用户名: 密码: 验证码:
石英晶体微天平电学参数获取及在物理吸附上的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石英晶体微天平(QCM)是一种新型的高灵敏度质量传感器,具有精度高、稳定性好、体积小以及结构简单等优点,能在纳米尺度上精确测量质量、粘度和剪切模量等物理参量,被广泛地应用于电化学、生物医学、有机化学、分析化学和物理学等领域。本论文详细地论述了QCM的基本原理、理论模型、电路实现、网络分析仪测量以及其在物理吸附方面的应用。文中介绍了负载物理属性对测量结果的影响的模拟计算,讲述了基于频率、电阻及耗散因子的QCM数据采集系统的软硬件设计,给出了网络分析仪技术用在QCM测量上的实现方案,并在固体表面的大分子的物理吸附方面取得了很有意义的研究成果。
     本研究工作的主要创新点在于:
     1)基于QCM的力学模型和电学模型开展了一系列关于QCM电学响应的模拟计算。计算结果给出了膜的粘弹性和溶液属性对QCM测量结果的影响,指出了液相中QCM作为质量传感器所带来的测量偏差。
     2)分析了QCM驱动电路的重点和难点,给出了一种能测量耗散因子和串联电阻以及串联谐振频率的QCM驱动电路的实现方案。针对QCM对温度稳定性的苛刻要求设计出了一套智能温度控制系统,温度稳定度极高。
     3)针对此QCM驱动电路,设计出了一套基于USB2.0接口的高速数据采集系统。采用了高速和高精度模数转换技术以及等精度频率测量技术,拥有两路模拟通道,可以同时采集两路QCM模拟数据以便做差分运算和比较分析。对外接口简单,使用方便,具有较高的科研价值和商业价值。
     4)设计了一套基于网络分析仪的QCM参数测量系统,给出了详细的硬件和软件实现方案,能够方便地获取各种负载环境下晶体各次谐波所对应的QCM电学参数,并通过实验验证了此系统的有效性。此系统功能强大,可测参数多,晶体能工作在很高的能量耗散环境中,可与通用的QCM互补使用。
     5)用QCM开展了金表面上聚(N-异丙基丙烯酰胺)(PNIPAM)的物理吸附实验,结果表明PNIPAM的结构强烈地影响着其在固体表面上的物理吸附。伸张状态下的吸附动力学受分子向吸附底层的扩散所影响,吸附时间常数受溶液的浓度和温度的影响较大。塌缩状态下PNIPAM的吸附时间常数基本上不依赖于温度和浓度。浓度在0-100ppm的范围内,伸张状态下的PNIPAM只在金表面形成单层吸附膜。而当聚合物转变到塌缩态时,同样的底层上会形成多层膜。
Quartz Crystal Microbalance (QCM) is a new type of micro-mass sensor which allows accurate measurements of mass, viscosity and shear modulus on nano-scale. It has been used widely in many fields, such as electrochemistry, biomedicine, organic chemistry, analytical chemistry, physics, etc, because of its high precision, good stability, small size and simple structure. In this thesis, we extensively discussed the basic principle, theoretical model, driving and interface circuit, measurement of network analyzer, application on physisorption of QCM. We presented the simulating calculation about the influence of physical properties on measurable results. The design of hardware and software of the data-acquisition system of QCM was introduced. The implementation of network analyzer on QCM measurements was proposed. Also we got some interesting results about the physisorption of macromolecule on solid surface.
     In our research, we did something new as follows:
     1) Based on the mechanical and electrical model we carried out a series of simulation on the electrical response of QCM. The result shows that the viscoelastic properties of adsorption films and solution have a large impact on the measurable result of QCM. We calculated the determinate errors which were brought by the solution when quartz acted as the mass sensor.
     2) We analysed the important and difficult points of the driving circuit of QCM and proposed a new design of driving circuit which can measure frequency, resistance and dissipation. An intellectual temperature controllable system was designed to satisfy the rigorous demand of temperature stability.
     3) We designed a high speed data-acquisition circuit of QCM with USB2.0 interface. It adopts the technique of high speed and high precision A/D converter and frequency measurement with equal-precision. It has two analog channels and can be used in many scientific and commercial fields.
     4) We built a system in order to determine the parameters of QCM based on network analyzer. It can measure the electrical parameters of QCM at different harmonics. It can work under extremely lossy circumstances and can be used together with the general QCM apparatus.
