用户名: 密码: 验证码:
基于虚拟疲劳试验的铁路车辆焊接结构疲劳寿命预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国铁路向着高速、重载的方向发展,铁路车辆的疲劳事故不断发生,关键部位疲劳断裂一旦发生,将产生非常严重的后果。车辆的疲劳问题治理是铁路安全运输的迫切需求。焊接是铁路车辆结构的重要联接方式,也是最容易发生疲劳破坏的薄弱环节,绝大多数的疲劳事故发生在焊接部位。由于目前还不能从理论上将影响疲劳的众多复杂因素归纳为统一的物理模型或数学模型来描述,所以国内外对疲劳问题的研究主要集中在实验环节上,对焊接结构的疲劳研究更是如此。然而,疲劳试验本身需要物理样机,且成本高、周期长,而且承受复杂随机载荷的铁路车辆的整车在试验台上进行疲劳试验,目前还办不到。因此,基于先进的数值仿真手段,科学地预测铁路车辆焊接结构的疲劳寿命,并快速地进行方案对比,对铁路车辆的结构可靠性设计及其运行中的安全评定具有重要的理论价值及工程意义。
     本文在对国内外关于焊接结构疲劳及铁路车辆疲劳寿命预测研究现状综述的基础上,取铁路车辆车体及转向架焊接构架为研究载体,分别从理论方法上、数值仿真上、程序实现上,进行了一系列深入研究,归纳起来,本文的研究工作及研究成果主要有:
     在研究了焊接结构疲劳寿命预测的基本理论和方法的基础上,针对没有物理样机之前预测疲劳寿命的困难。提出了基于虚拟疲劳试验的铁路车辆焊接结构疲劳寿命预测的技术路线;给出了用于虚拟疲劳试验的有限元模型的建模方法及疲劳寿命评估点的选取原则;对虚拟疲劳试验加载模式、虚拟动应力的换算及多载荷通道疲劳寿命预测方法等虚拟疲劳试验的关键技术提出了解决方法。
     鉴于目前铁路车辆焊接结构的疲劳评价标准少,且美国AAR标准仅是针对铁路货车制定的。在进行虚拟疲劳试验中,引入了工程上广泛应用的国际焊接协会ⅡW标准和英国BS标准,从而丰富了焊接结构的疲劳特性参数,扩大了焊接结构的疲劳预测范围。通过对三种标准的系统研究,归纳了三种标准的焊接结构疲劳寿命评估方法的特点,并以客车转向架焊接构架为对象,应用ⅡW标准进行疲劳寿命预测。验证了本文提出的虚拟疲劳试验的工程应用可靠性。
     结构疲劳寿命评估的反问题是指在给定产品寿命条件下来确定结构的设计细节。由于AAR标准中疲劳寿命评估计算流程中数据流动存在唯一性,所以从数学的角度反求结构应力是成立的。本文以AAR标准为基础,讨论了结构疲劳评估的反问题,推导了多载荷作用下的结构设计应力反求解析式,为车体的可靠性设计下的等寿命设计提供了理论基础。
     为使更多的设计人员在产品方案设计阶段,就能对包括焊缝在内的每一个结构细节进行疲劳寿命预测,开发了铁路货车疲劳寿命预测系统。该系统以AAR标准为内核,以Visual Studio.NET集成开发环境为设计平台,并运用二次开发技术,将AAR标准嵌入到大型有限元分析软件Ⅰ-DEAS中。系统内置了AAR标准中用于疲劳计算的各种载荷谱和焊接接头数据库,并可以方便地实现数据库的扩充,能以人机交互方式实现提取Ⅰ-DEAS后处理中的应力结果,并自动计算待评估点的当量应力数值,能计算待评估点的疲劳损伤值及设计寿命汇总数据,自动生成疲劳计算报告等功能。
     本文的创新点:
     1.针对铁路车辆焊接结构的特点、提出了适合工程应用的虚拟疲劳寿命预测方法。
     2.研究了铁路货车疲劳寿命评估的反问题,推导了基于AAR标准的多载荷作用下的结构设计应力反求解析式,并进行了工程实例验证。
     3.从抗疲劳的角度提出了局部设计或补强的一个重要原则——刚度协调,从而改变了治理局部应力集中的传统补强模式。
     4.以AAR标准为内核,以大型有限元分析软件Ⅰ—DEAS为平台,基于二次开发技术,开发了一个适合工程应用的铁路货车疲劳寿命预测系统。
     本课题得到国家“863”高技术研究发展计划项目:《复杂产品协同设计、仿真、优化一体化平台研究开发及其应用》(项目编号:2006AA04Z160)以及中国北车集团科技研究开发计划项目《基于AAR标准的大秦线25吨轴重货车疲劳寿命预测研究》(项目编号:2004NZ009)的资助。
As China's railway develops towards the high-speed and the heavy load one, railway vehicles' accidents of fatigue are occurring, once fatigue fracture is apper in key positions, the consequences will be serious. Vehicle's fatigue governance is a pressing need to the safety of rail transport. Weld is main connection for rail vehicles structure, is also prone to fatigue failure of the danger zone. Currently, fatigue problem can not be described theoretically as a united physical and mathematical model because too many factors effect structure fatigue. So, fatigue research mainly focus on the test step both inland and abroad, and the more to the research on welding structure. Whole vehicle fatigue experimentation needs physical prototype, a high cost, a long cycle, and complex random load, so it is still impossible now. Therefore, scientific prediction of fatigue life of the rail vehicle's welded structure is important theoretical value and engineering significance to the structure reliability design and safety assessment of the rail vehicle.
     Based on the summary of the domestic and foreign studies on the welded structure fatigue and the rail vehicle's fatigue life prediction, take rail vehicle body and its key component -Bogie welding structure for studying, from theoretical method, numerical simulation, the program, conducted a series of in-depth research. To sum up, the research work and achievements are as follows:
