用户名: 密码: 验证码:
固定化光合细菌光生物制氢反应器传输与产氢特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前能源持续紧张,国际石油价格大幅振荡,不断攀升,能源短缺问题成为困扰社会和经济发展的首要问题,同时化石能源的开采和应用对环境造成了严重破坏,特别是产生的CO2引起的温室效应带来的极端和异常气候变化、氮氧化物和SO2带来的酸雨等问题严重地威胁着地球和人类的可持续发展。我国是一个能源资源相对贫乏的国家,特别是石油、天然气人均资源量仅为世界平均水平的7.7%和7.1%。因此开发可再生的生物能源对于促进可持续社会的发展具有重要意义。在可再生能源中氢能是21世纪的可再生“能源之星”和“最有前景的能源”,并广泛地被认同为化石燃料的潜在替代能源,2007年4月国家颁布能源发展“十一五”规划更明确指出将氢能开发作为我国今后重点的前沿发展技术之一。目前广泛采用的传统制氢方法一方面仍消耗化石能源,另一方面对环境造成破坏,而利用光合细菌将有机废弃物转化为氢能是一种可持续发展的制氢方式。
     固定化技术是当今生物工程领域中的研究热点,但关于固定化细胞生物制氢反应器中传输特性的研究还极少进行,这方面的研究对于解决固定化细胞技术中的传输限制性问题和光生物制氢中光能利用率低、产氢率低等问题具有重要的理论和实践意义,为固定化技术在生物能源领域的应用奠定一定基础。
     本课题主要是研究固定化光合细菌在光产氢过程中的底物传输特性及产氢特性。实验创新性地采用双层平板法从长期排放污水的水沟淤泥中筛选、分离纯化出一株具有高产氢特性的沼泽红假单胞菌菌株(Rhodoseudomonas palustris),进行了光波长、光照强度、底物浓度、培养液pH值和培养温度影响下的序批式培养光合细菌产氢动力学实验,根据实验数据拟合得到最大比生长速率关于不同培养条件参数影响的经验关系式,并建立光合细菌生长、底物消耗和产氢动力学模型,模型较好地反映了操作参数对光合细菌生长、底物消耗和产氢动力学的限制性和抑制性影响。
     实验研究了固定化包埋颗粒产氢和底物消耗特性,建立了固定化包埋颗粒内底物传输与消耗动力学模型,模型预测结果反映了包埋颗粒内底物传输特性,研究结果表明底物主要以扩散方式进入包埋颗粒内,并且沿颗粒半径方向变化底物浓度逐渐减小,包埋颗粒内控制过程主要为生化反应控制过程,提高光合细菌菌种的生化反应速率是提高底物消耗速率的关键。
     固定化包埋颗粒填充床研究结果表明随进口底物浓度增加,底物在填充床反应器内的代谢逐渐由传输控制转化为生化反应控制的过程,随进口流量增加,传质边界层逐渐减小,外扩散传质阻力逐渐消除,主要由以传输控制为主的过程向生化反应控制的过程转化;随入射光照强度的增加,光能供应逐渐由限制性条件向抑制性条件转变;不同光波长激发光合色素天线系统所引起的激发态不同,产生的光化学效应不同,及最佳产氢速率和底物消耗效率所对应的光照强度不完全相同;随培养液pH值和培养温度升高,填充床反应器产氢和底物消耗行为表现为先增加后抑制现象。
     固定化生物膜光生物制氢填充床实验研究表明其它条件一定,光照强度较低时,为限制性条件时,光照强度较高时,为抑制性条件。底物浓度为限制性条件时,属于传质控制过程;进口底物浓度为抑制性条件时,为生化反应控制过程。进口流量较低时,主要为传输控制过程;进口流量和进口底物浓度较高时,主要为反应控制过程。本课题在实验研究基础上建立了生物膜光生物制氢中底物传输与消耗动力学模型,分析了影响填充床内质量传递的外界操作因素,模型预测与实验结果取得了较好吻合。
     同时本课题研究结果表明一定条件下,不同尺度下光合细菌产氢行为表现为以温度为30°C左右或pH值为7.0时产氢速率和底物消耗速率较快,说明温度及pH值主要影响细胞内酶活性。
Currently, energy resource remains in strain, and the international price of oil keep on rising, so the primary problem affecting the development of society and economy is shortage of energy resource. Meanwhile, the exploitation and application of fossil fuel bring serious harm to our environment, especially CO2 emitted breeds in the greenhouse effect to induce the extreme change of climate, and the acid rain is ascribed to the emitted NOx and SO2. These pollutants threaten the sustainable development of earth and human being. Nevertheless, in our country falling short of energy resource the amount per capita of oil and natural gas is only 7.7% and 7.1% of word average level. Therefore, the exploitation of renewable bioenergy will hasten the development of sustainable development of society, in which hydrogen named as a promising energy source is a clean and efficient fuel and widely accepted as a potential substitute for fossil fuels by virtue of the fact that it is renewable and does not cause the‘‘greenhouse effect”. And in the 11th Five-Year Plan of energy resource promulgated the exploitation of hydrogen energy will become one of the important and advanced technologies developing. However, hydrogen production by conventional methods needs to consume the fossil energy resource and destroys our living environment, conversely hydrogen production by photosynthetic bacteria (PSB) from organic wastes is renewable. So far, the immobilized cells technology has became hot in biotechnology, but there was little research on the transfer characteristics of immobilized PSB cells in the process of hydrogen production, but the research, which will lay a foundation for application of immobilized cells technology in bioenergy, will favor to solve the problem of limitation in mass transfer of immobilized cell and the problem of low efficiency of light utilization and low rate of hydrogen production.