     5) We carried out the experiments of physisorption of PNIPAM on gold surface by QCM. The results suggest that the adsorption of PNIPAM is strongly influenced by the conformation of the polymer. The adsorption kinetics in the swollen state is governed by molecular diffusion to the adsorption substrate; the adsorption time constant depends strongly on concentration and temperature. The time constant for PNIPAM in the collapsed state is nearly temperature- and concentration-independent. In the concentration range below 100 ppm in weight, only a monolayer of PNIPAM in the swollen state can form on the gold electrode surface of QCM. As the polymer transforms to the collapsed state, multilayer PNIPAM forms on the same substrate.
引文
[1]Sauerbrey G Z.Use of quartz crystal vibrator for weighting thin films on a microbalance.Phys.1959,155:206-222.
    [2]Bottom V E.1982.Introduction to quartz crystal unit design.New York:Van Nostrand Reinhold Co.
    [3]Lack F R,Willard G W,Fair I E.Bell System Technical Journal.1934,13:453.
    [4]Oberg P,Ligensio J.Crystal Film Thickness Monitor.Rev.Sci.Instrum.1959,30:1053-1054.
    [5]陈令新,关亚风,杨丙成.压电晶体传感器的研究进展.化学进展.2002,14(1):68-76.
    [6]王凤平,严川伟.石英晶体微天平(QCM)及其在大气腐蚀研究中的应用.化学通报,2001,6:382-387.
    [7]Nomura T,Okumura A.Electrolytic determination of mercury(Ⅱ)in water with a piezoelectric quartz crystal.Anal.Chim.Acta.1986,182:267-270.
    [8]Konash P L,Bastians G J.Piezoelectric crystals as detectors in liquid chromatography.Anal.Chem.1980,52(12):1929-1931.
    [9]姚守拙,周铁安.石英压电振子在液体中的某些振荡特性研究.科学通报.1985,30:1153-1155.
    [10]Kanazawa K K,Gordon J G.The oscillation frequency of a quartz resonator in contact with liquid Anal.Chim.Acta.1985,175:99-105.
    [11]Hlavay J,Guilbault G.Applications of the piezoelectric crystal detector in analytical chemistry.Anal.Chem.1977,49(13):1890-1898.
    [12]Karmarkar K H,Guilbault G G.A new design and coatings for piezoelectric crystals in measurement of trace amounts of sulfur dioxide.Anal.Chim.Acta.1974,71:419-424.
    [13]关鲁雄,刘立华.石英晶体微天平研究进展与展望.传感器世界.2000年第3期.
    [14]谢青季,姚守拙.压电石英品体传感器在电化学研究中的应用-电化学石英晶体微天平.化学传感器.1994,14(3):180-185.
    [15]Hillier A C,Ward M D.Scanning electrochemical mass sensitivity mapping of the quartz crystal microbalance in liquid media.Anal.Chem.1992,64:2539-2554.
    [16]Vaskelis A,Stalnionis G,Jusys Z.Cyclic voltammetry and quartz crystal microgravimetry study of autocatalytic copper(Ⅱ)reduction by cobalt(Ⅱ)in ethylenediamine solutions.J.Electroanal.Soc.1999,465:142-52.
    [17]清山哲朗.1990.化学传感器.董万堂译.北京:化学工业出版社,14-19.
    [18]Abad J M,Pariente F,Hemandez L,et al.A quartz crystal microbalance assay for detection of antibodies against the recombinant African swine fever virus attachment protein p12 in swine serum.Anal.Chim.Acta.1998,368:183-189.
    [19]Makoto M,Fumihiko O,Yoshihiro M,et al.Quartz crystal microbalance for the detection of microgram quantities of human serum albumin:relationship between the frequency change and the mass of protein adsorbed.Anal.Chem.1993,65:2933-2937.
    [20]Joseph W,Mian J.Dendritic Nucleic Acid Probes for DNA Biosensors.J.Am.Chem.Soc.1998,120:8281-8282.
    [21]Kyusik Y,Eiry K,Tetsuya H,et al.Use of a Quartz Crystal Microbalance To Monitor Immunoliposome-Antigen Interaction.Anal.Chem.1998,70:260-264.
    [22]Hook F,Ray A,Norden B,et al.Characterization of PNA and DNA Immobilization and Subsequent Hybridization with DNA Using Acoustic-Shear-Wave Attenuation Measurements.Langmuir.2001,17:8305-8312.
    [23]Chang P,Shih J S.Application of piezoelectric Ru(Ⅲ)/cryptand-coated quartz crystal gas chromatographic detector for olefins. Anal. Chim. Acta. 1999, 380(1): 55-62.
    
