:湖南科学技术出版社,1992:14-15。
    [21]王永泉.腰部斜扳法的生物力学原理解析[J].山东生物医学工程,2001,20(3):40-41.
    [22]顾云伍,韩慧,韦以宗,等.牵引斜扳整脊法治疗腰椎间盘突出症的力学测试[J].中国中医骨伤科杂志,2004,12(2):13-16.
    [23]毕胜,李义凯,赵卫东,等.模拟腰部斜扳手法的生物力学研究[J].中国运动医学杂志,2002,21(3):323-324.
    [24]毕胜,李义凯,赵卫东,等.腰部推拿手法生物力学和有限元比较研究[J].中华物理医学与康复杂志,2002,24(9):525-528.
    [25]张振宇,温建民,佟云.腰及下肢推拿意外分析及预防措施探讨[J].中医正骨,2006,18(2):46-48.
    [26]庞军.推拿手法意外的综述及其原因与对策分析[J].按摩与导引,2006,78(2):58-60.
    [27]吴万坚.腰腿痛推拿意外原因的分析[J].颈腰痛杂志,2002,23(2):151-152.
    [28]张松涛,孙荣智,吴同山,等.推拿斜扳法致腰椎间盘突入硬膜囊内2例分析[J].颈腰痛杂志,2003,24(2):126-127.
    [29]李义凯.中国脊柱推拿手法全书[M].北京:军事医学科学出版社,2005,5:147-148.
    [30]孙国辉.浅谈推拿手法轻重的使用原则[J].辽宁中医杂志,1999,26(1):32-33.
    [31]张振宇,温建民.规范的推拿手法之必备条件刍议[J].北京中医药大学学报,2005,12(4):29-31.
    [32]Wang JL,Parnianpoiur M,shirazi-Adl A,et al.Viscoelastic finite element analysis of a lumbar motion segment in combined compression and sagittai flexion[J].Spine,2000,23(3):310-318.
    [33]Goel VK,Kong W,Jung S,A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles[J].Spine,1993,18(11):1531-1543.
    [34]陈精一,蔡国忠.电脑辅助工程分析[M].北京:中国铁道出版社,2001:2-3.
    [35]Brekelmans WAN,et al.Anew method to analysis the mechanical behavior of skeletal part[J].Acia Ortho Scand,1972,43:301-309.
    [36]Belytschol T,Briggs CA.Finite element stress analysis of an inter vertebral disc[J].J biomech,1974,7:277-288.
    [37]Yoganandan N,Kumaresan S,Voo L,et al.Finite element model of the human lower cervical spine:parametric analysis of the C4- C6 unit[J].Biomech Eng,1997;119:87.
    [38]徐义春,刘尚礼,张美超,等.人工腰椎间盘三维有限元模型的建立及其应力分析[J].中华骨科杂志,2003,23(4):173-175.
    [39]Siamak Najarian,Javad Dargahi,Behnam Heidari.Biomechanical effect of posterior elements and ligament- tous tissues of lumbar spine on load sharing[J].Bio-Medical Materials and Engineering,2005,(15):145-158.
    [40]Adams MA,Hutton WC.the effect of fatigue on the lumbar intervertebral disc[J].J Bone Joint Surg[Br],1983,65:199-203.
    [41]Farfan HF.Mechanical disorders of the lowback[M].Philadel phia:Lea & Febiger,1973.6292-100.
    [42]金辽沙,陈君长,贺西京,等.非手术辽法治疗腰椎间盘突出证临床研究[J].中国骨伤,1996,4(4):3-5.
    [43]毕胜,张德文,张明,等.模拟腰部推拿手法三维有限元模型分析[J].军医进修学院学报2002,23(4):67-69.
    [44]吴浩波,严世贵,陈其昕,等.不同运动负荷下腰椎应力的三维非线性有限元分析[J].中国运动医学杂志,2004,23(4):480-483.
    [1]Belytschko T.Finite elementstress analysis of an intervertebral disc[J].Biomech,1974,7:277-283.
    [2]Yoganandan N,Kumaresan S,Voo L,et al.Finite element model of the human lower cervical spine:parametric analysis of the C4- C6 unit[J].Biomech Eng,1997,11(9):87-91.
    [3]谭军,万卫平,王鸣鹏,等.应用三维有限元法分析正常人腰椎椎体的应力分布[J].第二军医大学学报,1997,18(6):566-568.
    [4]Shirazi Adl A.Biomechanics of the lumbar spine in sagittal/lateral moments[J].Spine,1994,19(2):407-410.
    [5]钱忠来,唐天驷,杨惠林,等.腰椎椎间盘三维有限元分析[J].苏州大学学报(医学版),2002,22(1):5-8.
    [6]毕胜,张德文,张明.不同扭矩作用下腰椎有限元模型分析[J].医用生物力学,2002,17(1):20-23.
    [7]LuYM,Hutton WC,Gharpuray VM,Can variations in intervertebral disc height affect the mechanical function of disc[J].Spine,1996;21(19):2208-2216.
