用户名: 密码: 验证码:
波流作用下悬浮隧道结构响应的数值分析及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水中悬浮管段隧道一般由浮在水中一定深度的管状结构、锚固在水下基础的锚缆、杆及与两岸相连的构筑物组成。这种管段隧道代表着一种跨越水域的新型结构,与传统隧道的区别是隧道结构被水包围着,既不是位于地层中也不是穿过地层。结构通过重力、浮力以及支撑系统之间的平衡悬浮在水下一定深度,且利用支撑系统维持悬浮隧道的稳定性。由于其在环保、社会、经济效益、建造费用等方面的诸多优点,悬浮隧道正成为隧道专业方向新的研究课题,对于解决我国岛屿与大陆连接、海湾通道和近岸工程建设等无疑具有潜在的应用价值。
     悬浮隧道结构一般比较长,在几何特征上表现出明显的非线性。结构在自身重力、所受浮力和波、流荷载及支持系统共同作用下,可能呈现出较大的刚体位移及旋转,这无疑对悬浮隧道结构的安全性、稳定性将产生较大的影响。尽管在全球范围内还没有进入实际建设,国外许多国家对其己进行了近30年的研究,我国对悬浮隧道也进行了一些卓有成效的研究工作,但对悬浮隧道结构整体、系统性的研究仍是一片空白。
     本文针对以上问题主要进行了三个方面的研究工作,研究内容涉及悬浮隧道结构水动力特性分析、波流作用下悬浮隧道结构静、动力响应分析、悬浮隧道结构节段模型试验分析,论文各部分具体分析内容如下:
     (1)采用RNG K-ε湍流模型,利用ADINA有限元软件CFD模块对悬浮隧道大断面结构物在超高雷诺数下的绕流场进行了数值模拟,得到了悬浮隧道各基本类型断面的稳态压力系数、稳态阻力系数、脉动阻力系数以及脉动升力系数、斯特哈尔数,分析了水动力参数随断面几何构形、高宽比的变化规律。通过对各型断面水动力参数的综合比较分析,给出了悬浮隧道断面设计的指导建议,同时也为后续悬浮隧道静、动力计算分析提供必要参数取值依据,避免了参数取值的盲目性。
     (2)给出了利用Morison方程计算悬浮隧道结构波浪力、海流横向升力的简化计算方法,分析了悬浮隧道结构所受波流荷载随悬浮深度、海水深度、海流速度以及管段截面尺寸等参数的变化规律。
     (3)考虑了悬浮隧道结构与流体之间的耦合作用,采用非线性的波浪力和横向升力计算方法,建立了流体-结构耦合的悬浮隧道非线性动力分析模型。通过对动力方程进行合理的离散,利用ANSYS软件进行二次开发实现了求解过程。通过波浪作用下单跨梁悬浮隧道结构动力计算分析验证了非线性模型与线性模型计算差异,明确了悬浮隧道结构动力计算采用非线性模型的必要性。采用非线性动力分析模型,分析了悬浮隧道长度、管段截面尺寸、结构附加恒载、悬浮深度、海流速度对悬浮隧道结构动力响应的影响,在考虑结构安全性、稳定性以及经济效益的基础上提出了悬浮隧道结构设计的一些基本原则。
     (4)为衡量锚链振动对悬浮隧道结构的影响,对锚链在海流横向升力作用下动力响应进行了数值计算,分析了锚链预张力、海流速度、锚链长度、锚链截面积等参数对锚链横向位移、锚链轴力的影响。
     (5)针对悬浮隧道结构特征,将悬浮隧道管段简化为空间梁单元,锚链支持系统采用单向受拉杆单元,并考虑了锚链径向、环向运动的应力刚化效应。对悬浮隧道整体结构采用鱼骨梁模型进行建模,采用非线性动力模型进行了计算求解,分析了波流作用下锚链纵、横向布置方式、锚链长度、锚链角度、锚链距离、锚链张力对悬浮隧道结构静、动力响应的影响,给出了悬浮隧道结构锚链支持系统适用范围,设计过程中锚链支持系统设计参数的选择原则;分析了波流作用下曲线型、倒拱型悬浮隧道管体曲率对悬浮隧道结构静、动力特性的影响,给出了管体线型设计原则;通过自定义单元构造了悬浮隧道结构管段接头、驳岸接头单元,分析了接头弯曲刚度以及布置对结构静、动力特性的影响,结合结构稳定、安全性以及经济效益考虑给出了工程设计中实现的可行性。
     (6)悬浮隧道结构在水流力、波浪力等荷载的作用下会表现出弯曲、扭转、畸变、翘曲等变形,其力学特性十分复杂,难以通过悬浮隧道鱼刺梁模型进行分析。本文根据悬浮隧道工作环境,设计了悬浮隧道结构洋流模拟试验台,对悬浮隧道结构节段模型进行了试验研究,分析了海流作用下悬浮隧道管段空间应力状态以及锚索轴力的分布规律。
Submerged floating tunnel is a new symbolization of crossing tunnel conception. Submerged floating tunnel generally consists of tube structures floating in given depth below free surface, cables linked with the anchoring foundation and structures connecting the bank sides. This type of tunnel is not constructed in the middle of stratum or through stratum. It is surrounded with water, which make it different from the traditional tunnels. The submerged floating tunnel is balanced with the self-gravity and buoyant forces and support system in the given depth. Considering many merits in environment protection, social benefits, economic benefits, construction costs and etc, submerged floating tunnel is becoming a new research subject in the tunnel profession. There are potential application values in the construction of connecting structures between the islands and the mainland, the bay crossing channesl and the offshore buildings.
     Considering long extension of the submerged floating tunnel in the axial direction, geometric nonlinearity is expressed obviously. In the condition of large displacement, the interaction between structures and fluid can not be avoided and wave and current force is also changed nonlinearly. In the action of gravity, buoyant force, wave and current force and support system, large rigid displacement and rotation may be produced. The reliability and stability of submerged floating tunnel structures is influenced seriously. Though the submerged floating tunnel has not been applied in the practical construction, the irrelevant research has been carried on for thirty years in many countries and the scientific efforts was afforded in domestic. Little advance was achieved in integral and system research on the submerged floating tunnels.