    [24] Finklea H.Mark A P, Lompert E. Highly Sorbent Films Derived from Ni(SCN)2 (4-picoline)4 for the Detection of Chlorinated and Aromatic Hydrocarbons with Quartz Crystal Microbalance Sensors. Anal. Chem. 1998,70(7): 1268-1276.
    
    [25] W H King Jr. Piezoelectric Sorption Detector. Anal. Chem. 1964,36:1735-1239.
    
    [26] Karmarkar K H, Guilbault G G. A new design and coatings for piezoelectric crystals in measurement of trace amounts of sulfur dioxide. Anal. Chim. Acta. 1974, 71:419-424.
    
    [27] Abad J M, Pariente F, Hernandez L, et al. Determination of Organophosphorus and Carbamate Pesticides Using a Piezoelectric Biosensor. Anal. Chem. 1998,70:2848-2855.
    
    [28] Niels Peder Raj Andersen. Limitations of the use of the electrochemical quartz crystal microbalance in stripping analysis of lead(II) and cadmium(II) on a quartz crystal platinum electrode with a thin mercury film. Anal. Chim. Acta. 1998, 368:191-196.
    
    [29] Krim J, Solina D H, Chiarello R. Nanotribology of a Kr Monolayer:A Quartz-Crystal Microbalnce Study of Atomic-Scale Friction. Phys. ReV. Lett. 1991,66:181-185.
    
    [30] Plunkett M, Wang Z, Rutland M W, et al. Adsorption of pNIPAM Layers on Hydrophobic Gold Surfaces, Measured in Situ by QCM and SPR. Langmuir. 2003,19:6837-6844.
    
    [31] Lucklum R. Behling C. Cernosek R W, et al. Determination of complex shear modulus with thickness shear mode resonators. J Phys D-Appl Phys. 1997, 30:346-356.
    
    [32] D'Amour J N,Stalgren J J R,Kanazawa K K,et al.Capillary Aging of the Contacts between Glass Spheres and a Quartz Resonaotr Surface. Phys. ReV. Lett. 2006,96:058301-4.
    
    [33] 赵声衡.1997.石英晶体振荡器.长沙:湖南大学出版社.
    
    [34] L Bruschi, G Delfitto, G Mistura. Inexpensive but accurate driving circuits for quartz crystal microbalances. Rev.Sci.Instrum. 1999, 70:153-157.
    
    [35] Kanazawa K K. Some basics for operating and analyzing data using the thickness shear mode resonator. Analyst. 2005,130:1459-1464.
    
    [36] Rechendorff K, Hovgaard M B, Foss M, et al. Influence of surface roughness on quartz crystal microbalance measurements in liquids. J.Appl.Phys. 2007,101:114592-7.
    
    [37] Josse F, Lee Y. Analysis of the Radial Dependence of Mass Sensitivity for Modified-Electrode Quartz Crystal Resonators. Anal. Chem. 1998, 70:237-247.
    