     After detailed analysis of the basic theory and prediction methods of welded structure's fatigue life, and defeat the difficulty of fatigue life prediction without physical prototype, on basis of virtual fatigue test, rail vehicle's welding structure fatigue life prediction technology route is proposed; finite element modeling method and choice principle of fatigue life evaluational points are given; and the solutions to key technology, such as test loading mode, dynamic stress virtual conversion and multi-channel load fatigue life prediction methods and so on, are given.
     As welding structure standard of rail vehicles' fatigue evaluation is rarely found, and the United States' AAR standard is only developed to use in railway wagon, so that in the virtual fatigue test, the widely used international Welding Association standard IIW and the British Standard BS are introduced. So as to enrich the fatigue characteristic parameter of welding structure, and to expand the scope of the prediction of welding structure. Through the systematic research of the three standards, the characteristics of welding structure's fatigue life evaluation method under the these standards are generalized, and engineering application reliability of virtual fatigue test is verified by means of welding structure fatigue life prediction of bogies under standard IIW.
     The reverse problem of the structural fatigue life evaluation is to set down the design details of the structure under a given product fatigue life. There exists the uniqueness of the data flow in process of the fatigue life evaluation under the AAR tandard, so from mathematics view, reverse calculating structural stress is available. Theoretical expression of a converse problem considering multi-load spectrums is derived to predict fatigue life of wagon body based on American AAR standard. The result shows that the means can be used to not only efficiently calculate the body structure design stress under a specified fatigue life but also theoretically provide improved design scheme to achieve wagon equivalent life design.
     In order to rapidly predict fatigue life for production structure including design details on welding line to wagon body-designers, fatigue life prediction software system is developed. Base on secondary development technolgy, it embedded in the large-scale finite element analysis software- I-DEAS. The system was developed with Visual Studio.NET and in which the stress detail of FEA result can be picked up in I-DEAS Post Processing by man-machine interact way. By using the system, the equivalent stress, fatigue damage data, the sum data of designal life and report file can be automatically calculated and generated respectively. The system contains load spectrum database of the AAR standard and the database can be conviently expanded.
