用户名: 密码: 验证码:
壁板非线性气动弹性颤振及稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
壁板颤振是发生在高速飞行器上的一种典型的超音速气动弹性现象。壁板颤振对飞行器结构的疲劳寿命、飞行性能甚至飞行安全带来不利的影响。本文基于气动力活塞理论、Von Karman大变形几何应变-位移关系以及伽辽金离散方法,对壁板热气动弹性系统非线性响应的稳定性进行了深入的研究,分析各种参数对系统颤振临界动压与极限环幅值的影响以及系统发生分叉失稳的复杂运动形态。主要体现在以下几个方面:
     1、将二维壁板非线性颤振系统的高阶运动微分方程化为四维一阶微分方程,针对系统在平衡点处的Jacobi矩阵,应用特征值理论和Hopf分叉代数判据解析推导了系统发生静态叉式分又及动态Hopf分叉的临界条件。在参数平面内讨论了该系统在各个区域内平衡点的个数和稳定性。
     2、运用准定常的热应力公式,基于一阶气动力活塞理论建立了考虑温度效应的几何非线性无限展长二维壁板颤振方程。采用伽辽金方法对方程进行离散处理,基于Matlab编程对系统进行了数值仿真分析。结果表明温度载荷降低了系统的颤振临界动压,系统极限环响应幅值随温度的升高而增大。位移响应的分又图表明,系统随温度的变化表现出各种周期振动行为,且在特定的参数区间内存在混沌响应。热效应导致的材料非线性使得系统的颤振临界动压进一步减小,在分叉参数范围内系统表现出更为丰富的非线性动力学行为。
     3、基于三阶活塞气动力理论,采用伽辽金方法建立了热环境下三维壁板在超音速流作用下的颤振方程。采用龙格-库塔法对系统进行数值积分,分析模态截取阶数、温度、非线性气动力以及壁板几何尺寸对壁板颤振的影响规律。结果表明,热应力是降低壁板稳定性的一个重要因素,随着温度的升高,壁板颤振临界动压降低。以温度为可变参量,给出了壁板振动的分叉图。结果表明,系统不仅存在简单的极限环颤振,而且会出现周期2、周期4等复杂的运动形态,甚至会出现混沌运动。系统通向混沌的道路不都是周期倍化分叉,还有拟周期道路等。继续升高温度,系统还会产生热屈曲失稳。
     4、以热环境下三维壁板为研究对象,研究大气紊流作用下系统的动力响应。将大气紊流速度分解为平均速度和脉动速度两部分,采用Von Karman紊流谱结合随机场三角级数合成法得到时域脉动速度的表达式。基于一阶活塞理论求解气动力,用随机理论对壁板均方根响应值进行分析。着重考查了紊流场的几个主要参数对均方根响应值的影响。结果表明,当来流平均动压接近和超过颤振临界动压时,均方根响应值随平均动压和温度的增大而增加。均方根响应值仅在平均动压接近颤振临界动压时随紊流强度变化显著,但对紊流尺度的变化不敏感。
     5、基于Kelvin粘弹模型建立了三维粘弹壁板非线性颤振方程。通过对粘弹阻尼、面内力、壁板长宽比和来流速度变参分析,研究上述参数变化对粘弹壁板颤振的影响规律。在无量纲动压—面内力的二维参数平面内分析粘弹壁板颤振系统的运动特性,给出了系统存在不同响应特性的分区图。结果表明,颤振临界动压随粘弹阻尼的增大先减小后增大。混沌响应区域随粘弹阻尼系数的增大快速减小,说明粘弹阻尼有抑制混沌响应的作用。而屈曲区域却基本不受影响。通过分叉图观察到随着动压的变化,粘弹性壁板系统由混沌经一系列的倒分叉进入简单的极限环颤振状态。
     6、以面内力作用的壁板模型为对象,研究边界松驰条件下壁板的复杂响应。首先采用坐标变换结合伽辽金方法建立非理想边界三维壁板几何非线性颤振方程,再通过对非线性系统的数值积分,分析不同参数下该系统的周期振动以及进入各种复杂分叉的过程。结果表明,随边界约束的放松,颤振临界动压减小。分别以边界松驰因子、来流动压及面内压力为可变参数,研究系统的分叉现象。结果表明,系统存在Hopf分叉、极限环叉式分叉、混沌以及混沌中周期3窗口等。另外,在一些特殊参数区域内,同一动压下,系统存在两个稳定的极限环。根据初始条件的不同,系统分别收敛到不同的极限环上。
The panel flutter is a classical supersonic aeroelastic phenomenon on the outer skin of high-speed aerospace vehicles, which always leads to the fatigue failure of the skin panels and has a harmful influence on the flight perfermance and even flight safety. Based on the piston theory of supersonic aerodynamics, Von Karman large deformation strain-displacement relation and the Galerkin method, the aerothemoelastic stability of the non-linear panel is systematically investigated by numerical method. The main works are as follows:
     1. The higher order motion differential equations of the two-dimensional panel flutter system are rewritten as the lower order differential equations. Applying the eigenvalue theory and Hopf bifurcation criterian to analyze the Jacobi matrix of the equilibrium points, the analytical solutions of critical conditions of pitchfork bifurcations and Hopf bifurcations are obtained in a two-dimensional parameter plane. The number and the stabilities of the equilibrium points in the different regions of the two-dimension parameter plane are analyzed.