    [38] Johannsmann D. Viscoelastic analysis of organic thin films on quartz resonators. Macromol. Chem. Phys. 1999,200:501-516.
    [39] Rodahl M, Kasemo Bengt. On the measurement of thin liquid overlayers with the quartz-crystal microbalance. Sensors and Actuators A. 1996, 54:449-456.
    [1]高吉祥.2007.高频电子线路.北京:电子工业出版社,29-34.
    [2]Kanazawa K K,Gordon J G.Frequency of a quartz microbalance in contact with liquid.Anal.Chem.1985,57:1770.
    [3]Kanazawa K K.1986.IBM Research Report RJ5125(53236),IBM.
    [4]Bruckenstein S,Shay M.Experimental aspects of use of the quartz crystal microbalance in solution.Electrochim.Acta.1985,30:1295-1300.
    [5]Mason W P.1948.Electromechanical Transducers and Wave Filters.NewYork:VanNostrand.
    [6]Lu C S,Lewis O.Investigation of film-thickness determination by oscillating quartz resonators with large mass load.J.Appl.Phys.1972,43:4385-4390.
    [7]Miller J G.Bolef D I.Sensitivity Enhancement by the Use of Acoustic Resonators in cw Ultrasonic Spectroscopy.J.Appl.Phys.1968,39:4589-4593.
    [8]Kanazawa K K.Some basics for operating and analyzing data using the thickness shear mode resonator.Analyst.2005,130:1459-1464.
    [9]Benes E.Improved quartz crystal microbalance technique.J.Appl.Phys.1984,56:608-626.
    [10]Lucklum R.Behling C.Cemosek R W,et al.Determination of complex shear modulus with thickness shear mode resonators.J Phys D-Appl Phys.1997,30:346-356.
    [11]Phitippoff W.1998.Physical Acoustics:Principles and Methods.New York:Academic Press.
    [12]Voinova M V,Rodahl M,Jonson M,et al.Viscoelastic Acoustic Response of Layered Polymer Films at Fluid-Solid Interfaces:Continuum Mechanics Approach.Phys.Scr.1999,59:391-396.
    [13]Sauerbrey G Z.Use of quartz crystal vibrator for weighting thin films on a microbalance.Phys.1959,155:206-222.
    [14]Rodahl M.Kasemo B.On the measurement of thin liquid overlayers with the quartz-crystal microbalance.Sensors & Actuators A.1996,54:448-456.
    [15]Landau L D.1987.Lifshitz E M.Fluid Mechanics,2~(nd)ed.Oxford:Pergamon.
    [16]Filiatre C.Bardeche G.Valentin M.Transmission-line model for immersed quartz-crystal sensors.Sensors Actuators A.1994,44:137-144.
    [17]Krimholtz R.Leedom D A.Mathaei G L.New equivalent circuits for elementary piezoelectric transducers.Electron.Lett.1970,6:398-399.
    [18] Hook F, Kasemo B, Nylander T, et al. Variations in Coupled Water, Viscoelastic Properties, and Film Thickness of a Mefp-1 Protein Film during Adsorption and Cross-Linking: A Quartz Crystal Microbalance with Dissipation Monitoring, Ellipsometry, and Surface Plasmon Resonance Study. Anal.Chem. 2001, 73:5796-5804.
    
    [19] Granstaff V E, Martin S J. Characterzition of a thickness-shear mode quartz resonator with multiple nonpiezoelectric layers. J.Appl.Phys. 1994, 75,1319-1329.
    
    [20] Hook F, Kasemo B, Nylander T, et al. Variations in Coupled Water, Viscoelastic Properties, and Film Thickness of a Mefp-1 Protein Film during Adsorption and Cross-Linking: A Quartz Crystal Microbalance with Dissipation Monitoring, Ellipsometry, and Surface Plasmon Resonance Study. Anal. Chem. 2001, 73(24): 5796-5804.
    
    [21] Gupta P, Elkins C, Long T E, et al. Electrospinning of linear homopolymer of poly(methl methacrylate):exploring relationships between fiber formation,viscosity,molecular weight and concentration in a good solvent. Polymer. 2005,46:4799-4810.
    [1]Kanazawa K K.Some basics for operating and analyzing data using the thickness shear mode resonator.Analyst.2005,130:1459-1464.
    [2]Benjaminson A,Arlington.1987-04-28.Balanced Feedback Oscillators.US,4661785
    [3] David W P, Theodore L B. 1988-11-29. Piezoelectric Sensor Q-Loss Conversation. US, 4778466[P].
    
    [4] Glenn C K, Fred S, Willian J P. A high-stability quartz crystal microbalance electrode for simultaneous solution-phase electrochemistry/microgravitometry. Rev.Sci.Instrum. 1993,64: 1530-1535.
    
    [5] Devid M S. A quartz microbalance with the capability of viscoelasticity measurements for in situ electrochemical investigations. Meas.Sci.Technol. 1993, 4:549-553.
    