     In this paper, four innovations are given as follows:
     1. A practical analysis method is presented to achieve fatigue life prediction of vehicle welded structure ahead of physics specimen.
     2. Theoretical expression of a converse problem considering multi-load spectrums is derived to predict fatigue life of wagon body based on American AAR standard. The theoretical expression is applied to an exported wagon.
     3. From the point of fatigue resistance, an important local design or reinforcement principle -stiffness coordination is proposed. Thereby traditional reinforcement model of the governance of local stress concentration has been changed.
     4. Base on AAR standard and secondary development technolgy, a fatigue life prediction software system embedded in the large-scale finite element analysis software- I-DEAS is developed for wagon body.
引文
[1]R.K,Luo,B.L Gabbitas,B V Briclde.Fatigue life evaluation of a railway vehicle bogie using an integrated dynamic simulation,Proc Instn Mech Engrs vol 208 1994,23-132
    [2]R.K,Luo,B.L,Gabbitas,B.V.Briekle,W.X.Wu.Fatigue damage evaluation for a railway vehiele bogie using appropriate sampling frequenciese.Vehicle System Dynamies,1998(28):405-415
    [3]F.B.Stulen.Preve,lting Fatigue Failures.MaehineDesign,1961:33
    [4]Ridnour,James Andrew.Methodology for evaluating vehicle fatigue life and durability.PhD thesis,The University of Tennessee,Knoxville,2003,12
    [5]D.Kececioglu.Probability Design Methods for Reliability and their Data and Research Requirements.Fatigue Prevention and Reliability.ASME,1977
    [6]Mika Backstrom.Multiaxial fatigue life assessment of welds based on nominal and hot stresses.PhD thesis,Norwegian University of science and Teehnology,Finland,2003,8
    [7]Paris,P.C.,Gomez,M.P.&Anderson,W.P.A rational analytic theory of fatigue.The Trend in Engineering 13,1961:9-14
    [8]R.K,Luo,B.L Gabbitas,B V Brickle.Fatigue design in railway vehicle bogies based on dynamic simulation,Vehiele System Dynamies,1996,(25):449-459
    [9]Stefan Dietz,Helmuth Netter and Sachau,Fatigue life Prediction of a railway bogie under dynamic loads through simulation.Vehicle System Dynamics,1998(29):385-402
    [10]Johan Martinsson.Fatigue assessment of complex welde steel structure.PhD thesis,Royal institute of teehnology,Stockholm,2005,2
    [11]Sigmund Kyrre As.Fatigue assessment of aluminium automotive structure.PhD thesis,Norwegian University of Science and Technology,Norwegian,2002,8