     2. Based on the quasi-steady theory of thermal stress and the first order piston theory of supersonic aerodynamics, the flutter differential equations of a panel with the thermal effect and the geometrical nonlinearity are established. The Galerkin approach is applied to simplify the equations into the discrete forms, which are solved by the fourth order Ronger-Kutta method. The calculated results show that the critical dynamic pressure of the panel is descended by the temperature loads and the amplitude of limite cycle flutter is raised with the increase of temperature. The bifurcation curve indicates that there are some different period responses in the flutter system when the temperature is changed, especially, the chaotic responses are observed in some special parameter region. When the thermal effect of material is considered, the critical dynamic pressure of the panel is further reduced and the more complex dynamic behaviors in the flutter system are observed.
     3 The third order piston theory is employed to calculate the aerodynamic load acting on the panel. A nonlinear aeroelastic system of a three-dimensional panel with the thermal effect is modelled by Galerkin method. The fourth order Runge-Kutta method is utilized to analyze the bifurcation forms of the nonlinear system. The effects of mode number, temperature, nonlinear aerodynamic terms and the length /width ratio of panel on the flutter of the panel are investigated. The results show that the thermal stress is an important parameter for the flutter stability of the panel and with the rise of temperature the critical dynamic pressure of the panel is descended. The bifurcation curve of the system response vs temperature indicates that with the increase of temperature, the flutter system undertakes period 1, period 2, period 4, chaos, quasi-period and so on. The routes to chaos involve period-doubling bifurcation and quasi-period in the system. When the temperature is higher, the system loses its stability into the thermal buckling.
     4 The dynamical responses of the three-dimensional panel with the thermal effect and geometrical nonlinearity in turbulence are studied. The velocity of atmosphere turbulence is divided into two parts, the mean velocity and the fluctuating velocity. Von Karman's spectrum of atmosphere turbulence and the composition method of trigonometric series are used to calculate the the fluctuating velocity in time domain. The first order piston theory of supersonic aerodynamics is used to calculate the aerodynamic forces. The mean square response of the panel is calculated by random theory. The effects of some main parameters of the turbulence on the mean square roots of response are analyzed, the results of which show that the mean square roots of the response increase with the rise of the mean pressure or temperature when the mean pressure is close to and over the flutter critical pressure. The root mean square response has a pronounce change to the strength of atmosphere turbulence only when the mean pressure is close to the flutter critical pressure, but it is insensitive to the change of integral measure of atmosphere turbulence.
     5 Based on the Kelvin's viscoelastic damping model, the flutter equations of a three-dimensional panel made of viscoelastic material are set up. The effects of viscoelastic damping, in-plane loads, length-to-width ratios of panel and flow velocity on the flutter of the panel are analyzed. In a two-dimensional parameter plane, the characteristics of the responses of the panel are discussed, the results of which show that with the rise of viscoelastic damping the chaotic region fleetly decreases, so, the viscoelastic damping can control the chaotic response of the panel. But the viscoelastic damping has almost no effect on the buckling region. The bifurcation curve of response vs dynamical pressure shows that the flutter system of the viscoelastic panel may represent complex dynamics characteristics with variation of dynamic pressure. With the increase of dynamical pressure, the response will change into the simple limits cycle oscillation from the chaotic oscillation through a series of bifurcations.
     6. The nonlinear dynamical characteristics of a three-dimensional panel with boundary conditions relaxation are studied. The conventional boundary value problem of the panel involves time-dependent boundary conditions which are converted to an autonomous form using a special coordinate transformation. The flutter equations of the panel are set up by using Galerkin method. The complex dynamic behaviors in the regions close to the bifurcation points of nonlinear system are simulated with numerical method. Taking the dynamic pressure or the relaxation parameter or the in-plane loading as control parameters, the bifurcation diagrams are drawn, the results of which indicate that with variation of bifurcation parameters there are various bifurcation behaviors in the system, such as hopf bifurcation, pitchfork bifurcation, and the period-3 windows in chaos zone. In addition, in some special parameters region, there exist two stable limit cycles in the system at a same dynamic pressure, depending on different initial conditions respectively.
引文
[1]Zhou R.C.,Xue D.Y.,and Mei C.,Finite element time domain modal formulation for nonlinear flutter of composite panels,AIAA Journal,1994,32(10):2044-2052.