     Given the characteristics of the submerged floating tunnels, the analysis in this article was majored in three parts. It was detailed in the flow around submerged floating tubes, static and dynamic response of submerged floating tunnels subjected wave and current forces, sectional model experiment research. The detailed contents in each part were described as following:
     (1) Flow field around the submerged floating tunnel with large scale cross section in super high Reynolds number was simulated using RNG K-εturbulent model with CFD module of ADINA program. The pressure coefficient and drag coefficient of different section type in steady state were obtained as well as drag coefficient and lift coefficient in impulsive motion and Strouhal number. The variation of the hydrodynamic parameters with different geometric configuration and aspect ratio was analyzed. With the general comparison of the hydrodynamic parameters, each type of cross section was evaluated and guidelines for the section design were presented. The parameters required in the static and dynamic analysis of the submerged floating tunnels were offered. Thus, inaccuracy of parameters can be avoided.
     (2) Simplified method for calculating the wave and current force with Morison formula was introduced. The parameters influencing on the wave and current force were analyzed such as depth of structures, depth of sea, current velocity and scale of cross section.
     (3) In the conditiion of large displacement, the interaction between the structures and fluid can not be ignored. The wave and current forces change nonlinearly. Nonlinear dynamic analysis model considering the interaction of submerged floating tunnel structures and fluid was constructed with nonlinear calculation method of the wave force and the lateral lift force. Based on the appropriate discrete approximation, the solution procedure was implemented with the secondary development of the ANSYS program. The difference of the response in the nonlinear model and the linear model was verified with the numerical dynamic analysis of single span submerged floating tunnel structures. It is proved that the nonlinear model is the mandatory requirement in the dynamic analysis of the submerged floating tunnel. The parameters influencing on the response of submerged floating tunnel were analyzed with nonlinear model such as the length of structures, the scale of cross section, the additional permanent load, the depth of structures, the current velocity. Considering the reliability and stability and economic benefits of the structures, the primary principles for the submerged floating tunnel structures were put forward.
     (4) In order to evaluate the influencing of cable on the submerged floating tunnel structures, the dynamic response of the cable subjected current force was numerical simulated. The parameters influencing on the lateral displacement and axial force of the cable were analyzed such as the pre-tensile force, the current velocity, the cable length, the scale of cable cross section.