    [6] Kurt O Wessendorf. The level oscillator for use in high resistance resonator applications. 1993 IEEE International Frequency Control Symposium.
    
    [7] Cheryl C, Patty G, Watkins A N,et al. An electronic oscillator with automatic gain control: EQCM applications. Sensors and Actuators B. 1996, 32:129-136.
    
    [8] Benes E, Schmid M, Groschl M, et al. Solving the cable problem between crystal sensor and electronics by use of a balanced bridge oscillator circuit. 1999 Joint Meeting EFTF-IEEE IFCS.
    
    [9] Frank E, Ralf B, Jens S, et al. Interface circuits for quartz-crystal-microbalance sensors. Rev.Sci.Instrum. 1999, 70(5) :2537-2545.
    
    [10] Herve E, Claude G, Michel K, et al. Performances and limits of a parallel oscillator for electrochemical quartz crystal microbalances. Anal Chem. 2002,74:1119-1127.
    
    [11] Stanford Research Systems. Operation and Service Manual, QCM100.pdf.
    
    [12] Frank P, Karl P, Richard C P, et al. 2005-02-01. Quartz crystal microbalance with feedback loop for automatic gain control. US,6848299B2[P].
    
    [13] Clarence H, Baldwinsville N Y. 1992-05-26. Control circuitry for quartz crystal deposition monitor. US,5117192[P].
    
    [14] Takamichi N, Takeharu K. Development of circuit for measuring both Q variation and resonant frequency shift of quartz crystal microbalance. IEEE Transaction on Ultrasonic, Ferroelectrics, and Frequency Control. 1994,41 (6): 806-810.
    
    [15] Mitsuaki K, Yasuaki W, Hitoshi S, et al. An experimental study of frequency jumps during the aging of quartz oscillators. IEEE Transaction on Ultrasonic, Ferroelectrics, and Frequency Control. 1996, 43 (5): 907-910.
    
    [16] Bruschi L, Delfitto G, Mistura G. Inexpensive but accurate driving circuits for quartz crystal microbalances. Rev.Sci.Instrum. 1999, 70:153-157.
    [17]Hayderer G,Schmid M,Varga P,et al.A highly sensitive quartz-crystal microbalance for sputtering invesigations in slow ion-surface collisions.Rev.Sci.Instrum.1999,70:3696-3700.
    [18]Arnau A,Sogorb T,Jimenez Y.A continuous motional series resonant frequency monitoring circuit and a new method of determining Butter-Van Dyke parameters of a quartz crystal microbalance in fluid media.Rev.Sci.Instrum.2000,71(6):2563-2571.
    [19]Peter H,Palf B,Jens S.Application of novel sensor electronics for quartz resonators in artificial tongue.2000 IEEE/EIA International Frequency Control Symposium and Exhibition.
    [20]Vittorio F,Daniele M,Andrea T.Improving the accuracy and operating range of quartz microbalance sensors by a purposely designed oscillator circuit.IEEE Transaction on instrumentation and measurement.2001,50(5):1119-1122.
    [21]Jakoby B,Art G,Bastemeijer J.Novel readout electronics for TSM viscosity sensors.Sensors,2003.Proceedings of IEEE.2003,2:839-842.
    [22]Schaefer R,Doerner S,Lucklum R,et al.Single board impedance analyzer and transient analysis of QCR sensor response.2004 IEEE Intematioal Ultrasonics,Ferroelectrics and Frequency Control Joint 50~(th)Anniversary Conference..
    [23]www.maxtekinc.com,PLO-10i_datasheet.pdf.
    [24]赵声衡.1997.石英晶体振荡器.湖南:湖南大学出版社,153-167.
    [25]刘金琨.2003.先进PID控制及其MATLAB仿真.北京:电子工业出版社,1-45.
    [1]AD9224.pdf,AD9850.pdf.ANALOG DEVICE INC.
    [2]EP1C3T144.pdf.Altera International Limited.
    [3]LTC2410.pdf.Linear Technology.
    [4]CY7C68013.pdf.Cypress Semiconductor.
    [5]钱峰.2005.EZ-USB FX2单片机原理、编程及应用.北京:北京航空航天大学出版社.
    [6]朱正平,宁百齐,袁洪.基于USB2.0接口芯片FX2的高速数据采集板的设计实现.微计算机应用.2006,27(3):328-331.
    [7]杨波,刘延波.具有USB2.0接口的高速数据采集卡设计.单片机与嵌入式系统应用.2004,4:53-56.
    [8]朱清林,邹传云.基于USB2.0的高速数据采集系统的设计.现代电子技术.2005,21:120-122.
    [9]李斌,陈建辉.基于CPLD及C语言的等精度频率计设计.电测与仪表,2006,43:42-45.
    [10]Stanford Research Systems.Operation and Service Manual,QCM100.pdf.
    [1]Buttry D A,Word M D.Measurement of interracial processes at electrode surfaces with the electrochemical quartz crystal microbalance.Chem.Rev.1992,92:1355-I379
    [2]Plunkett M,Wang Z,Rutland M W,et al.Adsorption of pNIPAM Layers on Hydrophobic Gold Surfaces,Measured in Situ by QCM and SPR.Langmuir.2003,19:6837-6844.
    [3]Kun Wu,Bing Wu,Ping Wang,et al.Adsorption isotherms and dissipation of adsorbed Poly(N-isopropylacrylamide)in its swelling and collapsed states.JOURNAL OF PHYSICAL CHEMISTRY B.2007,111(30):8723-8727.
    [4]Bing Wu,Kun Wu,Ping Wang,et al.Adsorption kinetics and adsorption isotherm of poly(N-isopropylacrylamide)on gold surfaces studied using QCM-D.JOURNAL OF PHYSICAL CHEMISTRY C.2007,111(3):1131-1135.
    [5]Mecea,V M.Is quartz crystal microbalance really a mass sensor?.Sens.Actuators A. 2006,128:270-277
    