    [2]孟凡颢,钟腾育.用壁板颤振理论解决某系列飞机的方向舵蒙皮裂纹故障.飞机设计,2000,(4):1-6.
    [3]陈桂彬,邹丛青,杨超.气动弹性设计基础.北京:北京航空航天大学出版社,2004:1-12.
    [4]杨智春,夏巍,孙浩.高速飞行器壁板颤振的分析模型和分析方法.应用力学学报,2006,23(4):537-542.
    [5]夏巍.考虑热效应的复合材料壁板颤振特性研究.西北工业大学硕士学位论文,2004.
    [6]Dowell E.H.,Panel flutter:a review of the aeroelastic stability of plates and shells,AIAA Journal,1970,8(1):385-399.
    [7]Gray J.C.,Mei C.,Large amplitude finite element flutter analysis of composite panels in hypersonic flow,AIAA Journal,1993,31:1090-1099.
    [8]Mclntosh,S.G.,and Jr.,Theoretical Considerations of Some Nonlinear Aspects of Hypersonic Panel Flutter,Final Report,NASA Grant NGR 05-020-102,Department of Aeronautisc and Astronautics,Stanford University,Stanford,CA,1970.
    [9]Cheng G.F.,and Mei C.,Finite element modal formulation for hypersonic panel flutter analysis with thermal effects,AIAA 2003-1517,44~(th)AIAA/ASME/ ASCE/AHS structures,Structural dynamics,and materials conference,7-10 Norfolk,April 2003.
    [10]Hedgepeth J.M.,Flutter of Rectangular Simply Supported Panels at High Supersonic Speeds,Journal of the Aeronautical Sciences,Vol.24,No.8,Aug.1957,pp.563-573,pp.586.
    [11]Dugundji,J.,Theoretical Considerations of Panel Flutter at High Supersonic Mach Numbers,AIAA Journal,Vol.4,No.7,July 1966,pp.1257-1266.
    [12] Cunningham, H. J., Flutter Analysis of Flat Rectangular Panels Based on Three-Dimensional Supersonic Unsteady Potential Flow, TR R-256, 1967,NASA.
    [13] Chu H.N., and Herrmann G., Influence of Large Amplitudes on Free Flexural Vibration of Rectangular Elastic Plates, Jounal of Applied Mechanics, 1956,23(10): 532-540
    [14] Ashley H. and Zartarian G., Piston Theory - A New Aerodynamic Tool for the Aeroelastician, Journal of Aeronautical Science, 1956, 23(10): 1109-1118.
    [15] Dowell E.H., and Voss H.M., Experimental and Theortical Panel Flutter Studies in Mach Number Range 1.0 to 5.0, AIAA Jouranl, 1965, 3(12):2292-2304.
    [16] Dowell E.H., Nonlinear oscillations of a fluttering plate I, AIAA Journal,1966,4:1267-1275.
    [17] Dowell E.H., Nonlinear oscillations of a fluttering plate II, AIAA Journal,1967,5:1856-1862.
    [18] Ventres C.S., Nonlinear Flutter of Clamped Plates, PH.D. Dissertation,Princeton University, 1970.
    [19] Weiliang Y., Dowell E.H., Limit cycle oscillations of a fluttering cantilever plate, AIAA Journal, 1991,29:1929-1936.
    [20] Kobaysshi S., Flutter of Simply Supported Rectangular Panels in a Supersonic Flow- Two Dimensional Panel Flutter, I-simply supported Panel, II-Clamped Panel, Transaction of Japan Society of Aeronautical and Space Sciences, 1962.5:79-118.
    [21] Librescu L., Aeroelastic Stability of Orthotropic Heterogeneous Thin Plates in the Vicinity of Flutter Critical Boundary, Journal de Mecanique, 1965, 4(1):51-76.
    [22] Eslami H., Nonlinear Flutter and Forced Oscillations of Rectangular Symmrytiv Ctodd-Kobaysshi S., Flutter of Simply SupportePly and Orthotropic Panels Using Harmonic Balance and Pertubation Methods, PH. D Dissertation, Old Dominion Universityd, 1987.
    [23] Yuen S.W., Lau S.L., Effects of inplane load on nonlinear panel flutter by incremental harmonic balance method, AIAA Journal. 1991, 29:1472-1479.
    [24]Morino L.,A perturbation method for treating nonlinear panel flutter problems,AIAA Journal,1969,7:405-410.
    [25]Morino L.,Kuo C.C.,Detailed extensions of perturbation methods for nonlinear panel flutter,ASRL TR-164-2,MIT,Cambridge MA.1971.
    [26]Simith L.,Morino L.,Stability analysis of nonlinear differential autonomous systems with applications to flutter,AIAA Journal,1976,14:333-341.