     (5) Considering the characteristics of the submerged floating tunnels, the tubes were simplified into the spatial beam element. The cables were simulated with link element and the longitudinal and perpendicular stiffness was considered. The submerged floating tunnel was constructed with the herringbone beam model and the solution was obtained with nonlinear dynamic method. The parameters influencing on the static and dynamic response of submerge floating tunnel structures with the circular section and the straight line body were analyzed such as the longitudinal and transverse layout of cable, the cable length, the layout angle of cable, the layout distance of cable, the pre-tensile of cable. Taking the submerge floating tunnel with the circular section and the lopsided layout of the cables as example, the parameters influencing on the static and dynamic response of the structures were analyzed such as the curvature of the curved and the invert submerged floating tunnel. The tube junction and the waterfront junction element was created with the modification of the user defined element. The bending rigidity and the distribution of junctions influencing on static and dynamic response of the submerge floating tunnel were analyzed. In the view of stability and the security of structures and the economic benefits, the feasibility of application in the construction was analyzed.
     (6) The spatial mechanical characteristics of the submerged floating tunnel structures were extraordinary. The special phenomenons can be produced such as bending, twisting, distortion and warping. It can not be analyzed with herringbone beam model. According the work circumstance of the submerged floating tunnel, the submerged floating tunnel test platform was constructed. The segmental model experiments of submerged floating tunnel were carried on. The spatial stress distribution of the segmental model and the axial force of cable were analyzed.
引文
[1]AHRENS D.Submerged floating tunnels-a concept whose time has arrived [J].Tunneling and Underground Space Technology,1997,12(2):317-336.
    [2]FEHRL(Forum of European National Highway Research Laboratory).Analysis of the submerged floatinf tunnel concept[C].Crowthorne:Transport Research Laboratory,1996.
    [3]Donna Ahrens.Submerged Floating Tunnels-A concept whose time has arrived[J].Tunnelling and Underground Space Technology,1997,12(4):317-336.
    [4]干涌.水下悬浮隧道的空间分析与节段模型试验研究[D].杭州:浙江大学土木工程学院,2003.
    [5]王华.沉管隧道与悬浮隧道(6).隧道译丛.1994,12:26-45.
    [6]C.Hakkart.State of the Art of the Submerged Floating Tunnel[A].Inernational Tunnelling Association.International Conference on Submerged Floating Tunnels[C].Sandnes,Norway,1996.
    [7]A.Fiorentino.Brief history of archimedes bridge in the Strait of Messing[A].International Conference on Submerged Floating Tunnel[C],Sandnes,Norway,1996:29-30.
    [8]P.Tveit.Ideas on Downward arched and other underwater concrete tunnels[J].Tunnelling and Underground Space Technology,2000,15(1):69-78.
    [9]Toshiyuki,Fujii.Submerged floating tunnels project in Funka Bay design and execution[A].International Conference on Submerged Floating Tunnel[C].Sandnes,Norway,1996:1-20.
    [10]K.Sato.The Purpose of Submerged Floating Tunnel Plan in Hokkaido[C].International Conference on Submerged Floating Tunnels[C].Sandnes,Norway,1996.
    [11]James Felch.The Seattle-Bellevue Loop with the still-water submerged floating tunnel[A].Strait Crossing 2001[C].Krobeborg:Swets&Zeitlinger Publishers Lisse,2001:581-588.
    [12]ITA Working Group on Immersed and Floating Tunnels.Tunneling and Underground SpaceTechnology Special Issue on Immersed and Floating Tunnels,1993,8(2).
    [13]项贻强,薛静平.水中悬浮隧道在国内外的研究[J].中外公路,2002,22(6):49-52.
    [14]L.Aadnesen etc.The case for Floating Submerged Tunnels[J].Tunnels and Tunnelling International,1999,6:32-34.
    [15]麦继婷,关宝树.琼州海峡悬浮隧道的可行性研究[J].铁道工程学报,2003,(4):93-96.
    [16]麦继婷,关宝树用Morison方程计算分析悬浮隧道所受波浪力初探[J].石家庄铁道学院学报,2003,16(3).
