用户名: 密码: 验证码:
Q_2原状黄土本构模型及其在隧道工程中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着西部大开发战略的实施,西部地区的基础设施建设工程、生态环境改善工程和国防建设工程中往往涉及到黄土工程问题。而黄土是一种具有独特工程性质的特殊性土,从岩土工程意义来说,其特殊性主要表现在黄土的结构性、欠压密性和湿陷性,导致在黄土地区修建工程的特殊性和复杂性,这就需要进一步发展黄土力学理论和相应的工程技术。本文在前人研究的基础上,通过理论推导、试验研究和数值模拟等方法对Q_2原状黄土的力学特性和浅埋黄土连拱隧道动态施工围岩损伤局部化过程等进行了较为系统和深入的研究。本文的主要研究内容和成果如下:
     ①从山西离石连拱隧道处取得Q_2原状黄土土样,通过试验测试获得Q_2原状黄土的物理性质和力学性质,主要包括非饱和Q_2原状黄土物理性质试验、三轴剪切试验、等压试验和等P试验。获得了Q_2原状黄土的剪应力q与剪应变εs的关系、体应变εv与剪应变εs的关系,进而拟合得到弹性常数、强度参数及峰值强度与残余强度随围压的变化规律等。
     ②根据Q_2原状黄土的试验结果,对弹塑性变形进行分离,作出流线图和势线图,并假定塑性流动符合相关联流动法则,选用塑性功函数为硬化、软化函数,建立了应变空间的Q_2原状黄土弹塑性本构模型。
     ③在应变空间的Q_2原状黄土弹塑性本构模型的研究基础上,把土体在应力作用下的总变形分解为弹性变形、塑性变形和损伤不可逆变形。假定塑性变形和损伤不可逆变形耦合,并服从伊留辛公设,确定出以广义塑性功为硬化参数的加载函数和以损伤能量密度为参数的损伤屈服面函数,推导出损伤演化规律,建立了应变空间的Q_2原状黄土弹塑性损伤本构模型。
     ④根据FLAC~(3D)的塑性流动法则并对其进行修正,推导出Q_2原状黄土弹塑性损伤本构模型的FLAC~(3D)的格式。再利用FLAC~(3D)的二次开发功能,用C++程序编制了用户自定义本构模型,与FLAC~(3D)自带的本构模型分别对试件进行模拟,并与试验结果进行对比,得出用户自定义本构模型更能准确反映Q_2原状黄土的力学特性。
     ⑤定义了围岩损伤度SRDD概念和推导其计算公式,并用FLAC~(3D)的FISH语言编制围岩损伤局部化后处理模块,通过实例模拟,得出该围岩损伤度后处理模块能较好的反映黄土隧道动态施工围岩损伤局部化分布和演化情况。
     ⑥以离石黄土连拱隧道为依托工程,对离石黄土连拱隧道的两种施工方案开挖过程分别进行损伤局部化数值模拟研究,通过分析开挖过程中围岩损伤局部化分布情况和损伤演化规律,选出较合理的施工方案,并与现场的监测数据进行对比分析,验证了数值模拟结果的可信性。
     ⑦通过分析隧道工程围岩稳定性的分析和判别方法,结合Q_2黄土隧道动态施工围岩损伤局部化数值模拟研究、以及隧道新奥法监测,建立了一套简易的适用于Q_2黄土隧道围岩稳定性判别方法,为Q_2黄土隧道围岩稳定性判别提供参考。
Along with the implementation of western development strategy, geological hazard of loess projects has occurred frequently to infrastructure construction, ecological environment improvement projects and construction of national defense in western regions. These problems can be solved only by the development of loess mechanics theory and engineering technology. On the basis of previous research, deformation properties of loess and damage localization of loess multi-arch tunnel are researched by theoretical deduction, experimental test, program composition, and numerical simulation. The main works of the thesis can be drawn as follows:
     (1) According to Q_2 loess conventional triaxial compression test curves in different stress path, it can draw the relations of shear stress q and shear strainεs, relations of body strainεv vs shear strainεs. Besides, the change rules of Elastic constants against confining pressure, peak strength and remain strength against confining pressure are obtained.