    [27]Kuo C.C.,Morino L.,Dugundji J.,Perturbation and harmonic balance methods for nonlinear panel flutter,AIAA Journal,1972,10(11):1479-1484.
    [28]Olson M.D.,Finite element approach to panel flutter,AIAA Journal,1967,5:226-227.
    [29]Olson M.D.,Some flutter solutions using finite element,AIAA Journal,1970,8:747-752.
    [30]Appa K.,and Somashekar B.R.,Application of Matrix Displacement Methods in the Study of Panel Flutter,AIAA Journal,1969,7(1):50-53.
    [31]Sander G..,Bon C.,and Geradin M.,Finite Element Analysis of Supersonic Panel Flutter,International Journal for Numerical Methods in Engineering,1973,7(3):379-394.
    [32]Yang T.Y.,Han A.D.,Flutter of thermally buckled finite element panels,AIAA Journal,1976,14:975-977.
    [33]Yang T.Y.,and Sung S.H.,Finite Element in Three-Dimensional Supersonic Unsteady Potential Flow,AIAA Journal,1977,15(12):1677-1683
    [34]Mei C.,Weidman D.J.,Nonlinear panel flutter-a finite element approach,Computational methods for fluid-structure interaction problems,1977,AMP-Vol.26,ASME,New York,139-165.
    [35]Mei C.,Rogers J.J.,Application of NASTRAN to large deflection supersonic flutter of panels,NASA TM-X-3429,1976,67-97.
    [36]Rao K.S.,Rao G.V.,Large amplitude supersonic flutter of panels with ends elastically restrained against rotation,Int J Comput Struct.1980,11:197-201.
    [37]Mei C.,Wang H.C.,Finite element analysis of large amplitude supersonic flutter of panels,Int Conf on Finite element methods,Shanghai,PRC,Gordon and Breach Sci Pub,New York NY.1982,944-951.
    [38]Han A.D.,Yang T.Y.,Nonlinear panel flutter using high order triangular finite elements,AIAA Journal,1983,21:1453-1461.
    [39] Dixon I.R., Mei C, Finite element analysis of large amplitude panel flitter of thin laminates, AIAA Journal, 1993, 31:701-707.
    [40] Gray J.C., Large amplitude finite element flutter analysis of composite panels in hypersonic flow, PhD Thesis, Old Dominion Univ, Norfolk VA.1991
    [41] Liaw D.G, Yang T.Y., Reliability and nonlinear supersonic flutter of uncertain laminated plates, AIAA Journal, 1993, 31:2304-2311.
    [42] Abdel-Motagaly K., Chen R., Mei C., Effects of flow angularity on nonlinear supersonic flutter of composite panels using finite element method. 40 Structure, structural Dyn and Mat Conf, St Louis Mo. 1999, 1963-1972.
    [43] Xue D.Y., A finite element frequency domain solution of nonlinear panel flutter with temperature effects and fatigue life analysis, PhD Thesis, Old Dominion Univ, Norfolk VA. 1991.
    [44] Xue D.Y., Mei C, Finite element non-linear panel-flutter with arbitrary temperature in supersonic flow, AIAA Journal, 1993,31 (1):154-162.
    [45] Robinson J. H., Finite Element Formulation and Numerical Simulation of the Lare Deflection Random Vibration of Laminated Composite Plates, Ms thesis,Old Dominion University, 1990
    
    [46] 陈大林.壁板气动弹性复杂响应研究.西南交通大学博士学位论文, 2008.
    
    [47] Dalin Chen, Yiren Yang, and Chenguang Fan. Nonlinear flutter of a two-dimension thin plate subjected to aerodynamic heating by differential quadrature method, Acta Mech Sin. 2008, 24(1):45-50.
    [48] Bellman R., Casti J., Differential quadrature and long-lerm integration, J Math Anal Appl. 1971,34:235-238.
    [49] Bellman R., Kashef B.G, Casti J.. Differential quadrature: A technique for the rapid solution of nonlinear partial differential eauations. J Comput Phys. 1972,10:40-52.
    [50] McIntosh J.S., Effect of hypersonic nonlinear aerodynamic loading on panel flutter, AIAA Journal, 1977, 11:29-32.
    [51] Eastep F. E., Mclntosh S. C., Analysis of nonlinear panel flutter and response under random excitation or nonlinear aerodynamic loading, AIAA Journal,1971, 9(3): 411-418.
    [52] Gray C.E., Mei C, Shore, C.P., Finite element method for large-amplitude two-dimensional panel flutter at hypersonic speeds, AIAA Journal, 1991,29(2):290-298.
    [53] Selvam R. P., Qu Z. Q., Zheng Q., Three-dimensional nonlinear panel flutter at supersonic Euler Flow, AIAA Paper, 2002-1485.