     The characteristics of hydrogen production and substrate transfer of immobilized PSB was mainly analyzed in the thesis. First, a strain identified as Rhodoseudomonas palustris with high efficiency of hydrogen production was isolated and purified from sewage sludge. Effect of light wavelength, light intensity, substrate concentration, pH value of culture medium and culture temperature on the kinetics of hydrogen production in batch culture was studied in experiments, And according to experimental data the empiristic formulae on effect of different culture conditions on the maximum specific growth rate were gained. Moreover, kinetic models on biomass growth, substrate consumption and hydrogen production of PSB were respectively established, which reflected the effects of operation parameters in batch culture on the kinetics of growth, substrate concentration and hydrogen production, respectively.
     The research on characteristics of hydrogen production and substrate consumption in the particle of immobilized PSB was tested, and the mathmatic model on the substrate transfer and consumption in entrapped-particles was studied, which results reflected on effect of parameters in continuous culture on the characteristics of substrate transfe. The research results releaved that substrate was transported into particle by diffusion, and the concentration of substrate in particle decreased with decrease of radius of particle. According to above analyzed the conclusion that the limited process in particles was biochemical reaction was deduced. Therefore, the key of improving biochemical reaction efficiency of the entrapped-particles was to improve the biochemical characteristics of strain of PSB.
     On the other hand, the results on photo-bio-hydrogen production in packed beds filled with particles of immobilized cells revealed that consumption of substrate in the packed beds would divert to the process limited by biochemical reaction from that controlled by mass transfer of substrate with increasing concentration of substrate or with increasing flux. And light energy became compressed condition from limited condition with light intensity increasing. However, effect of light wavelength on biohydrogen production by PSB was complicated with dealing with light intensity, which indicated that different excited phase of the photosynthetic antennae system was inspired by different light wavelength and that the photo-chemical efficiency changed correspondingly. In addition, the rates of hydrogen production and substrate consumption in packed beds filled with porous medium increased with pH value of culture medium or culture temperature increasing, and then declined with these parameters increasing continuously.