     (2) According to Q_2 loess conventional triaxial compression test results in different stress paths, the plastic potential function is adopted as hardening function and softening function for the reason that both the hardening parts and softening parts have the same approximate ellipse. Assume that plastic flow rule is accorded with the associative flow rule. The plastic potential function is adopted as hardening function and softening function, the elasto-plastic constitutive model of Q_2 loess in strain space is set up.
     (3) With the deficiency of elasto-plastic constitutive model of Q_2 loess, the total deformation is divided into elastic deformation, plastic deformation and irreversible deformation by degraded stiffness. Assume that the plastic deformation and irreversible deformation obeys Hyushin's postulate, and the plastic deformation is coupling with irreversible deformation, according to internal variable theory, elastic-plastic theory in strain space and damage mechanics theory, plastic work is calculated by separating strain of conventional triaxial compression test results. And the loading function is obtained with the plastic work as hardening parameter. And then, according to the damage potential determination method of Desai model, masonry model and Zhao Xihong model, damage yielding surface function is obtained with the parameter of damage energy density. Further more, evolution law of damage is deduced on the basis of correlative parameters simulated from test data. And the elasto-plastic damage constitutive model of Q_2 loess in strain space is found.
     (4) Based on the plastic flow rule of FLAC~(3D) and some corrections, the FLAC~(3D) pattern of elasto-plastic damage constitutive model of Q_2 loess is deduced. Utilizing secondary development function of FLAC~(3D), user-defined model is programmed with Microsoft Visual C++. The user-defined model is loaded in FLAC~(3D). The simulation results of modified Cam-Clay model and user-defined model to failure mode of test sample is compared.
     (5) The defining of surrounding rock damage degree (SRDD) is brought forward, and its computational expressions are deduced. It is then programmed with FISH language.
     (6) Based on project of Lishi loess multi-arch tunnel, the damage localization process of dynamic construction of loess multi-arch tunnel is simulated. By analysis on the SRDD distributing and its evolvement of two excavating scheme, the better scheme can be obtained. And it is compared with the practice construction of Lishi loess multi-arch tunnel to prove its creditability.
     (7) A simple evaluation system of surrounding rock stability is set up by adopting analysis methods and discriminated methods of tunnel engineering by combining with analysis and eyeballing of damage localization numerical simulation of tunnel engineering, and New Austrian Method monitoring of tunnel.
引文
[1]刘祖典.黄土力学与工程[M].西安:陕西科学技术出版社,1997.
    [2]来弘鹏,杨晓华,林永贵.黄土公路隧道病害分析与处治措施建议[J],公路,2006(6):197-202.
    [3]夏旺民.黄土的软化本构模型[D].西安理工大学,2002.
    [4]谢星,赵法锁,王艳婷等.结构性Q2、Q3黄土的力学特性对比研究[J].西安科技大学学报,2006,26(4):451-455,468.
    [5]山西省交通规划勘察设计院.青岛至银川国道主干线山西省汾阳至离石段(高速公路)第十六合同段两阶段施工图设计.第五册《隧道》,2003.5.
    [6] Duncan, J. M. and Chang, C. T. Nonlinear Analysis of Stresss and Strain in Soils[C]. J. SMFD, ASCE, (96), No.SMS, 1970.
    [7] Duncan, J. M.,Byrne P.,Wong K S. and Mabry P. Strength, Stress一strain and Bulk Modulus Parameters for Finite Element Analysis of Stresses and Movements in Soil Masses[C]. Report No. UCB/CT/80-O1.19.
    [8] Lade P V.Elasto-Plastic stress-dilatancy relation based on friction [J]. Geotechnique, 1976, 26(3):332-340.
    [9] Lade P V, Duncan J M. Cubical triaxial tests on cohesionless soil[C]. Journal of the geotechnical eng. Division, ASCE, 99, no.SIMIO, OCT, 1975a..