    [54] David J. L., Philip S. B., Paul I. K., Reduced order modeling of an elastic panel in transonic flow , AIAA Paper, 2002-1594.
    [55] Atsushi H., Igor M., Yoshiaki N., Panel flutter analysis with a fluid-structure coupled scheme, AIAA Paper, 2003-3721.
    [56] Gordnier R. E., Visbal M. R., Development of a three-dimensional viscous aeroelastic solver for nonlinear panel flutter, Journal of Fluids and Structures,2002, 16(4):497-527.
    [57] Bein T., Friedmann P., Zhong X., and Nydick I., Hypersonic Flutter of a Curved Shallow Panel With Aerodynamci Heating, AIAA93-1318, 1993.
    [58] Nydick I., Friedmann P., and Zhong X., Hypersonic Panel Flutter Studies On Cuved Panels, 36~(th) Srtuctures, Structural Dynamics and Materials Conference,New Orleans LA,1995, 2995-3011.
    [59] Thuruthimattam B.J., Friedmann P.P., McNamara J.J. and Powell K.G.,Aeroelasticity of a Generic Hypersonic Vehicle, AIAA 2002-1209, 2002.
    [60] Friedmann P.P., Thuruthimattam B.J, and McNamara J.J., Hypersonic Aeroelasticity and Aerothermoelasticity with Application to Reuseable Launch Vehicles, AIAA 2003-7014, 2003.
    [61] McNamara J.J, Friedmann P.P., Powell K.G.., and Thuruthimattam B.J.,Three-dimensional Aeroelastic and Aerothermoelastic Behavior in Hypersonic Flow, AIAA 2005-2175, 2005.
    
    [62] 钱翼稷.空气动力学.北京:北京航空航天大学出版社, 2004: 94-10.
    [63] Cole S R., Florance J. R., Thomason L. B., Supersonic aeroelastic instability results for a NASP like wing model, AIAA 93-1369, 1993.
    [64] Heeg J., Zeiler T., Pototzky A., Aerothermoelastic Analysis of a NASP Demonstrator Model, AIAA 93-1366, 1993.
    [65] Houbolt J.C., A study of several aerothermoelastic problems of aercraft in high speed flight, Ph.D. Thesis, Eidenossischen Technischen Hochschule, The Swiss Federal Institute of Technology, Zurich Switzerland, 1958.
    [66] Xue D.Y., and Mei C, Finite Element Nonlinear Flutter and Fatigue Life of Two Dimensional Panels With Temperature Effects, Journal of Aircraft,1993,30(6): 993-1000.
    [67] Udrescu R., and Surace G., An Enhanced Aeroelastic Analysis of Panels Under Transitory Hypersonic Flow Condition, ALAA Jounal, 2000,38(5):755-761.
    [68] Dixon I.R., Mei C, Nonlinear flutter of rectangular composite panels under uniform temperature using finite elements. Nonlinear Vibrations, DE-Vol 50/AMD-Vol 144, ASME Winter Annual Meeting, Anaheim CA. 1992,123-132.
    [69] Lee I., Oh I.K., Lee D.M., Vibration and flutter analysis of stiffened composite plate considering thermal effect. Int Mech Eng Congress and Exp,Dallas Tx. 1997,133-141.
    [70] Udrescu R., A higher finite element model in nonlinear panel flutter analysis,39~(th) Structure, Structural Dyn and Mat Conf, Long Beach CA. 1998,1252-1262.
    [71] Mortara S.A., Slater J., Beran P., Analysis of nonlinear aeroelastic panel response using proper orthogonal decomposition. Journal of Vibration and Acoustics, 2004,126(3): 416-421.
    [72] Sarma B.S., Varadan T.K., Nonlinear panel flutter by finite-element method,AIAA Journal, 1987, 26(5):566-574.
    [73] Zhou R.C., Mei C, Haung J.K., Suppression of nonlinear panel flutter at supersonic speeds and elevated temperatures, AIAA Journal, 1996, 34:347-354.
    [74] Dowell E.H., Nonlinear flutter of curved paltes II. AIAA Journal, 1970,8(2):259-262.
    [75] Mei C, A finite-element approach for nonlinear panel flutter, AIAA Journal,1977, 15(8):1107-1111.
    [76] Kuo C.C., Morino L., Dugundji J., Perturbation and harmonic balance methods for nonlinear panel flutter,AIAA Journal, 1972, 10(11): 1479-1484.
    [77] Abbas J.F., Ibrahim R.A., Gibson R.F., Nonlinear flutter of orthotropic composite panel under aerodynamic heating, AIAA Journal. 1993,31:1478-1488.
    [78] Ibrahim R.A., Orono P.O., madaboosi S.R., Stochastic flutter of a panel subjected to random inplane forces Part I: two mode interaction, AIAA Journal. 1990, 28:694-702.