    [12]Su,Hong.Automotive CAE Durability Analysis Using Random Vibration Approach,MSC 2nd Worldwide Automotive Conference,Dearborn,MI,Oct,2000
    [13]Sridhar Srikantan,Shekar Yerrapalli,Hamid Keshtkar.Durability design process for truck body structures,International Journal of Vehicle Design,23(1/2):95-108
    [14]缪龙秀,孙守光,吕澎民等.提速客车转向架焊接构架应力谱的试验研究.青岛:铁道车辆.1998,12:30-34
    [15]吕澎民,赵邦华.车辆振动系统结构疲劳寿命预测方法及应用.兰州铁道学院学报.1996,3:46-53
    [16]吕澎民,严隽髦.焊接转向架结构可靠性疲劳寿命预估方法研究.兰州铁道学院学报.1995,9:80-86
    [17]吕澎民,赵邦华.货车铸钢侧架随机载荷谱下的疲劳寿命预估研究.北京:铁道学报,1994,3:101-107
    [18]韦和春,袁祖贻,吕澎民.提速客车转向架构架动应力频谱特性分析研究.北京:北方交通大学学报.1998,12:132-136
    [19]刘志明.随机载荷下焊接构架疲劳寿命及可靠性研究.北方交通大学博士学位论文.2001.3:
    [20]王成国,孟光伟,原亮明等.新型高速客车技术构架的疲劳寿命数值仿真分析.中国铁道科学.2001(3):94-98
    [21]孟光伟,王成国,刘敬辉等.用虚拟疲劳样机技术分析8A型转向架侧架的疲劳寿命.北京:中国铁道科学.2002,4:10-13
    [22]刘德刚,候卫星,王凤州等.基于有限元技术的构件疲劳寿命计算.北京:铁道学报.2004,4:48-52
    [23]米彩盈.机车转向架焊接构架轻型化评定和疲劳强度分析.西南交通大学学报.1999,34(1):104-108
    [24]阳光武.机车车辆零部件的疲劳寿命预测仿真.西南交通大学,博士论文.2005,7:1-134
    [25]曾仲谋,电力机车车体关键部位疲劳寿命预测.西南交通大学,硕士论文.2004,3:1-80
    [26]梁红琴,邻平波,关雪梅.随机载荷作用下货车车轴的疲劳应力计算.机械,2004,4:38-41
    [27]王红,赵邦华,孟广浦.车辆焊接转向架承载构件疲劳强度评估方法及算例.铁道车辆.1994(5):17-22
    [28]米彩盈,李芾.焊接转向架构架疲劳强度评定的工程方法.内燃机车.2002(6):11-15
    [29]陆正刚,胡用生.基于刚柔耦合系统的关键零部件动应力仿真和疲劳寿命计算.铁道车辆.2006,44(1):6-12
    [30]阳光武,肖守讷,金鼎昌.基于虚拟样机技术的地铁车辆构架疲劳寿命仿真.机车电传动.2004(3):39-41
    [31]方宁,杨英,兆文忠.基于振动分析的曲轴疲劳仿真方法研究.大连铁道学院学报.2004,25(4):26-30
    [32]于国丞,刘志明,王文静.提速货车转向架交叉支撑装置寿命的研究.北方交通大学学报.2004,28(1):104-107
    [33]刘持国,王发灯.转8G型转向架交叉支撑装置疲劳寿命仿真.内燃机车.2004(10):9-11
    [34]阳光武,肖守讷,金鼎昌.机车车体牵引座及减振器座的疲劳寿命仿真分析.内燃机车.2004(9):16-18
    [35]彭德其,许平.120km/h整体焊接转向架构架的疲劳分析.铁道机车车辆.1999(1):28-30
    [36]吴镇石,端伟.大型升船机船箱门静力与疲劳有限元分析.起重运输机械.2007(12):42-45
    [37]张逊,姜年朝.基于ANSYS/FE-SAFE的模具联接螺栓疲劳仿真分析.机械工程与自动化.2008(1):23-25
    [38]赵永彬,张润生,杜发荣.汽车扭簧疲劳寿命分析.洛阳工学院学报.2001,22(4):55-58
    [39]胡朝威,胡毓仁.散货船新型曲边肘板节点的疲劳强度。造船技术.2005(1):8-12
    [40]赵少汴,王忠保.疲劳设计,北京:机械工业出版社,1997.3
    [41]赵少汴,王忠保.抗疲劳设计-方法与研究.北京:机械工业出版社,1997
    [42]S.Suresh,王光中等译.材料的疲劳(第二版).北京:国防工业出版社,1999,5
    [43]Yung J.Y.and Lawrence F.V.Analytical and graphical aids for the fatigue design weldments.Fatigue Fracture and Engineering Material and Structure,1985,8(3):223-241
    [44]Niu X.,Glinka G.The weld Profile effect on stress intensity factor in weldments.International Journal of Fracture,1987,35:3-20
    [45]Pong H.L.J.Analysis of weld toe Profiles and weld toe cracks.International of Fatigue,1993,15(1):31-36
    [46]Andrews R.M.The effect of misalignment on the fatigue strength of welded cruciform joints.Fatigue and Fracture of Engineering Materials and Structures,1996,19:755-768.