     Moreover, the research on characteristics of packed-bed with biofilm showed that in certain other parameters, low intensity was limited condition, vice versa, it was impressed condition, and that in limited substrate concentration condition, the metabolism in the pached bed was controlled by mass transfer, conversely by biochemical reaction. Meanwhile, the results revealed that in low flux condition, the metabolic process controlled by mass transfer was obtained, conversely the process controlled by biochemical reaction was gained in high flux and high substrate concentration at inlet. According to experimental results, the model on mass transfer and substrate consumption was founded, in which the operation conditions effecting on mass transfer in biofilm packed-bed were analyzed respectively. And the results predicted by model were accordant with experimental data.
     Furthermore, the results in the thesis indicated that in all conditions the optimal temperature and the optimal pH value of hydrogen production by PSB was 30°C and 7.0, respectively, which revealed that the culture temperature and pH value affected the activities of enzyme in cells mainly.
引文
[1] Debabrata Das, T. Nejat Veziro?lu. Hydrogen production by biological processes: a survey of literature[J]. International Journal of Hydrogen Energy, 2001,26:13-28.
    [2] Suzuki Y, On hydrogen as fuel gas[J]. International Journal of Hydrogen Energy 1982,7:227-230.
    [3] Bockris JO'M. The economics of hydrogen as a fuel[J], International Journal of Hydrogen Energy, 1981,6:223-241.
    [4] S. Jebaraj, S. Iniyan. A review of energy models[J]. Renewable and Sustainable Energy Reviews, 2006,10:281-311
    [5] Jens Rupprecht, Ben Hankamer, Jan H. Mussgnug, et al. Perspectives and advances of biological H2 production in microorganisms[J]. Appl Microbiol Biotechnol, 2006,72:442–449.
    [6] Ida Akkerman, Marcel Janssen, Jorge Rocha, et al. Photobiological hydrogen production: photochemical efficiency and bioreactor design[J]. International Journal of Hydrogen Energy, 2002,27:1195-1208.
    [7] Tong Zhang, Hong Liu, Herbert H.P. Fang, Biohydrogen production from starch in wastewater under thermophilic condition[J]. Journal of Environmental Management, 2003,69:149-156.
    [8]袁传敏,颜种捷,曹建勤,生物制氢气的研究[J].煤炭转化,2002,25(1):18-22.
    [9]季亚英等,催化干气选择氧化制氢[J].石油与天然气化工,1999,28(3):190-192.
    [10] Jun Miyake, Masato Miyake, Yasuo Asada, Biotechnological hydrogen production: research for efficient light energy conversion[J]. Journal of Biotechnology, 1999,70:89–101.
    [11] Anastasios Melis, Matthew R. Melnicki. Integrated biological hydrogen production[J]. International Journal of Hydrogen Energy, 2006,31:1563-1573.
    [12] Harun Kokua,ìnci Eroglu, Ufuk Gündüz, et al. Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides[J]. International Journal of Hydrogen Energy, 2002,27:1315-1329.
    [13] Tatsuki Wakayama, Jun Miyake. Light shade bands for the improvement of solar hydrogen production efficiency by Rhodobacter sphaeroides RV[J]. International Journal of Hydrogen Energy, 2002, 27:1495-1500.
    [14] Y. Asada, J. Miyake, Photobiological hydrogen production[J]. Journal of Bioscience andBioengineering, 1999,88:1–6.
    [15] P.A.M. Claassen, J.B. van Lier, A.M. Lopez Contreras, et al. Utilization of biomass for the supply of energy carriers[J]. Appl Microbiol Biotechnol, 1999,52:741–755.
    [16] E. Nakada, S. Nishikata, Y. Asada, et al. Photosynthetic bacterial hydrogen production combined with a fuel cell[J]. International Journal of Hydrogen Energy, 1999, 24: 1053-1057.
    [17] Hallenbeck P. Fundamentals of the fermentative production of hydrogen[J]. Water Sci Technol, 2005,52:21–29.
    [18] Patrick C. Hallenbecka, John R. Benemann. Biological hydrogen production; fundamentals and limiting processes[J]. International Journal of Hydrogen Energy, 2002,27:1185– 1193.