    [79] Ibrahim R.A., Orono P.O., Stochastic nonlinear flutter of a panel subjected to random in-plane forces, Int J Nonlinear Mech., 1991, 26:867-883.
    [80] Chin C, Nayfeh A.H., Mook D.T., The response of nonlinear system with nonsemisimple one-to-one response to a combination parametric resonance.Int Nonlinear Mech., 1995, 30:149-167.
    [81] Dowell E.H., Nonlinear flutter of curved plates, AIAA Journal, 1969, 8:259-261.
    [82] Krause H., and Dinkier D., The influence of curvature on supersonic panel flutter,39~(th) Structure, Structural Dyn and Mat Conf, Long Beach CA. 1998,1234-1240.
    [83] Azzouz M.S., Guo X., Przekop A. and Mei C, Nonlinear Flutter of Cylindrical Shell Panels Under Yawed Supersonic Flow Using FE, AIAA 2004-2043, 45~(th) SDM conference, Palm Spring, CA, Appril 2004.
    [84] Azzouz M.S., and Mei C, Nonlinear Flutter of Cylindrical Panels Under Yawed Supersonic Flow Using Finite Elements, AIAA 2005-2373, 46~(th) AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Material Confer 18-21, Austin Texas, April 2005.
    [85] Singha M. K., and Mukul M., Supersonic Flutter Characteristics of Composite Cylindrical Panels, Composite Structures, 2008, 82: 295-301
    [86] Korders E.E., and Noll R. B., Theoretical flutter analysis of flat rectangular panels in uniform coplanar flow with arbitrary direction, NASA TN D-1156,Flignt Research Center, Edwards CA, January 1962.
    [87] Bohon H.L., Flutter of flat rectangular orthotropic panels with biaxial loading and arbitrary flow direction, NASA TN D-1949, Langley Research Center Hampton, VA, September 1963.
    [88] Friedmann P., Hanin M.. Supersonic nonlinear flutter of orthotropic or isotropic panels with arbitrary flow direction. Israel Jtech. 1968, 6:46-57.
    [89] Chandiramani N.K., Plaut R.H., Librescu L.. Nonperiodic flutter of a buckled composite panel. J Nonlinear Mech. 1995, 30:149-167.
    [90] Azzouz M.S., Przekop A., Guo, X. and Mei C., Nonlinear Flutter of Shallow Shell Under Yawed Supersonic Flow Using FEM,AIAA 2003-1516,44~(th)SDM conference,Norfold,VA,Appril 2003
    [91]Abdel-Motagaly K.,Duan B.,Mei C.,Active control of nonlin-ear panel flutter under yawed supersonic flow,AIAA Paper 2003-1514,2003.
    [92]Guo X.Y.,Mei C.,Using aeroelastic modes for nonlinear panelflutter at arbitrary supersonic yawed angle,AIAA Paper 2002-1486,2002.
    [93]Xinyun G..,Mei C.,Using aeroelastic modes for nonlinear panel flutter at arbitrary supersonic yawed angle,AIAA Journal,2003,41(2):272-279.
    [94]Gibson R.,Principles of composite material echanics,1994,McGraw-Hill,Inc.
    [95]Dixon I.R.,Finite element analysis of nonlinear panel flutter of rectangular composite plates under a non-uniform thermal load,MS Thesis,Old Dominion Univ,Norfolk VA,1991.
    [96]Jehad F.A.,Ibrahim R.A.,Gibson F.,Nonlinear flutter of orthotropic composite panel under aerodynamic heating,AIAA Journal,1993,31(8):1478-1488.
    [97]Kouchakzadeh M.A.,Rasekn M.and Guran A.,Nonlinear Flutter of Three Dimensional General Laminated Composite Plates,AIAA 2007-2321,48~(th)AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics & Material Conference 23-26,Honolulu,Hawaii,April 2007
    [98]Liaw D.G..,Nonlinear supersonic flutter of laminated composite plates under thermal load,Comput Struct,1997,65:733-740.
    [99]杨智春,谭光辉,夏巍.铺层方式对复合材料壁板热颤振特性的影响.宇航学报.2008,29(3):1047-1052.
    [100]夏巍,杨智春.复合材料壁板热颤振的有限元分析.西北工业大学学报2005,23(2):180-183.
    [101]Singha M.K.,Ganapathi M.,Aparametric study on supersonic flutter behavior of laminated composite skew flat panels,composite Structures 2005,69(1):55-63.
    [102]Koo K.N.,and Hwang W.S.,Effects of Hysteretic and aerodynamic damping on supersonic panel flutter of composite plates.Journal of Sound and Vibration,2004,273:569-583.
    [103]Suleman A.,Adaptive composites modeling and applications in panel flutter and noise suppression,Computers & Structures,2000,76:365-378.