    [47]Lazzrin P.,Tovo R.A notch intensity factor approach to the stress analysis of welds.Fatigue Facture and Engineering Material and Streture,1998,21(9):1089-1104
    [48]李光新,马新沛,朱维斗等.焊接构件焊接质量及疲劳强度分析.理化检验.物理分册1999,35(12):537-540
    [49]林盛,柳春图.焊接接头热影响区表面裂纹疲劳扩展速率.力学与实践.2000,22(6):37-39
    [50]张罡,李建军,丁春辉.20g钢对接焊接接头循环应力-应变的特性.焊接学报.2001,22(2):93-96
    [51]杨新岐,张艳新,霍立兴等.焊接接头疲劳评定的局部法研究现状.焊接学报.2003,24(3):82-86
    [52]赵明皞,杨荣根,刘彤等.高强钢焊接接头的疲劳强度研究.机械强度.2005,27(5):687-690
    [53]Mates C G.,Jr R.H.Modeling the effects of residual stresses on defects in welds of steel frame connections.Engineering Structures,2000,22:1103-1120
    [54]Atzori B,Meneghetti G.Fatigue strength of welded structural steel:Finite elements,strain gauges and reality.International Journal of Fatigue,2001,23(8):713-721
    [55]Taljat B.,Zacharia T.,Wang X L.et al.Numerical analysis of residual stress distribution in tubes with spiral weld cladding.Welding Journal,1998,77(8):328-335
    [56]Hong J K.,Tsai C L.,Dong P.Assessment of numerical procedures for residual stress analysis of multipass welds,Welding Journal 1998,77(9):372s-381s
    [57]Linggren L E.,Runnemalm H.,Naesstroem M O.Simulation of multipass Welding of a thick plate.International Journal for Numerical Methods in Engineering,1999,44(9):1301-1316
    [58]史清宇.焊接过程三维数值模拟的研究及应用.博士学位论文.北京:清华大学,2000
    [59]朱援祥,张小飞,杨兵等.基于有限元的多次补焊焊接残余应力的数值模拟.焊接学报.2002,23(1):65-68
    [60]Guan Deqing.A method of predicting the fatigue life curve for misaligned welded joints.International Journal of Fatigue,1996,18(4):221-226
    [61]Guan Deqing.A method to estimate P-S-N curve for misaligned welded joints.Advances in Steel Structures,1999,2:999-1004
    [62]Guan Deqing,Yi Weijian,Yang Yong.A method to predict the fatigue crack initiation life of welds.Steel & Composite Structures,2001,1:229-236
    [63]管德清,汪广海.错位板节点疲劳强度的估算方法.工程力学,1994(1):118-124
    [64]管德清.一般应力比时焊接结构S-N曲线的预测方法.工程力学,1996(4):89-96
    
    [65]管德清,汪广海.一般应力比时焊接节点的疲劳强度估算方法.应用力学学报.1997(1):54-59
    [66]管德清,莫江春,张学纶等.电站锅炉汽包寿命在线监测系统.动力工程(中国动力工程学会学报).2002,22(6):2044-2053