    [6] Shen D Z, Kang Q, Xue Y H, et al. Maximum separation-distance for a separated-electrode piezoelectric sensor: application to the determination of cationic surfactant adsorbed onto quartz surface. Sens.Actuators B. 1998, 50:253-258.
    
    [7] Q-Sense AB, Redegatan 13, SE-426 77 Vastra Frolunda, Sweden.
    
    [8] Zimmermann B, Lucklum R, Hauptmann P, et al. Electrical characterisation of high-frequency thickness-shear-mode resonators by impedance analysis. Sens.Actuators B. 2001,76:47-57.
    
    [9] Kang Q, Qi Y, Zhang P, et al. Improve the signal-to-noise ratio of a quartz crystal microbalance in an impedance analysis method. Talanta. 2007, 72 (4): 1474-1480.
    
    [10] Morawetz H. 1975. High polymers. 2nd Ed. Macromolecules in solution, vol.21. NY: Wiley.
    
    [11] Pankaj G,Casey E.Timothy E L,et al.Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent. Polymer. 2005,46:4799-4810.
    
    [12] http://www.home.agilent.com/agilent/home.jspx
    [1]Fleer G,Stuart M A,Scheutjens J M,et al.1993.Polymers at Interfaces,1st ed.Cambridge,England:Cambridge University Press,and references therein.
    [2](a)Adamson A W.1997.Physical Chemistry of Surfaces,6th ed.New York:Wiley.(b)Israelachvili J.1992.Intermolecular & Surface Forces.New York:Academic Press.
    [3]Taub H,Torzo G,Lauter H J,et at.1991.Phase Transitions in Surface Films Ⅱ,Series B:Physics,Plenum.New York:NATO Advanced Study Institute.
    [4]Hu T,Gao J,Wu C,et al.Temperature Induced Hydrophobic Adsorption and Desorption of Linear Polymer Chains on Surfactant-Free Latex Nanoparticles.J.Phys.Chem.B.2002,106:9815-9819.
    [5]Wu C,Wang X H.Globule-to-coil transition of a single homopolymer chain in solution.Phys.ReV.Lett.1998,80:4092-4094.
    [6]Zhou S,Wu C.In-Situ Interferometry Studies of the Drying and Swelling Kinetics of an Ultrathin Poly(N-isopropylacrylamide)Gel Film below and above Its Volume Phase Transition Temperature.Macromolecules.1996,29:4998-5001.
    [7]Zhang G Z,Wu C.Reentrant Coil-to-Globule-to-Coil Transition of a Single Linear Homopolymer Chain in a Water/Methanol Mixture.Phys.ReV.Lett.2001,86:822-825.
    [8]Okada Y,Tanaka F,Kujawa P,et al.Unified model of association-induced lower critical solution temperature phase separation and its application to solutions of telechelic poly(ethylene oxide)and oftelechelic poly(N-isopropylacrylamide)in water.J.Chem.Phys.2006,125:244902-11.
    [9]Kanazawa H,Yamamoto K,Matsushima Y.Temperature-Responsive Chromatography Using Poly(N-isopropylacrylamide)-Modified Silica.Anal.Chem.1996,68:100-105.
    [10] Plunkett K N, Zhu X, Moore J S, et al. PNIPAM Chain Collapse Depends on the Molecular Weight and Grafting Density. Langmuir. 2006,22:4259-4266.
    