    [104]Oh I.K.,and Lee I.,Supersonic flutter suppression of piezolaminated cylindrical panels based on multifield layerwise theory,Journal of Sound and Vibration,2006,291:1186-1201.
    [105]Lorenz E.N.,Deterministic Non-periodic Flow,Journal of Atmosphere Sciences,1963,20:103-141
    [106]黄安基.非线性振动.成都:西南交通大学出版社,1993.
    [107]Iooss G.,Joseph D.D.,Elementary Stability and Bifurcation Theory.Springer-Verlag,New York,1990.
    [108]Carr J.,Applications of Centre Manifold Theory.Applied Mathematical Sciences 35,Springer-Verlag,New York,1981.
    [109]Wiggins S.,Introductions to Applied Nonlinear Dynamical Systems and Chaos,Springer-Verlag,New York,1990.
    [110]郝柏林.从抛物线谈起-混沌动力学引论.上海:上海科技教育出版社,1995.
    [111]陈予恕.非线性振动.北京:高等教育出版社,2002.
    [112]卢侃,孙建华,欧阳容百,黄来友编译.混沌动力学.上海翻译出版公司,1990.
    [113]陈予恕.非线性振动系统的分叉和混沌理论.北京:高等教育出版社,1993.
    [114]刘延柱,陈立群.非线性振动.北京:高等教育出版社,2001.
    [115]Dowell E.H.,and Ilgamov M.,Studies in Nonlinear Aeroelasticit,Springer-Verlag,New York,1988.
    [116]Dowell E.H.,Flutter of a Buckled Plate as an Example of Chaotic Motion of Deterministic Autonomous System,Journal of Sound and Vibration,1982,85(3):333-334.
    [117]Dowell E.H.,Observation and Evolution of Chaos in an Autonomous System,Journal of Applied Mechanics,1984,51:664-673.
    [118]Virgin L.N.,and Dowell E.H.,Non-linear Aeroelascity and Chaos,In Computational Non-linear Mechanics in Aerospace Engineering,Atluri S.H.(Ed),AIAA,Washington DC 1992:531-536
    [119]刘菲.非线性气动弹性系统的分叉分析.西南交通大学博士学位论文,2007.
    [120]Holmes P.J.,Bifurcations to Divergence and Flutter in Flow-induced Osillators,A Finite Dimensional Analysis,Journal of Sound and Vibration,1977,53:471-503.
    [121]Holmes P.J.,and Marsden M.,Bifurcations to Divergence and Flutter in Flow-induced Osillators,A Finite Dimensional Analysis,Aotomatica,1978,14:367-384.
    [122]Bolotin V.V.,Grishko A.A.,Kounadis A.N.,and Gantes C.J.,Nonlinear Panel Flutter in Remote Post-Critical Domains,International Journal of Nonlinear Mechanics,1998,33(5):753-764.
    [123]Sri Namachchivaya N.and Lee A.,Dynamics of Nonlinear Aeroelastic Systems Symposium of Fluid-Structure Interaction,Aeroelasticity,Flow-Induced Vibration and Noise,1997,3:165-174.
    [124]Golubitsky M.,Stewart I.,Schaeffer D.G..,Singularities and Groups in Bifurcation Theory,Vol.2,Springer-Verlag,1988.
    [125]Arnold V.I.,Bifurcations and Singularities in Mathematics and Mechanics,Proc.of the 16~(th) ICTAM,1988.(朱照宣译,数学和力学中的分叉和奇异性,《力学进展》,1989,19:217-231.)
    [126]Arnold V.I.,Dynamical Systems V-Theory of Bifurcation and Catastrophes,Springer-Verlag,1989.
    [127]陈予恕,唐云,陆启韶等.非线性动力学中的现代分析方法.北京:科学出版社,2000.
    [128]Wiggins S.,Global Bifuracation and Chaos-Analytical Methods,Springer-Verlag,New York,1988.
    [129]张锦炎,冯贝叶.常微分方程几何理论与分支问题.北京:北京大学出版社,2000.
    [130]Hao B.L.,Elementary Symbolic Dynamics and Chaos in Dissipative Systems,World Scientific,1989.
    [131]Guckenheimer J.,Holmes P.J.,Nonlinear Oscillations,Dynamical Systems,and Bifurcation of Vector Fields,Springer-Verlag,New York,1983
    [132]Hsu C.S.,Cell-to-Cell Mapping:A Method of Global Analysis for Nonlinear System,Springer-Verlag,New York,1987.
    [133]陆启韶.常微分方程定性方法和分叉.北京:北京航空航天大学出版社1989.
    [134]Paidoussis M.P.,Aspirating pipes do not flutter at infinitesimally small flow Journal of Sound and Vibration,1999,13:419-425.
    [135]Huang L.,Flutter of cantilevered plates in axial flow,Journal of Fluids and Structures,1995,9:127-147.