    [67]管德清,莫江春,张学纶等.电站锅炉优化启动的数学模型及汽包寿命预测.动力工程(中国动力工程学会学报).2003,23(2):2279-2283
    [68]DIETZ S,KNOTHE K,KORTUM W.(Germany).Fatigue Life simulations Applied to Railway Bogies.The 4TH International Conference on railway bogies and running gears.BudaPest,Hungary,21-23,SePtember,1995
    [69]缪炳荣.基于多体动力学和有限元法的机车车体结构疲劳寿命仿真研究.西南交通大学,博士论文.2006,10:1-153
    [70]缪炳荣,张卫华,金鼎昌等.动载作用下柔性车体结构疲劳寿命的仿真.西南交通大学学报.2007,42(2):217-222
    [71]缪炳荣,张卫华,金鼎昌等.基于多体动力学和有限元法的车体结构疲劳寿命仿真.铁道学报.2007,29(8):38-42
    [72]秦国栋,刘志明,崔二光等.提速转向架焊接结构疲劳寿命的实用分析方法.中国铁道科学.2004,25(1):46-51
    [73]刘德刚,李强.提速客车转向架主要部件寿命预测方法探讨.铁道机车车辆.2002(增):210-212
    [74]刘德刚,王凤州,林春虎.国外疲劳研究及应用领域的新发展.青岛:铁道车辆.2001,9:14-16
    [75]赵文礼,赵邦华,何钟韬.客车车辆随机动态相应与车轴强度的结合研究.甘肃科学学报.1994,3:48-54
    [76]赵文礼,赵邦华.客车车轴的应力谱分析与疲劳寿命估算.甘肃科学学报.1994:53-57
    [77]虞丽娟,李元君,沈钢.机车构件疲劳寿命仿真分析.北京:铁道学报.1998,6:121-127
    [78]于慧,王文斌,虞丽娟等.基于疲劳设计的高速客车转向架构架优化设计.青岛:铁道车辆.2001(8):13-15
    [79]姚一龙,李暹,薛涛明.汽车结构的响应计算.西安:应用力学学报,2001(S1):25-30
    [80]董保童,施荣明,朱广荣.随机振动载荷作用下的结构疲劳寿命估算.飞机设计.2001(5-5-3)
    [81]张鑫,阎楚良.基于神经网络的结构疲劳寿命仿真的研究.计算机仿真.2002.11:41-43
    [82]田辰,阎宏生,胡云昌.基于神经网络相应面的疲劳裂纹扩展寿命的可靠性分析.机械强度.2004,26(1):58-62
    [83]孙凌玉,吕振华.利用计算机仿真技术预测车身零件疲劳寿命.汽车工程.2001,23(6):389-391
    [84]王雷,王德俊.一种随机多轴疲劳的寿命预测方法.郑州:机械强度.2002,25(2):205-206
    [85]蒋培,张春华,陈循.多轴疲劳寿命频域估计方法.上海:机械设计与制造.2005(4):106-108
    [86]刘万峰,叶俊彦.汽车构架动态应变响应特性的概率统计分析.北京:力学与实践.2000(22):21-22
    [87]蒋鸣晓,朱位秋.疲劳裂纹扩展随机模型研究近期进展.力学进展.1999,29(1):34-42
    [88]张洪才,陈举华,黄克正.使用疲劳裂纹扩展数据的疲劳裂纹扩展的可靠性分析方法.机械科学与技术.2003(3),385-385
    [89]熊峻江.可靠性设计中的疲劳裂纹扩展随机模型.应用力学学报.1998,15(4):82-86
    [90]张建宇,费斌军.疲劳裂纹扩展随过程相关参数的估计.北京航空航天大学学报.1998,24(3):308-310
    [91]邹小理,樊蔚勋,刘英卫.疲劳裂纹扩展寿命的随机模型.固体力学学报.1997,18(2):167-172
    [92]金星,钟群鹏,洪延姬.疲劳裂纹扩展新模型.力学学报.2000,32(3):300-307
    [93]郭书祥.疲劳裂纹扩展随机模型和动态可靠性分析.机械强度.1998,20(2):120-125
    [94]刘刚,郑云龙,赵德有等.BING09000半潜式钻井平台疲劳强度分析.船舶力学.2006,6(2):55-63
    [95]武秀根,郑百林,杨青等.柴油机曲轴的多柔体动力学仿真与疲劳分析.计算机辅助工程.2007,16(2):1-4
    [96]龙梁,胡爱华,范子杰.基于有限元仿真的特种越野车结构疲劳寿命预测.计算机仿真.2006,23(12):253-256
    [97]彭禹,郝志勇.基于有限元和多体动力学联合仿真的疲劳寿命预测.浙江大学学报.2007,41(2):325-329
    [98]耿立艳,杨新岐,许海生等.铝合金焊接接头疲劳评定的应力平均法。机械强度.2006,28(2):266-270