    [17]M.Sato,S.Kanie,T.Mikami,etc.Modeling of submerged floating as a beam foundation on elastic under bending vibration[A].Strait C'rossing.2001[C].Krobeborg:Swets&Zeitlinger Publishers Lisse,2001,535-540.
    [18]Lidvard,Skorpa.The Hegsfjord submerged floating tunnel project -transport,environment and energy studies[A].Strait Crossing 2001[C].Krobeborg:Swets &Zeitlinger Publishers Lisse,2001:551-554.
    [19]B.Faggiano,F.Perotti.The dynamic response of seabed anchored floating tunnels under seismic excitation[J].Earthquake Engineering and Structural Dynamics,2000,29:273-295.
    [20]R.Fujita,T.Mikani.Development of submerged floating tunnel in shallow water[A].Strait Crossing 2001[C].Krobeborg:Swets & Zeitlinger Publishers Lisse,2001,555-562.
    [21]Kanie.S,Mikami.T,Horiguchi.H,etc.Effect of non-linearity in restoring force on dynamic response of SFT[A].Strait Crossing.2001[C].Krobeborg:Swets & Zeitlinger Publishers Lisse,2001:521-528.
    [22]Rolf.M.Larssen.Measured Dynamic Response of Submerged Floating Tunnels:A Tool for Further Developments[A].Strait Crossing 2001[C].Krobeborg:Swets&Zeitlinger Publishers Lisse,2001:521-528.
    [23]Terje Terje Haukas,Svein.Remseth.Global dynamic analysis of floating submerged tunnels preliminary study[J].Department of structural engineering,norwegian university of science and technology,1997.
    [24]Svein Remseth,Bernt J.Leira,Knut M.Okstad,etc.Dynamic response and fluid/structure interaction of submerged floating tunnel[J].Computers and Structures,1999.72:659-685.
    [25]麦继婷.波流作用下悬浮隧道的响应研究[D].成都:西南交通大学土木工程学院,2005.9.
    [26]李剑.水中悬浮隧道概念设计及其关键技术研究[D].上海:同济大学十木工程学院,2003.9.
    [27]刘应中,缪国平.高等流体力学[M].上海:上海交通大学出版社,2000.6.
    [28]陈章.粘性流体动力学基础[M].北京:高等教育出版社,2002.
    [29]吴子牛.计算流体力学基本原理[M].北京:科学出版社,2001.
    [30]李玉成,刘德良.大尺度圆柱墩群周围的波流场的数值模拟[J].海洋通报,2005,24(2):1-12.
    [31]张鸿雁,李凤蔚.非定常来流对建筑周围流场影响的数值模拟[J].西安建筑科技大学学报,2005,37(3):311-315.
    [32]尹则高,孙东坡.复杂流场的二维数值模拟方法[J].浙江大学学报,2004,38(2):180-184.
    [33]VERSTEEG H K,MALALASEKERA W.An introduction to computational fluid dynamics- the finite volume method[M].Edinburgh Gate:Addison WesleyLongmanLimited,1998.
    [34]徐元利,徐元春.FLUENT软件在圆柱绕流模拟中的应用[J].水利电力机械,2005,27(1):39-41.
    [35]王远成,吴文权.方柱绕流流场的RNG方法模拟研究[J].水动力学研究与进展,(A 辑),2004,19(supp):916-920.
    [36]李玲,李玉梁.应用基于RNG方法的湍流模型数值模拟钝体绕流的湍流流动[J].水科学进展,2000,11(4):357-361.
    [37]王志东,周林慧.均匀流中横向振荡圆柱绕流场的数值分析[J].水动力学研究与进展,2005,20(2):146-151.
    [38]李寿英,顾明.斜直圆柱绕流CFD模拟[J].空气动力学学报,2005,23(2):222-227.
    [39]邓绍云,邱清华.波流共同作用下大直径圆柱三维绕流数值模拟[J].水运工程,2007,(5):5-8.
    [40]潘小强,沈庆.漕渡门桥航行水阻力和绕流场的数值预报[J].解放军理工大学学报,2005,6(4):363-369.
    [41]胡影影,朱克勤.二维方柱绕流的人工侧边界数值研究[J].清华大学学报,2000,40(4):43-46.