    [8]张美超,肖进,李义凯,等.腰椎小关节接触模型的有限元分析[J].第一军医大学学报,2002,22(9):8366-8368.
    [9]Shirazi-adlA.Nonlinear stress analysis of the whole lumbar spine in torsion-mechanics of facet articulation[J].J Biomech,1994,27(3):289-299.
    [10]张平,李健,张美超,等.在不同状态下胸腰段小关节应力分析[J].中国临床解剖学杂志.2005,23(6):657-660.
    [11]Goel VK,Monroe BT,Gilbertson LG,et al.Inter laminar shear stresses and laminae separation in a disc.Finite element analysis of the L_3-L_4motion segment subjected to axial com-pressive loads[J].Spine,1995,20(10):689-673.
    [12]朱兴华,宫赫,朱东.椎体结构及其生长过程模拟[J].中国生物医学工程学报,2001,20(4):310-323.
    [13]戴力扬.老年人腰椎椎体变形与椎间盘退变的关系[J].中华风湿病学杂志,1998,9(2):155-158.
    [14]Hansson T,roos B.The relation between bone mineral content and ultimate compression fractures,and disc degeneration in lumbar vertertebrae[J].Spine,1981,6(2):147-153.
    [15]吴胜勇,张美超,李景学等.骨质疏松老年妇女腰椎有限元分析对骨强度的评价[J].中国骨质疏松杂志,2005,11(3):292-294.
    [16]刘雷,沈根标,张聪,等.破坏载荷下老年人椎间盘退变对胸腰椎应力分布影响的研究[J].中国老年学杂志,2000,1(20):24-25.
    [17]杜东鹏,于进祥.腰椎间盘膨隆的有限元分析[J].颈腰痛杂志,2000,21(1):6.
    [18]张美超,程立明,李义凯,等.三维有限元在正常与后凸畸形胸腰椎体力学性能比较中的应用[J].中国康复医学杂志,2003,28(11):653-655.
    [19]程立明,陈仲强,张美超.胸腰段后凸畸形对相邻椎间盘力学影响的三维有限元分析[J].中国临床解剖学杂志,2003,21(3):273-277.
    [20]刘雷.胸腰椎损伤的三维有限元模型的应力分析[J].中华创伤杂志,1995,11(6):343-345.
    [21]杜东鹏,张克华,葛宝丰等.腰椎疲劳骨折的有限元分析[J].中国临床解剖学杂志,1999,17(3):268-269.
    [22]郭立新,陈威,刘学勇.基于有限元模型的人体损伤脊柱的动态特性分析[J].东北大学学报(自然科学版),2005,26(9):836-839.
    [23]郭立新,林天亮,李春雷.关节损伤对脊椎频率特性的影响分析[J].东北大学学报(自然科学版),2006,27(6):623-626.
    [24]徐晖,李健,程立明,等.椎体成形术后相邻椎体终板应力变化的有限元分析[J].中国临床解剖学杂志,2005,23(3):307-312.
    [25]张德盛,宋跃明.下腰椎不同融合方式的有限元研究[J].中国修复重建外科杂志,2006,20(4):400-403.
    [26]杨军林,张美超,赵卫东,等.骨圈对椎弓根钉系统负载影响的三维有限元分析[J].中国临床解剖学杂志,2005,23(3):313-315.
    [27]汪宇,潘滔,李佛保,等.椎板钩对椎弓根螺钉系统应力影响的有限元分析[J].中国临床解剖学杂,2006,24(2):209-211.
    [28]范子文,黄文铎,张美超,等.腰椎单、双Cage置入加椎弓根钉内固定的三维有限元分析 比较[J].广州医学院学报,2005,33(5):36-39.
    [29]韦兴,侯树勋,张美超,等.腰椎滑脱短节段固定器的初步有限元分析[J].中国脊柱脊髓杂志,2002,12(5):363-365.
    [30]张辉,靳安民,张美超,等腰椎峡部裂记忆合金节段内固定器的有限元分析[J].第一军医大学学报,2002,22(12):1128-1130.
    [31]毕胜,张德文,李义凯.腰椎牵引三维有限元模型分析[J].中国康复医学杂志.2002,17(2):84-87.
    [32]万磊,李义凯,尹东.腰椎牵引力与椎间盘髓核应力之间变化关系的AV线形模型[J].颈腰痛杂志 2005,26(6):407-409.
    [33]林俊山,李兆文,林石明,等.不同角度和牵引力对腰椎间盘作用的实验研究[J].福建中医学院学报 2002,12(1):21-25.
    [34]候筱魁,董凡.斜扳时完整腰椎三维立体运动的研究[J].中国骨伤,1996,9(4):5-7.
    [35]毕胜,张德文,张明.模拟腰部推拿手法三维有限元模型分析[J].军医进修学院学报,2000,23(1):67-70.
    [36]毕胜,李义凯,赵卫东,等.腰部推拿手法生物力学和有限元比较研究[J].中华物理医学与康复杂志,2002,24(9):525-528.
    [37]张爱平.脊柱应力的有限元分析[J].福建中医学院学报,1999,9(2):26-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700