    [136]Lee B.H.K.,and Tron A.,Effects of structural nonlinearities on flutter characteristics of the CF-18 aircraft,Journal of Aircraft,1989,26:781-786.
    [137]张继业,杨翊仁,曾京.Hopf分叉的代数判据及其在车辆动力学中的应用.力学学报.2002,32(5):596-605.
    [138]陈文俊.气动加热对飞行器气动弹性特性的影响.现代防御技术,1998,26(3):20-28.
    [139]陈文俊.几种气动热弹性设计方法.战术导弹技术,2001,(5):31-39.
    [140]Liviu L.,Piergiovanni M.,Walter A.S.,Linear/nonlinear supersonic panel flutter in a high-temperature field,Journal of Aircraft,2004,41(4):918-924.
    [141]Paidoussis M.P.,Li G.X.,Moon F.C.,Chaotic oscillations of the autonomous system of a constrained pipe conveying fluid,Journal of Sound and Vibration,1989,135(1):1-19.
    [142]邱传仁,周文伯,严震.飞机对连续型大气紊流的动态响应.上海交通大学学报,1986,20(6):76-84.
    [143]Kim T.U.,and Hwang I.H.,Reliability analysis of composite wing subjected to gust loads,Composite Structures,2004,66:527-531.
    [144]祝小平,陈士橹.弹性飞行器对大气紊流的动力响应计算.飞行力学,1992,10(2):53-59.
    [145]吴志刚,杨超.弹性导弹的连续与离散阵风响应.北京航空航天大学学报,2007,33(2):136-140.
    [146]Surace G.,Udrescu R.,Finite Element Analysis of the Fluttering Panels External Forces.Journal of Sound and vibration,1999,224(5):917-935.
    [147]Fazelzadeh S.A.,Pourtakdoust S.H.,Assadian N.,Stochastic analysis of two dimensional nonlinear panels with structural damping under random excitation,Aerospace Science and Technology,2006:192-198.
    [148]Ibrahim R.A.,Orono P.O.,Madabosi S.R.,Stochastic flutter of a panel subjected to random in-plane forces part Ⅰ:two mode interaction,AIAA Journal,1990,28(4):694-702.
    [149]肖业伦,金长江.大气扰动中的飞行原理.北京:国防工业出版社,1993,48-72.
    [150]杨翊仁,鲁丽,谭晓惠.反应堆吊篮流致随机响应理论分析.西南交通大学学报,2001,36(12):557-560.
    [151]夏巍,杨智春.超音速气流中受热壁板的稳定性分析,力学学报,2007,39(5):602-609.
    [152]叶献辉,杨翊仁,三维壁板热颤振分析,振动与冲击,2008,27(6):55-59.
    [153]Shin W.H.,Oh I.K.,Han J.H.,and Lee I.,Aeroelastic characteristics of cylindrical hybrid composite panels with viscoelastic damping treatments,Journal of Sound and Vibration,2006,296:99-116.
    [154]Hajela P.,Glowasky R.,Application of piezoelectric elements in supersonic panel flutter suppression,AIAA Journal,1991,15:91-115.
    [155]Lai Z.,Xue D.Y.,Huang J.K.Mei,C.,Nonlinear panel flutter suppression with piezoelectric actuation,J Intelligent Mat Syst Struct,1995,6:274-282.
    [156]Dongi F.,Dinkler D.,Kroplin B.,Active panel flutter suppression using self-sensing piezoactuators,36~(th) Structure,Structural Dyn and Mat Conf,New Orleans LA,1995:2264-2272.
    [157]Beldicat C.E.,Hilton H.H.,and Kubair D.,Viscoelastic Panel Flutter -Stability,Probabilities of Failure and Survival times,AIAA Paper 2001-1647.
    [158]Pourtakdoust S.H.,and Fazelzadeh S.H.,Chaotic Nonlinear viscoelastic panel flutter in supersonic flow,Nonlinear Dynamics,32(4):387-404.
    [159]张云峰,刘占生.粘弹壁板颤振的非线性动力特性.推进技术,2007,28(1):103-107
    [160]Lindsley N.J.,Beran P.S.,and Pettit C.L.,Effects of uncertainty on Nonlinear Plate Response in Supersonic Flow,.AIAA Paper 2002-5600.
    [161]Lindsley N.J.,Beran P.S.,and Pettit C.L.,Effects of uncertainty on Nonlinear Plate Aeroelastic Response,AIAA Paper 2002-1271.
    [162]Ibrahima R.A.,D.M.Beloiua.Influence of Joint Relaxation on Deterministic and Stochastic Panel Flutter,AIAA Journal,2005,43(7):1444-1454.
    [163]Beloiua D.M.,Ibrahima R.A.,and Pettit C.L.,Influence of boundary conditions relaxation on panel flutter with compressive in-plane loads,Journal of Fluids and Structures,2005:743-767.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700