    [42]徐枫,欧进萍.方柱非定常绕流与涡激振动的数值模拟[J].东南大学学报,2005,35Sup(Ⅰ):35-39.
    [43]曹丰产,项海帆.低雷诺数下方柱和圆柱的涡致振动的数值分析[J].同济大学学报(自然科学版),1998,26(4):382-386.
    [44]曹丰产,项海帆.圆柱非定常绕流及涡激振动的数值计算[J].水动力学研究与进展(A辑),2001,16(1):111-118.
    [45]刘松,符松.纵向受迫振荡圆柱绕流问题的数值模拟[J].计算物理,2001,18(2):157-162.
    [46]SPEZIALE G G,THANGAM S.Analysis of an RNG based turbulence model for separated flows[J].Int.J.Engrg.Sci.,1992,30:1379-1382.
    [47]王志东,周林慧.均匀流中横向振荡圆柱绕流场的数值分析[J].水动力学研究与进展,(A辑),2004,20(2):146-151.
    [48]张宇飞,肖志祥.流向强迫振荡圆柱绕流的涡脱落模态分析[J].力学学报,2007,39(3):408-415.
    [49]刘松.流向振荡圆柱绕流的数值研究[D].北京:清华大学,2002,4
    [50]Demirdzic I,Peric M.Finite volume method for prediction of fluid flow in arbitrarily shaped domains with moving boundaries.International Journal for Numerical Methods in Fluid,1990,10:771-790.
    [51]刘松,符松.流向振荡圆柱绕流中的涡脱落模态分析[J].水动力学研究与进展,(A 辑),2000,15(4):435-443.
    [52]费宝玲,郑庭辉.数值分析串列双圆柱绕流[J].西南民族大学学报,2007,33(2):376-380.
    [53]STANSBY P K.A numerical study of vortex shedding from one and two circular cylinders[J].Aeronautical Quarterly,1981,32:48-71.
    [54]SLAOUTIAND A,STANSBY P K.F low around two circular cylinders by the random-vortex method[J].Journal of Fluids and Structuress,1992,6:641-670.
    [55]李寿英,顾明.斜、直圆柱绕流的CFD模拟[J].空气动力学学报,2005,23(2):222-227.
    [56]NORBERG C.Flow around a circular cylinder:aspect of fluctuating lift[J].Journal of Fluids and Structures,2001,15:459-469.
    [57]Speziale G G,Thangam S.Analysis of an RNG based turbulence model for sepaeated flows Int J Engrg Sci,1992,30:1379.
    [58]马金花.圆柱体绕流的数值模拟[J].山东建筑工程学院学报,2001,16(2):46-47.
    [59]姚育成,李万平.高雷诺数情况下钝体绕流的数值模拟[J].华中科技大学学报(自然科学版),2003,31(2):106-108.
    [60]童兵,祝兵.绕方柱流脉动压力场的大涡模拟[J].水利水运工程学报,2002(1):8-11.
    [61]童兵,祝兵.绕方柱流速度场的数值模拟[J].西南交通大学学报,2002,37(2):121-124.
    [62]邓绍云.桩柱水流绕流阻力特性及其计算[J].中国港湾建设,2007,147(1):4-6.
    [63]C.J.Garrison.Hydrodynamic loading of large offshore structures three dimensional source distribution methods[M].A wiley-inter science publication.1978:87140.
    [64]戴绍仕.孤立圆柱及串列双圆柱水动力数值实验研究[D].哈尔滨:哈尔滨工程大学,2004.10.
    [65]康庄.四边形锥柱在均匀流中流体载荷的实验与数值计算研究[D].哈尔滨:哈尔滨工程大学,2004.2.
    [66]B.M.卡曼柯维奇.海洋动力学基础[M].北京:海洋出版社,1983.5.
    [67]C.A.布雷比亚,S.瓦尔克,边启光译.近海结构动力分析[M].北京:海洋出版社,1985.
    [68]J.F.威尔逊.海洋结构动力学[M].北京:石油工业出版社,1991.1
    [69]张玲.小直径桩柱波浪荷载的计算分析及程序实现[D].青岛:中国海洋大学,2004.6.
    [70]苏慧,龚维明.海洋独立支撑钢管桩的涡振研究[J].特种结构,2005,22(4):68-71.