    [10] Lade P V, Duncan J M. Elastoplastic stress-strain theory for cohesionless soil [C]. Journal of the geotechnical eng. Division, ASCE, 99, no.SIMIO, OCT, 1975b.
    [11] Lade P V, Kin M K. Single Harding constitutive models for frictional materials [J]. II, Yield criterion and plastic work contours, computer and Geotechnics, 1998a, 6(1):679-688.
    [12] Lade P V, Kin M K. Single Harding constitutive models for frictional materials [J]. III, Yield criterion and plastic work contours, computer and Geotechnics, 1998b, 6(1):679-688.
    [13] Lade P V. Modeling yield surface for granular in three dimensions [M].Computer methods and advances in geomechanics, A.A.BAKEMA/ROTTERDAM/BROOKFIELD,1997.
    [14] Lade P V. Single Harding constitutive model and prediction of 3-D undrained tests on clay. Advance in constitutive laws for engineering materials [M]. International academic publishers, 1989.
    [15] Alonso E E, Gens A, Josa A. AConstitutive model for partially saturated soils [J]. Geotechnique, 1990, 40(3):405-430.
    [16]陈正汉.重塑非饱和黄土的变形、强度、屈服和水量变化特性[J].岩土工程学报,1999,21(1):82-90.
    [17]黄海,陈正汉,李刚.非饱和土在p-s平面上屈服轨迹及土与水特征曲线探讨[J].岩土力学,2000,21(40:316-321.
    [18] Fredlund D G, Rehardjo H. Soil mechanicas for unsaturated soils [M]. John Wiley&Sons, Inc., New York, 1993.
    [19]陈正汉,周海清.非饱和土的非线性模型及其应用[J].岩土工程学报,1999,21(5):603-608.
    [20]夏旺民,郭增玉.Q1黄土的弹塑性软化本构模型[J].西安理工大学学报,2004,20(3):241-244.
    [21]孟勇. K_0固结非饱和黄土弹塑性研究[D].西安建筑科技大学,2005.
    [22]石坚,刘峰.原状挤密黄土的弹塑性特征[J].路基工程,2007,(3):50-51.
    [23]沈珠江.土体结构性的数学模型——21世纪土力学的核心问题[J].岩土工程学报,1996,18(l):95-97.
    [24] Desai C S. constitutive model for geological materials [J]. J. Eng. Mech. Div.110(9),1995
    [25] Desai C S, J. Toth. Disturbed state constitutive modeling based on stress-strain and nondestructive behavior [J]. Int. J. Solids Struct. 1996, 33: 1619-1650.
    [26] Desai C S, C. Basaran, W. Zhang. Numerical algorithms and mesh dependence in the Disturbed State Concept [J], Int.J.Numer. Meth. Engng.. 1997. 40, 3059-3083.
    [27] Desai C S and Zhichao Wang. Disturbed state model for porous saturated materials [J]. International Journal of Geomechanics, 2003.3(2): 260-265.
    [28] Desai C S. Evaluation of liquefaction using disturbed state and energy approaches [J]. J. Geotech. Geoenviron. Eng., ASCE. 2000, 126(7): 618-631.
    [29]卢再华.非饱和膨胀土的弹塑性损伤本构模型及其在土坡多场耦合分析中的应用[D].重庆:重庆后勤工程学院,2000.
    [30]郭增玉,张朝鹏,夏旺民.高湿度Q2黄土的非线性流变本构模型及参数[J].岩石力学与工程学报,2000,19(6):780-784.
    [31]沈珠江,胡再强.黄土的二元介质模型[J].水利学报,2003(7):1-6.
    [32]夏旺民,郭增玉.Q1黄土的弹塑性损伤本构模型[J].岩土力学,2004,25(9):1423-1426
    [33]胡再强,沈珠江,谢定义.结构性黄土的本构模型[J].岩石力学与工程学报,2005,24(4):565-569.
    [34]林斌,赵法锁.黄土的损伤及其演化规律研究[J].安徽理工大学学报(自然科学版),2006,26(3):17-21.