    [11] Katayama S, Hirokawa Y, Tanaka T. Reentrant phase transition in acrylamide-derivative copolymer gels. Macromolecules. 1984,17:2641-2643.
    
    [12] Hirotsu S. Critical points of the volume phase transition in iV-isopropylacrylamide gels. J.Chem. Phys. 1988, 88:427-431.
    
    [13] Asano M, Winnik F M, Yamashita T, et al. Fluorescence Studies of Dansyl-Labeled Poly(N-isopropylacrylamide) Gels and Polymers in Mixed Water/Methanol Solutions. Macromolecules. 1995,28:5861-5866.
    
    [14] Mukae K, Sakurai S, Sawamura S, et al. Swelling of poly(N-isopropylacrylamide) gels in water-alcohol (C1-C4) mixed solvents. J. Phys. Chem. 1993,97:737-741.
    
    [15] Zhang G. Study on Conformation Change of Thermally Sensitive Linear Grafted Poly(N-isopropyIacryIamide) Chains by Quartz Crystal Microbalance. Macromolecules. 2004,37:6553-6557.
    
    [16] Liu G, Cheng H, Yan L, et al. Study of the Kinetics of the Pancake-to-Brush Transition of Poly(N-isopropylacrylamide) Chains. J. Phys. Chem. B. 2005,109:22603-22607.
    
    [17] Ding Y, Ye X, Zhang G Z. Microcalorimetric Investigation on Aggregation and Dissolution of Poly(N-isopropylacrylamide) Chains in Water. Macromolecules. 2005, 38:904-908.
    
    [18] Wang X, Qiu X, Wu C. Comparison of the Coil-to-Globule and the Globule-to-Coil Transitions of a Single Poly(iV-isopropylacrylamide) Homopolymer Chain in Water. Macromolecules. 1998, 31:2972-2976.
    
    [19] Hu T, You Y, Pan C,et al. The Coil-to-Globule-to-Brush Transition of Linear Thermally Sensitive Poly(N-isopropylacrylamide) Chains Grafted on a Spherical Microgel. J. Phys. Chem. B. 2002,106:6659-6662.
    
    [20] O'Shaughnessy B, Vavylonis D. Irreversibility and Polymer Adsorption. Phys. ReV. Lett. 2003,90(5):056103-4.
    
    [21] Huber D L, Manginell R P, Samara M A, et al. Programmed Adsorption and Release of Proteins in a Microfluidic Device. Science. 2003, 301:352-354.
    
    [22] Xu F J, Zhong S P, Yung, L Y, et al. Surface-Active and Stimuli-Responsive Polymer-Si(100) Hybrids from Surface-Initiated Atom Transfer Radical Polymerization for Control of Cell Adhesion. Biomacromolecules. 2004, 5:2392-2403.
    [23] Akiyama Y, Kikuchi A, Yamato M, et al. Ultrathin Poly(N-isopropylacrylamide) Grafted Layer on Polystyrene Surfaces for Cell Adhesion/Detachment Control. Lamgmuir. 2004,20: 5506-5511.
    
    [24] Hirotsu S, Yamamoto I, Matsuo A, et al. BRILLOUIN-SCATTERING STUDY OF THE VOLUME PHASE-TRANSITION IN POLY-N-ISOPROPYLACRYLAMIDE GELS.J. Phys. Soc.Jpn. 1995,64:2898-2907.
    