    [71]邱大洪.波浪理论及其在工程上的应用[M].北京:高等教育出版社,1985.7.
    [72]竺艳蓉..几种波浪理论适用范围的分析[J].海岸工程,1983,2(2):11-27
    [73]张学志,黄维平.考虑流固耦合时的海洋平台结构非线性动力分析[J].中国海洋大学学报,2005,35(5):823-826.
    [74]李磊岩,李华军.海底管道管跨段在内外流体作用下的竖向动力特性研究[J].中国海洋大学学报,2005,35(1).
    [75]祖楠,黄维平.考虑流固耦合时的海底管道悬跨段非线性动力分析[J].中国海洋大学学报,2006,36(1):168-172.
    [76]麦继婷.波流作用下悬浮隧道的响应研究[D].成都:西南交通大学土木工程学院,2005.
    [77]麦继婷,杨显成,关宝树.波流作用下悬浮隧道的动态响应分析[J].水动力学研究与进展,2005,20(5):616-623.
    [78]马良.波流作用下海底管线的水动力和在位稳定性研究的近代进展[J].水动力学研究与进展,1995,10(2).
    [79]缪国平,刘应中.水波及其与结构物的相互作用-新时期海洋高科技中的水波动力学问题之一[J].水动力学研究与进展A辑,1994,9(2):215-223.
    [80]朱自强.驳船升沉与横荡运动下的海洋立管动力响应[J].中外船舶科技,2002,3:1-4.
    [81]娄敏.海底管道悬跨段涡激振动动力特性及动力响应的数值模拟[D].青岛:中国海洋大学,2005.6.
    [82]姚铁.海底管跨极限跨长的确定及其振动中同向横向的耦合作用[D].天津:天津大学建筑工程学院,2004.1.
    [83]杨新华,郭海燕.考虑阻尼海底悬跨段管道的动力特性及允许悬空长度[J].海洋工程,2005,23(1):1-5.
    [84]津基威兹O C,路易斯R W,斯塔格K G.大连工学院水利系、海洋工程研究所译.近海工程数值方法[M].北京:海洋出版社,1984.
    [85]S.K.Alnnad,S.Alnnad.Active control of non-linearly coupled TLP response under wind andwave environments[J].Computers and Structures,1999.
    [86]张骞,张世富.波浪载荷作用下海上漂浮式管线变形研究[J].山西建筑,2007,33(18):5-6.
    [87]居艮国.波浪荷载作用下深水墩钢管桩施工平台动力性能研究[D].上海:同济大学土木工程学院,2007.3.
    [88]Robert Kroyer.FSI analysis in supersonic fluid flow[J].Computer &Science,2003,81:775-764.
    [89]徐旭,曹志远.柔长结构气固耦合的线性与非线性气动力理论[J].应用数学和力学,2001,22(12):1299-1308.
    [90]宋雨,陈东霞.斜拉桥动力特性分析[J].厦门大学学报(自然科学版),2006,45(1):56-59.
    [91]赵刘群.水动力引起的海底管道振动的数值研究[D].大连:大连理工大学,2006.12.
    [92]申焱华,李浩然.扬矿管在海水中的整体运动分析[J].有色金属,2002,54(1):78-82.
    [93]R.W.克拉夫,J.彭津.结构动力学[M].科学出版社,1981.
    [94]鲁丽,杨翊仁.板状结构上的流体附加质量、附加刚度和附加阻尼系数[J].科学技术与工程,2006,6(11):1479-1481.
    [95]罗传信,刘春山.动水阻尼对桩基平台动力响应的影响问题[J].海洋学报,1989,11(6):794-800.
    [96]华旭刚,陈政清二.在ANSYS中实现颤振时程分析的方法[J].中国公路学报,2002,15(4).
    [97]华旭刚,陈政清二.在ANSYS中实现颤振时程分析的方法[J].中国公路学报,2002,15(4).
    [98]杨咏漪,廖海黎.基于ANSYS的斜拉桥抖振时域实用分析方法[J].空气动力学报,2004,22(4):457-460.
    [99]华旭刚.在ANSYS中实现颤振时程分析的方法[J].中国公路学报,2002(4):32-34.
    [100]于秀坤,朱虹.基于ANSYS二次开发的输液曲管振动特性分析[J].沈阳航空工业学院学报,2005,22(5):21-23.