    [35]邵生郡,罗爱忠,于清高等.加荷增湿作用下Q3粘黄土的结构损伤特性[J].岩土工程学报,2006,28(12):2077-2081.
    [36]牛军贤.基于WF三轴系统非饱和土损伤统计本构模型试验研究[D].兰州理工大学,2006
    [37]谢星,王东红,赵法锁.单轴压缩下结构性Q2黄土的损伤本构模型研究[J].水文地质工程地质,2008(3):47-50.
    [38]王芝银.隧道围岩粘弹塑性损伤有限元分析的统一模式[J].西安公路交通大学学报,1997,17(2):32-35,44.
    [39]凌建明,刘尧军.卸荷条件下洞室围岩稳定的损伤力学分析方法[J].石家庄铁道学院学报,1998,11(4):10-16.
    [40]李晓,王思敬.软岩隧道损伤软化大变形的非线性数值模拟[J].工程地质学报,2000,8(增):564-567.
    [41]朱维申,李术才,程峰.能量耗散模型在大型地下洞群施工顺序优化分析中的应用[J].岩土工程学报,2001,23(3):333-336.
    [42]王华宁,曹志远.岩体施工过程损伤演化预测的时变力学分析[J].应用力学学报,2002,19(4):134-138.
    [43]王华宁,曹志远.地下洞室开挖过程中洞周损伤分布的时变反演[J].力学季刊,2002,23(4):471-479.
    [44]王华宁,曹志远.粘弹塑性损伤时变力学在岩土工程施工分析中的应用[J].工程力学,2005,22(4):84-89,105.
    [45]曹志远,王华宁.粘弹性时变体的损伤演化理论与分析[J].固体力学学报,2004,25(2):159-164.
    [46]林传年.分岔隧道围岩损伤与稳定性研究[D].兰州大学,2004.
    [47]李忠华,官福海,潘一山.基于损伤理论的圆形巷道围岩应力场分析[J].岩土力学,2004,25,supp.2:160-163.
    [48]谢红强,徐家始,邵江.岩质隧道开挖稳定性脆弹塑性损伤分析[J].红水河,2005,24(3):53-56.
    [49]吉小明.隧道开挖的围岩损伤扰动带分析[J].岩石力学与工程学报,2005,24(10):1697-1702.
    [50]李树忱,李术才,朱维申等.能量耗散弹性损伤本构方程及其在围岩稳定分析中的应用[J].岩石力学与工程学报,2005,24(15):2646-2653.
    [51]姜小春,刘升贵,静国梁等.深部围岩开挖损伤区数值模拟研究[J].矿业研究与开发,2007(6):12-15.
    [52]唐春安,赵文.岩石破裂全过程分析软件系统RFPA~(2D)[J].岩石力学与工程学报,1997,16(5):507-508.
    [53]刘庭金,朱合华,唐春安.围岩卸荷损伤演化及应力场调整有限元分析[J].地下空间,2002,22(4):310-313,319.
    [54]郑颖少,龚晓南.岩土的塑性理论基础[M].北京:中国建筑出版社,1990.
    [55]郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M].北京:中国建筑工业出版社出版,2002.
    [56]张学言,闫澍旺.岩土塑性力学基础[M].天津:天津大学出版社,2004.
    [57] Atleinson J H, Bransky P L. The Mechanics of Soil-An Introduction to Critical State Soil Mechanics [M]. Maidehead: Mcgraw-Hill Inc. 1978.
    [58] Chen W F, Baladi G Y. Soil Plasticity: Theory and Implementation [M]. Amsterolam: Elsevier, 1985.
    [59] ChenW F.Constitutive equation for engineering materials: (I) elasticity and modeling [M], New York: Wiley-Interscience, 1982.
    [60] Chen W F, Han D J. plasticity for structure engineering [M]. New York: Springer-verlag, 1998.
    [61] Desai C S, Gallagher R H. Mechanics of engineering materials [M]. London: J. Wiley and Sons, 1984.
    [62] Balasubramanian A. S, Chaudhry, A. R..Deformation and strength characteristics of soft Bangkok clay[C]. Journal of geotechnical engineering division, ASCE, GT9, 1978.