    [19] Kaushik Nath, Debabrata Das. Improvement of fermentative hydrogen production: various approaches[J]. Appl Microbiol Biotechnol, 2004,65:520–529.
    [20]王勇,任南琪,孙寓娇等.乙醇型发酵与丁酸型发酵产氢机理及能力分析[J].太阳能学报,2002,23(3):365-372.
    [21]宫曼丽,任南琪,李永峰,唐婧.生物制氢反应器不同发酵类型产氢能力的比较[J].哈尔滨工业大学学报, 2006,38(l1):1826-1830.
    [22] Oh Y-K, Seol E-H, Kim JR, Park S, et al. Fermentative biohydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19[J]. International Journal of Hydrogen Energy, 2003,28:1373–1379.
    [23] M.Modigell, N.Holle. Reactor development for biosolar hydrogen production process[J]. Renewable Energy, 1998,14(1-4):421-426.
    [24] Fabiano B, Perego P. Thermodynamic study and optimization of hydrogen production by Enterobacter aerogenes[J]. International Journal of Hydrogen Energy, 2002,27:149–156.
    [25] Benemann J. R. Feasibility analysis of photobiological hydrogen production[J]. International Journal of Hydrogen Energy, 1997;22:979-987.
    [26] Greenbaum E. Energetic efficiency of hydrogen photoevolution by algal water splitting[J]. Biophys J, 1988,54:365–368.
    [27] Fernando A. Lopes Pinto. A brief look at three decades of research on cyanobacterial hydrogen evolution[J]. International Journal of Hydrogen Energy, 2002,27:1209–1215.
    [28] Yoshiharu Miura, Hydrogen Production by Biophotolysis Based on Microalgal Photosynthesis[J]. Process Biochemisrrv, 1995,30(1):1-7.
    [29]杨素萍,曲音波光合细菌生物制氢[J].现代化工, 2003, 23(9): 17-22.
    [30] Chi-Mei Lee, Pei-Chung Chen, Chun-Chin Wang, et al. Photohydrogen production usingpurple nonsulfur bacteria with hydrogen fermentation reactor effluent[J]. International Journal of Hydrogen Energy , 2002,27:1309-1313.
    [31] Hiroo Takabatake, Kiyohiko Suzuki, In-Beom Ko, et al. Characteristics of anaerobic ammonia removal by a mixed culture of hydrogen producing photosynthetic bacteria[J]. Bioresource Technology, 2004,95:151-158.
    [32] Ilgi Karapinar Kapdan, Fikret Kargi. Bio-hydrogen production from waste materials[J]. Enzyme and Microbial Technology, 2006,38:569-582.
    [33] Nitai Basak, Debabrata Das The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: the present state of the art[J], World J Microbiol Biotechnol 2007,23:31-42
    [34] Fascetti E, Todini O. Rhodobacter sphaeroides RV cultivation and hydrogen production in a one- and two-stage chemostat[J]. Appl Microbiol Biotechnol, 1995,44:300-305
    [35] E. Fascetti, E. D’addario, O. Todini, et al. Photosynthetic hydrogen evolution with volatile organic acids derived from the fermentation of source selected municipal solid wastes[J]. Int. J. Hydrogen Energy, 1998, 23:753-760.
    [36] Toshiliko Kondo, Masayasu Arakawa, Tatsuki Wakayama, et al. Hydrogen production by combining two types of photosynthetic bacteria with different characteristics[J]. International Journal of Hydrogen Energy, 2002, 27: 1303-1308.
    [37] Yao-Hua Luo, Akira Mitsui. Sulfide as electron source for H2-photoproduction in the cyanobacterium Synechococcus sp., strain Miami BG 043511, under stress conditions[J]. Journal of Photochemistry and Photobiology B: Biology, 1996,35: 203-207.
    [38] Appel J, Phunpruch S, SteinmTuller K, et al. The bidirectional hydrogenase of Synechocystis sp. PCC 6803 works as an electron valve during photosynthesis[J]. Arch Microbiol , 2000,173:333-338.