    [25] Kidoaki S, Ohya S, Nakayama Y, et al. Thermoresponsive Structural Change of a Poly(N-isopropylacrylamide) Graft Layer Measured with an Atomic Force Microscope . Langmuir. 2001,17:2402-2407.
    
    [26] Zhu P W, Napper D H. Longer time kinetics of collapse transition of polymer-surfactant complexes at interfaces near to collapse temperatures. Phys. ReV. E. 2000,61:6866-6871.
    
    [27] Gao J, Wu C. The "Coil-to-Globule" Transition of Poly(N-isopropylacrylamide) on the Surface of a Surfactant-Free Polystyrene Nanoparticle. Macromolecules. 1997,30:6873-6876.
    
    [28] Plunkett M, Wang Z, Rutland M W, et al. Adsorption of pNIPAM Layers on Hydrophobic Gold Surfaces, Measured in Situ by QCM and SPR. Langmuir. 2003,19:6837-6844.
    
    [29] Dash J G. 1975. Films on Solid Surfaces. New York: Academic Press.
    
    [30] Talapatra S, Migone A D. Existence of Novel Quasi-One-Dimensional Phases of Atoms Adsorbed on the Exterior Surface of Close-Ended Single Wall Nanotube Bundles. Phys. ReV. Lett. 2001, 87(20): 206106-4.
    
    [31] Schaar P, Vogel J, Senger B. From Random Sequential Adsorption to Ballistic Deposition: A General View of Irreversible Deposition Processes. J. Phys. Chem B. 2000,104:2204-2214.
    
    [32] Karpovich D S, Blanchard G J. Direct Measurement of the Adsorption Kinetics of Alkanethiolate Self-Assembled Monolayers on a Microcrystalline Gold Surface . Langmuir. 1994, 10:3315-3322.
    
    [33] Hansen F Y, Herwig K W, Matthies B, et al. Intramolecular and Lattice Melting in n-Alkane Monolayers: An Analog of Melting in Lipid Bilayers. Phys.ReV. Lett. 1999,83:2362-2365. [34] Q-Sense AB, Redegatan 13, SE-426 77 Vastra Frolunda, Sweden.
    
    [35] Sauerbrey G Z. Use of quartz crystal vibrator for weighting thin films on a microbalance. Phys. 1959,155:206-222.
    
    [36] Rodahl M, Hook F, Krozer A, et al. Quartz crystal microbalance setup for frequency and Q -factor measurements in gaseous and liquid environments. Rev. Sci. Instrum. 1995,66:3924-110 3930.
    
    [37] Voinova M V, Rodahl M, Jonson M,et al. Viscoelastic Acoustic Response of Layered Polymer Films at Fluid-Solid lnterfaces:Continuum Mechanics Approach. Phys. Scr. 1999,59:391-396.
    
    [38] Hook F, Rodahl M, Brezinski P, et al. Energy Dissipation Kinetics for Protein and Antibody-Antigen Adsorption under Shear Oscillation on a Quartz Crystal Microbalance. Langmuir. 1998,14:729-734.
    
    [39] Keller C A, Glasmaster K, Zhdanov V P, et al. Formation of Supported Membranes from Vesicles. Phys.ReV. Lett. 2000,84:5443-5446.
    
    [40] Lucklum R, Behling C, Hauptman P. Role of Mass Accumulation and Viscoelastic Film Properties for the Response of Acoustic-Wave-Based Chemical Sensors. Anal. Chem. 1999,71:2488-2496.
    
    [41] Zhu D M, Fang J J, Wu B, et al. Viscoelastic response and profile of adsorbed molecules probed by quartz crystal microbalance. PHYSICAL REVIEW E. 2008, 77:031605.
    
    [42] Fawcett N C, Craven R D, Zhang P, et al. QCM Response to Solvated, Tethered Macromolecules. Anal. Chem. 1998, 70:2876-2880.
    
    [43] Hieda M, Garcia R, Dixon M, et al. Ultrasensitive quartz crystal microbalance with porous gold electrodes. Appl. Phys. Lett. 2004, 84:628-630.
    
    [44] Belu C, Delsanti M, Guenoun P. Colloidal Phase Separation of Concentrated PNIPAm Solutions. Langmuir. 2007, 23:2404-2407.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700