    [101]曹映泓.大跨度桥梁颤振和抖振统一时程分析[J].土木工程学报,2000,33(5):57-62.
    [102]刘春华.大跨度桥梁抖振响应的非线性时程分析[D].上海:同济大学,1995.
    [103]谭学民.大跨度斜拉桥风致振动时域分析-香港汀九大桥工程应用[D].广州:华南理工大学,1999.6.
    [104]赵建飞.大跨度悬索桥风振响应分析及计算机仿真[D].上海:同济大学土木工程学 院,2006.3.
    [105]李岩,盛洪飞.大跨斜拉桥车桥振动简化算法及在ANSYS中实现[J].辽宁工程技术大学学报,2006,25(suppl):128-130.
    [106]周祥树.高墩大跨连续刚构抖振时域分析[D].西安:长安大学,2006.4.
    [107]朱克强,李道根.海洋浮式结构流固耦合动力建模分析[J].华东船舶工业学院学报,2002,16(1):1-6.
    [108]方明山.超大跨径悬索桥空气静力非线性行为研究[J].重庆交通学院学报,1999,18(2):1-7.
    [109]邓宇.大跨度拱桥涡致振动试验研究[D].重庆:重庆大学土木工程学院,2005,5.
    [110]张新军.结构变形效应对大跨径悬索桥颤振的影响研究[J].公路交通科技,2003,20(3):64-67.
    [111]杨素哲,陈艾荣.开口截面双索面斜拉桥动力特性研究[J].结构工程师,2005,21(4):44-47.
    [112]杨德灿,宛劲松.跨径的增加对缆索承重桥梁颤振分析方法的影响[J].世界桥梁,2004(5):23-26.
    [113]杨德灿,张焕.曲线连续箱梁桥活载作用下结构空间效应分析[J].武汉大学学报(工学版),2004,37(1):86-88.
    [114]单德山,李乔.曲线弯梁桥振动理论分析[J].公路交通科技,2005,22(5):71-74.
    [115]万晓燕,管敏鑫.沉管隧道段的结构计算与分析[J].世界隧道,1999(3):19-22.
    [116]胡夏闽,过轶青.半刚性组合节点初始转动刚度计算[J].工业建筑,2004,34(3):71-73.
    [117]署恒木.海底悬空管道弹性约束静态分析[J].石油大学学报,2005,29(6):94-97.
    [118]杨晓东,陈立群.带有扭转弹簧两端铰支轴向运动梁的横向振动分析[J].振动与冲击,2006,25(4):149-150.
    [119]蒋洪胜,侯学渊.盾构法隧道管片接头转动刚度的理论研究[J].岩石力学与工程学报,2004,23(9):1574-1577.
    [120]谢立广.水中悬浮隧道接头的力学行为分析[D].成都:西南交通大学土木工程学院,2007,5.
    [121]张文首,卢立勤.考虑结点耗能的导管架平台的动力响应分析[J].计算力学学报,2003,20(6):670-677.
    [122]杨世东,贺伟国.仑头.生物岛沉管隧道岸上最终接头设计[J].隧道建设,2005,25(5):31-34.
    [123]赵斌,刘学剑.柔性节点预制混凝土结构的动力反应[J].同济大学学报(自然科学版),2005,33(6):716-720.
    [124]蒋建群,卢慈荣.盾构法隧道纵向地震响应特性[J].中国铁道科学,2005,26(6):84-88.
    [125]李德寅,王邦楣等.结构模型试验[M].北京:科学出版社,1996.
    [126]左东启.模型试验的理论和方法[M].北京:水利水电出版社,1984.8.
    [127]朱乐东.桥梁涡激共振试验节段模型质量系统模拟与振幅修正方法[J].工程力学,2005,22(5):204-208.
    [128]张洪亭,王明赞.测试技术[M].沈阳:东北大学出版社,2005.2.
    [129]李明水,贺德馨.汕头妈屿跨海大桥(设计方案)节段模型抗风稳定性的实验研究[J].气动实验与测量控制,1994,8(3):35-39.
    [130]王长春.水中悬浮隧道与洋流耦合作用的模型试验[M].成都:西南交通大学土木工程学院,2005.12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700