    [39] Cast H, Kalnen M D,Photo-production of molecular hydrogen by Rhodospirrlum rubrum[J]. Science,1949,109 : 558-559.
    [40]沈同,王镜岩.生物化学(下) [M].北京:高等教育出版社,1996年
    [41]郑耀通,闵航.共固定光合和发酵性细菌处理有机废水生物制氢技术[J].污染防治技术, 1998,11(3) :
    [42]徐向阳,郑平等.固定化光合细菌处理有机废水过程产氢的研究——Ⅱ.红假单胞菌菌株D利用有机物光产氢的特性[J].太阳能学报, 1993 .14 (4) :288-294.
    [43]朱核光,赵琦琳,史家梁.光合细菌Rhodopseudomonas产氢的影响因子实验研究[J].应用生态学报, 1997 .8 (2) :194-198.
    [44] Kornél L. Kovács, Gergely Maróti, Gábor Rákhely. A novel approach for biohydrogenproduction[J]. International Journal of Hydrogen Energy, 2006,31 :1460– 1468.
    [45] Rákhely G, KovácsáT, Maróti G, Fodor BD, et al. A cyanobacterial type, heteropentameric NAD+ reducing [NiFe] hydrogenase in the purple sulphur photosynthetic bacterium, Thiocapsa roseopersicina[J]. Appl Environ Microbiol, 2004,70:722–728.
    [46] Heguang Zhu, Shunsaku Ueda, Yasio Asada, Hydrogen production as a novel process of wastewater treatment—studies on tofu wastewater with entrapped R. sphaeroides and mutagenesis[J]. International Journal of Hydrogen Energy, 2002,27:1349-1357.
    [47] Kornél L. Kovács, Barna Fodor, ?kos T. Kovács, et al. Hydrogenases, accessory genes and the regulation of [NiFe] hydrogenase biosynthesis in Thiocapsa roseopersicina[J]. International Journal of Hydrogen Energy, 2002,27:1463-1469.
    [48] Pia Lindberg, Kathrin Sch0utz, Thomas Happe, et al. A hydrogen-producing, hydrogenase-free mutant strain of Nostoc punctiforme ATCC 29133[J]. International Journal of Hydrogen Energy, 2002,27:1291-1296.
    [49]杨素萍,赵春贵,曲音波,钱新民.铁和镍对光合细菌生长和产氢的影响[J].微生物学报, 2003,23(4):257-263.
    [50]方萍, Omar A.培养基铁浓度对不同非共生固氮菌株小麦基因型联合固氮效率的影响[J].浙江农业大学学报, 1997, 23 (6) :716 -721.
    [51]杨大庆.镍在浑球红假单胞菌氢酶合成中的作用[J].植物生理学通讯, 1990 .6 :36-381.
    [52]朱长喜,陈秉俭,宋鸿遇.镍对荚膜红假单胞菌氢酶和固氮酶活性的促进作用[J].微生物学报,1987.27(1) :52-56.
    [53] Gábor Rákhely , Tatyana V. Laurinavichene, Anatoly A. Tsygankov, Kornél L. Kovács. The role of Hox hydrogenase in the H2 metabolism of Thiocapsa roseopersicina[J]. Biochimica et Biophysica Acta, 2007,1767:671–676.
    [54] Koku H, Ero?lu I, Gündüz U, Yücel M, Türker L. Aspects of the metabolism of hydrogen production by Rhodobacter sphaeroides[J]. International Journal of Hydrogen Energy , 2002;27:1315–29.
    [55] Mu Y, Wang G, Yu HQ. Response surface methodological analysis on biohydrogen production by enriched anaerobic cultures[J]. Enzyme Microb Technol 2006;38(7):905–13.
    [56] Segers L, Verstraete W. Conversion of organic acids to H2 Rhodospirillaceae grown with glutamate or dinitrogen as nitrogen source[J]. Biotechnol Bioeng 1983;25:2843–53.