    [63] Casey J, Lin H H. Calculated hardening softening and perfectly plastic responses of a special class of materials [J]. Acta mechanica, 1984, 55:41-67.
    [64] Christian J T.Plane strain deformation analsis of soils [D].Department of civil engineering, Massachusetts institute of technology. Cambrige, Mass, 1966.
    [65] Chu J. Asymptotic behaviour of granular soil in strain path testing [J].geotechnique, 1994, 44(1):57-65.
    [66] Dafalias Y F, Herrmann L R. bounding surface formulation of soil plasticity [M]. Sol mechanics-transient and cyclic loads, 1982.
    [67] Divis E H, Theories of plasticity and the failure of soil masses [M]. In Lee, I.K., ed, Soil Mechanics Selected Topics. New York: Elsevier, 1968.
    [68]杨桂通编.弹塑性力学[M].北京:人民教育出版社,1981.
    [69]李咏偕,施泽华编.塑性力学[M].北京:水利电力出版社,1987.
    [70]王仁,黄文彬,黄竹平著.塑性力学引论(修订版)[M].北京:北京大学出版社,1992.
    [71]王仁,黄克智,朱兆祥.塑性力学进展[M].北京:中国铁道出版社,1988.
    [72]北川浩,刘文斌,张宏译.塑性力学基础[M].北京:高等教育出版社,1986.
    [73]郑颖人,沈珠江,龚晓南著.岩土塑性力学原理(广义塑性力学)[M].北京:建筑工业出版社,2002.
    [74] A. Prashant and D. Penumadu. Effect of Intermediate Principal Stress on Overconsolidated Kaolin Clay [J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2004,
    Vol.130, No.3: 284-292. [75] A.S. Chiarelli,J.F. Shao,N. Hoteit. Modeling of elastoplastic damage behavior of a claystone [J]. International Journal of Plasticity,2003,19: 23-45.
    [76] D. Sheng , S. W. Sloan , A. Gens. A constitutive model for unsaturated soils: thermomechanical and computational aspects [J]. Computational Mechanics, 2004, 54(1):1-17.
    [77] D. A. Sun, H. Matsuoka, H. B. Cui and Y. F. Xu. Three-dimensional elastic-plastic model for unsaturated compacted soils with different initial densities [J]. Int. J. Numer. Anal. Meth. Geomech, 2003,27: 1079-1098.
    [78] E. E. Alonso A. Gens and A. Josa, A constitutive model for partially saturated soils [J]. Geotechnique, 1990, 40(3):405-430.
    [79] Gens A, Alonso EE, A framework for the behaviour of unsaturated expansive clays [J]. Canadian Geotech. J., 1992, 29: 1013-1032.
    [80]刘祖典等.黄土的应力应变关系类型和本构关系[J].陕西机械学院水利电学院,1989(8):33-36.
    [81]刘祖典,党发宁.土的弹塑性理论基础[M].西安:世界图书出版公司,2002.
    [82]夏旺民.黄土的软化本构模型研究[D].西安理工大学硕士学位论文,2002. 4.
    [83]夏旺民,郭增玉. Q1黄土的弹塑性软化模型[J].西安理工大学学报,2004, 20 (3):241-244.
    [84]夏旺民,郭金晓,郭增玉.应变空间Q1黄土的弹塑性模型[J].岩石力学与工程学报,2004,23 (24 ): 4147-4150.
    [85]张炜.黄土力学性质试验中的若干问题[J].工程勘察,1995, (3): 6-12.
    [86]沈珠江.理论土力学[J].北京:水利水电出版社,2000.
    [87]郭瑞平,李广信.以塑性功函数为硬化参数的土的弹塑性模型[J].清华大学学报,2000, (5):125-127.
    [88]郭瑞平,李广信等.土应变软化性状的弹塑性模拟[C].中国土木工程学会,第八届土力学及岩土工程学术会议论文集,万国学术出版社,1999(10):73-76.