    [99]汤清洪,王兴贵,马吉胜等.自行火炮履带板多载荷疲劳寿命仿真.计算机仿真.2007,24(1):21-25
    [100]王相平,周柏卓,杨晓光.多轴疲劳理论在航空发动机零部件寿命预测中的应用.沈阳航空工业学院学报.2004,21(4):1-4
    [101]吕彭民.宽带随机载荷谱下结构疲劳寿命的计算.长安大学学报(自然科学版).2004,24(1):76-78
    [102]谢永慧,孟庆集.汽轮机叶片疲劳寿命预测方法的研究.西安交通大学学报.2002,36(9):912-915
    [103]肖晓晖,吴功平,李立斌.塔式起重机疲劳载荷谱的编制.应用力学学报.2003,20(4):86-88
    [104]苟凌怡,熊光楞.支持虚拟样机的协同仿真平台关键技术研究.清华大学985学科重大项目“轿车数字化工程”学术研讨会论文集.2002,3:647-656
    [105]柴旭东.复杂产品虚拟样机工程工具集的研究与初步实践.清华大学博士后出站报告.2002[106]韦有双,王飞,冯允成.虚拟现实与系统仿真.计算机仿真.1999,16(2):63-66
    [107]赵建卫,唐硕.飞行器虚拟样机分布仿真实现.计算机仿真.2002,2:39-42
    [108]李思昆等.协作虚拟样机与协同设计方法.系统仿真学报.2001,13(1):124-127
    [109]冯培恩,潘双夏,丁国富.挖掘机器人虚拟样机技术的实现策略.农业机械学报.2002,33(3):84-87
    [110]李国庆,周勇,卢继平.虚拟样机技术及其在某装填装置上的应用.机械设计与制造.2006,8:10-11
    [111]宁晓斌,孟彬,王磊.重型汽车制动器虚拟样机的建模与应用.系统仿真学报.2006,18(8):2187-2189
    [112]李艳,刘少军.深海采矿系统虚拟样机及联动特性研究.系统仿真学报.2006,18(8):2192-2202
    [113]周张义,卜继玲,李芾.机车车辆焊接结构疲劳分析关键问题研究.机车电传动.2008,(1):28-32
    [114]Association of American Railroad.AAR Locomotive and Rolling Stock Standard Manual[S].America:1999.
    [115]International Institute of Welding(IIW).Stress Determination For Fatigue Analysis Welded Components[S].IIS/IIW,1995.
    [116]British Standard Institute(BSI).BS7608-1993 Fatigue design and assessment of steel structures[S].BSI,1993.
    [117]铁道部.铁道车辆强度设计及试验鉴定规范.中华人民共和国铁道行业标准.1996:1-11
    [118]李晓峰,谢素明,时慧焯等.车辆焊接结构疲劳寿命评估方法研究。中国铁道科学,2007,28(3):74-77
    [119]谭浩强,田淑清.FORTRAN语言.清华大学出版社,1995:1-332
    [120]贡金鑫,王海超等.结构疲劳累计损伤与极限承载能力可靠度.大连理工大学学报.2002,42(6):714-718
    [12l]李梁.提高结构疲劳性能的工艺探讨.煤矿机械.2004.No.1:51-53
    [122]正井健太郎等.实车结构疲劳试验.日本机械学会论文集(A).平成3,58(545):20-25
    [123]森信行,尼子龙幸.箱型断面T型连接构件的点焊疲劳强度.日本机械学会论文集.昭和60,No.85-0781A:1801-1807
    [124]李晓峰,李向伟,兆文忠.基于二次开发技术及AAR标准的货车焊接结构疲劳寿命预测.铁道学报,2007,29(3):94-99
    [125]D.S.Malik著.钟书毅等译.C++编程-从问题分析到程序设计.电子工业出版社.2003
    [126]张争平等.Windows API参考大全.北京:电子工业出版社.2000
    [127]林勇等.Visual C++6.0应用指南.北京:人民邮电出版社.1999
    [128]Silberschatz A,Korth H F,Sudarshan S.数据库系统概念.电子工业出版社.1999
    [129]王成,邵敏.有限单元法基本原理和数值方法.第二版.清华大学出版社.1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700