    [57] Fang HHP, Liu H, Zhang T. Phototrophic hydrogen production from acetate and butyrate in wastewater. Int J Hydrogen Energy, 2005;30:785–93.
    [58]孙琦,徐向阳,焦阳文.光合细菌产氢条件的研究[J].微生物学报, 1995,35(1):65-73.
    [59] Yi?it D?, G?nd?z U, T?rker L, Y?cel M, Ero?luí. Identification of by-products in hydrogen producing bacteria:Rhodobacter sphaeroides O.U. 001 grown in the wastewater of a sugar refinery[J]. J Biotechnol 1999;70:125–131.
    [60] Matsunaga T, Hatano T, Yamada A, et al. Microaerobic hydrogen production by photosynthetic bacteria in a double-phase photobioreactor[J]. Biotechnology and Bioengineering, 2000,68(6) :647-651.
    [61] Erogluì, Aslan K, Gündüz U, et al. Substrate consumption rates for hydrogen production by Rhodobacter sphaeroides in a column photobioreactor[J]. J Biotechnol, 1999,70:103-113.
    [62] T?rkarslan S, Yi?it D?, Aslan K, Ero?luí, G?nd?z U. Photobiological hydrogen production by Rhodobacter sphaeroides O.U. 001 by utilization of waste water from milk industry[M]. In: Zaborsku OR, editor. Biohydrogen. New York:Plenum Press, 1998
    [63] YetiXs M, G?nd?z U, Ero?luí, Y?cel M, T?rker L. Photoproduction of hydrogen from sugar refinery wastewater by Rhodobacter sphaeroides O.U. 001[J]. International Journal of Hydrogen Energy, 2000;25:1035–1041.
    [64] Zhu H, Suzuki T, Tsygankov AA, Asada Y, Miyake J. Hydrogen production from tofu wastewater by Rhodobacter sphaeroides immobilized in agar gels[J]. International Journal of Hydrogen Energy , 1999;24:305–310.
    [65] Sasikala K, Ramana CV. Photoproduction of hydrogen from waste water of a lactic acid fermentation plant by a purple non-sulfur photosyntheticbac terium, Rhodobacter sphaeroides O.U. 001[J]. Indian J Experimental Biol 1991b;29:74–75.
    [66] Fascetti E, D’Addario E, Todini O, Robertiello A. Photosynthetichydrogen evolution with volatile organicac ids derived from the fermentation of source selected municipal solid wastes[J]. International Journal of Hydrogen Energy, 1998;23(9):753–60.
    [67] Koku, Harun, Eroglu, Inci, Gündüz. Ufuk, et al. Kinetics of biological hydrogen production by the photosynthetic bacterium Rhodobacter sphaeroides O.U. 001[J]. International Journal of Hydrogen Energy,2003,28(4):381-388
    [68] Wakayama Tatsuki, Miyake Jun. Light shade bands for the improvement of solar hydrogen production efficiency by Rhodobacter sphaeroides RV[J], International Journal of Hydrogen Energy, 2002,27(11-12):1495-1500.
    [69] Luis Dante Sánchez-Luna, Raquel Pedrosa Bezerra, Marcelo Chuei Matsudo, et al. Influence of pH, temperature, and urea molar flowrate on Arthrospira platensis fed-batch cultivation: A kinetic and thermodynamic approach[J], Biotechnology and Bioengineering,2007,96(4):702-711.
    [70] Frédéric Leroy and Lucde Vuyst. Temperature and pH conditions that prevail during fermentation of sausages are optimal for production of the Antilisterial Bacteriocin Sakacin K[J], Applied and Environmental Microbiology, 1999,65(3):974-981.
    [71] M. Valero, P.S. Fernández, M.C. Salmerón, Influence of pH and temperature on growth of Bacillus cereus in vegetable substrates[J], International Journal of Food Microbiology, 2003,(82):71-79.