    [89] Lade D. V. and Duncan J M. GED. Elastic-plastic stress-strain theory for cohesionless soil[C]. JASCE, 1957,101(10):l037-1064.
    [90]沈珠江.几种屈服函数的比较[J].岩土力学,1993(1):41-45.
    [91]余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997.
    [92] Lemaitre J. A Course on Damage Mechanics [M]. Spring-Ver.lag,1992.
    [93] Lemaitre J. Chaboche J L. Mecanique des Materiaux Solides [M] , Chap.7 ,Endommagement,Dumond,1985.
    [94] Janson J and Hult J. Fracture mechancs and damage mechanics, a combined approach [J]. J.de Mech, Appl., 1997,1(1):59-64.
    [95] Kachanov L M. Introduction to Continuum Damage Mechanics [M]. Martinus Nijhoff Publishers, Dordrecht,The Netherlands, 1986.
    [96]村上澄男.损伤力学——材料损伤与断裂的连续介质力学处理[M].材料(日),1982,31(340):1-11.
    [97] Kachanov L M. Time of rupture process under creep conditions [J]. TVZ Akad Nauk, S.R.Otd,Tech.Nauk, 1982,(8):657-659.
    [98] Tvergaard V. Material Failure by Void Growth to Coalescence [J]. DCAMM Report No. S54, The technical university of Denmark, 1988, (3):112-119.
    [99] Kunin I A. Elastic Media with Microstructures [M], II, Springer-Verlag, 1983.
    [100] Nemat-Nasser S and Hori M. Micromechnics: Overall Properties of Heterogeneous Elastic Solids [M], Elsevier Science Publishers, North-Holland, 1993.
    [101] Krajcinovic D. Damage Mechanics [J]. Mech. Master., 1989, 8:117-197.
    [102] Rabotnov Y.N. Creep rupture. Proc.12th Int. Cong.Appl. IUTAM, 1968.
    [103] Lemaitre J. Evolution of dissipation and damage in metals, subitted to dynamic loading. Proc. I.C.M.1,Kyoto Japan,1971.
    [104] Broberg L. A new criterion for brittle creep ruptures [J]. J. Mech. Trans ASME Ser E 1974,41,809-815.
    [105]余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社,1993.
    [106] Sidoroff F. Description of anisotropic damage application to elasticity [J]. IUTAM,Colloquium,Physical Nonlinearities in Structural Analysis,1981:237-244.
    [107]陈惠发A.F.萨里普著,余天庆,王勋文,刘希拉等译.混凝土和土的本构方程[M].北京:中国工业出版社出版,2004.
    [108]楼志文.损伤力学基础[M].西安:西安交通大学出版社, 1991:1-58.
    [109]吴鸿遥.损伤力学[M].北京:国防工业出版社,1990.
    [110]周光泉,陈德华,席道瑛.岩石连续损伤本构方程[J].岩石力学与工程学报,1995,(3):229-235.
    [111] Margolin L. G. Elastic moduli of a cracked body [J]. Int. J. Fracture, 1983,(22):65-79.
    [112] Horri H., Nemat-Nasser S.: Overall moduli of solids with microcracks: loadindaced anisotropy [J]. J. Mech. Phy. Solids, 1985,(31):155-171.
    [113]殷宗泽.一个土体的双屈服面应力一应变模型[J].岩土工程学报,1988(4):64-71.
    [114]沈珠江.结构性粘土的堆砌体模型[J].岩土力学.2000,21 (1):2-4.
    [115]孙红,赵锡宏.软土的弹塑性各向异性损伤分析[J],岩土力学1999,3: 7-12.
    [116] Jiang Mingjing, Shen Zhujiang. A structural suction model for structured clays [A]. In: 2ndInt. Conf. on Soft Soil Engineering [C]. Nanjing: Hohai Univ. Press, 1996, (1): 231-242.
    [117] Shen Zhujiang. Development of structural model for soils [A]. Yuan J X. 9th Int. Conf. on Computer Methods and Advances in Geomechanics [C]. Rotterdam: A. A. Balkema, 1997, (1): 235-240.
    [118] Armaleh, S. H.,Desai,C. S.,Modeling including testing of cohesionless soils using disturbed state concept,Int. J. Mech. Behavior of Mat. 1990. 5 (3):667-675.
    [119]朱维申,李术才,陈卫忠.节理岩体破坏机理和锚固效应及工程应用[M].北京:科学出版社,2002:53-59.
    [120]张永兴.岩石力学[M].中国建筑工业出版社,2004.
    [121] Itasca Consulting Group,Inc. Optional Features in FLAC3D[M].2004: 4-1-4-17.
    [122]邵国建,卓家寿,章青.岩体稳定性分析与评判准则研究[J].岩石力学与工程学报, 2003, 22(5): 691-696.
    [123]李树忱,李术才,徐帮树.隧道围岩稳定分析的最小安全系数法[J].岩土力学,2007,28(3):549-554.
    [124]蔡美峰.岩石力学与工程[M].北京:科学出版社, 2002.
    [125]朱大勇,钱七虎,周早生.复杂形状洞室围岩应力弹性解析分析[J].岩石力学与工程学报, 1999, 18(4): 402-404.
    [126]张路青,杨志法,吕爱钟.两平行的任意形状洞室围岩位移场解析法研究及其在位移反分析中的应用[J].岩石力学与工程学报, 2000, 19(5): 584-589.
    [127]刘宁,邵国建.地应力渗流共同作用下洞室围岩加锚稳定的可靠度计算[J].岩土工程学报, 2000, 22(6): 711-715.
    [128]尚新生,余启华,赵震英.用修正FOSM方法分析隧洞稳定的可靠性[J].岩石力学与工程学报, 1997, 16(1):43-50.
    [129]王思敬,杨志法.地下工程岩体稳定分析[M].北京:科学出版社, 1984.
    [130]许传华,任青文,李锐,等.地下工程围岩稳定性分析方法研究进展[J].金属矿山, 2003, (2): 34-37.
    [131]谭云亮,王泳嘉.巷道围岩塑性状态判定分析方法[J].工程地质学报, 1996, 4(2): 63-68.
    [132]王书法,朱维申.考虑空间影响的两种非连续变形分析方法[J].岩石力学与工程学报, 2000, 19(3): 369-372.
    [133] Hart R, Cundall P A, Lemos J. Formulations of three-dimensional distinct element model. Part II: Mechanical calculation of a system composed of manypolyhedral blocks [J]. International Journal of Rockmechanics and Mining Sciences, 1988, (3): 117-125.
    [134]刘承论.基于解析积分求解影响系数的三维FSM边界元法[J].岩石力学与工程学报,2002, 21(8): 1243-1248.
    [135]陈卫忠,朱维申,李术才.节理岩体中洞室围岩大变形数值模拟及模型试验研究[J].岩石力学与工程学报,1998, 17(3): 223-229.
    [136]李树忱,李术才.水中填筑围堰边坡稳定的流-固耦合分析[J].岩土力学, 2004, 25(1): 82-86.
    [137]冯玉国.灰色优化理论模型在地下工程围岩稳定性分类中的应用[J].岩土工程学报, 1996, 18(3): 62-66.
    [138]李术才,李树忱.三峡右岸地下电站厂房围岩稳定性断裂损伤分析[J].岩土力学, 2000, 21(3): 193-197.
    [139]严薇,林娴,周朝长.熵度量法在地下工程围岩稳定性分级中的应用[J].重庆建筑大学学报,2007,29(1):75-77.
    [140]刘锦华,吕祖珩.块体理论在工程岩体稳定分析中的应用[M].北京:水利电力出版社,1986
    [141]孙钧.地下结构工程理论与实践[M].上海:上海科学技术出版社,1995.
    [142]浙江省交通设计院.公路隧道设计规范[S].北京:人民交通出版社,1990.
    [143]原国家冶金工业局.锚杆喷射混凝土支护技术规范[S],北京:中国计划出版社,2001.
    [144]胡学兵.大断面公路隧道力学响应及围岩稳定性评价研究[D].重庆交通学院,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700