    [72] Xian-Yang Shi, Han-QingYu Continuous production of hydrogen from mixed volatile fatty acids with Rhodopseudomonas capsulate[J], International Journal of Hydrogen Energy 2006,31:1641-1647.
    [73] Yasuo Asada, Masaru Tokumoto,Yasuyuki Aihara, et al. Hydrogen production by co-cultures of Lactobacillus and a photosynthetic bacterium Rhodobacter sphaeroides RV[J]. International Journal of Hydrogen Energy, 2006,31:1509-1513.
    [74] Nelson P. Guerra , Lorenzo Pastrana. Modelling the influence of pH on the kinetics of both nisin and pediocin production and characterization of their functional properties[J]. Process Biochemistry, 2002,37:1005–1015.
    [75] M.S.A. Tango, A.E. Ghaly. Effect of temperature on lactic acid production from cheese whey using Lactobacillus helveticus under batch conditions[J], Biomass and Bioenergy, 1999,16: 61-78.
    [76] L. Giannuzzia, A. Pinottia, N. Zaritzky. Mathematical modelling of microbial growth in packaged refrigerated beef stored at different temperatures[J], International Journal of Food Microbiology, 1998,39:101–110.
    [77] J. P. Smits, A. Rinzema, J. Tramper, et al. The influence of temperature on kinetics in solid-state fermentation[J], Enzyme and Microbial Technology, 1998,22:50-57.
    [78] Zhu. H, Wakayama. T, Asada. Y, Miyake. J, Hydrogen production by four cultures with participation by anoxygenic phototrophic bacterium and anaerobic bacterium in the presence of NH4+[J], International Journal of Hydrogen Energy, 2001,26:1149-1154
    [79] You-Kwan Oh, Eun-Hee Seol, Mi-Sun Kim, et al. Photoproduction of hydrogen from acetate by a chemoheterotrophic bacterium Rhodopseudomonas palustris P4[J], International Journal of Hydrogen Energy, 2004,29:1115-1121.
    [80] K. Mukai, S. Abe, H. Sumi, Rapid excitation-energy transfer to optically forbidden states in light-harvesting antennas of photosynthetic bacteria[J], Journal of Luminescence, 2000,87-89:818-820.
    [81] Mino Yang, Ritesh Agarwal, Graham R. Fleming , The mechanism of energy transfer inthe antenna of photosynthetic purple bacteria[J], Journal of Photochemistry and Photobiology A: Chemistry, 2001, (142):107–119.
    [82]彭菊芳,王水才,贺俊芳等.捕光复合物LHCⅡ的荧光动力学特性[J].光子学报, 2004,33(2):212-215.
    [83]王水才,蔡霞,贺俊芳等.从核心天线到反应中心分子传能研究[J].光子学报,2003,32(7):848-852.
    [84]刘晓,王水才,贺俊芳等. PSII核心复合物能量传递的飞秒时间分辩荧光光谱学研究[J],生物物理学报,2004,20(4):290-296.
    [85] Yusuke Tsukatani, Ryo Miyamoto, Shigeru Itoh, Hirozo Oh-oka. Soluble cytochrome c-554, CycA, is not essential for photosynthetic electron transfer in Chlorobium tepidum[J]. FEBS Letters, 2006,580:2191–2194.
    [86] Kumazawa S, Mitsui A, Characterization and optimization of hydrogen photoproduction by saltwater blue-green algae, Oscillatoria Sp. Miami BG7: I. Enhancement through limiting the supply of nitrogen nutrient[J], International Journal of Hydrogen Energy, 1981,6:339-348.
    [87] T.K. Antala, T.E. Krendelevaa, T.V. Laurinavichene, The dependence of algal H2 production on Photosystem II and O2 consumption activities in sulfur-deprived Chlamydomonas reinhardtii cells[J]. Biochimica et Biophysica Acta, 2003,(1607):153–160.
    [88] A.Y. Borisov, Y.M. Sidorin. The revision of the model of primary energy conversion in purple bacteria[J]. Bioelectrochemistry, 2003,59:113–119.
    [89] Kiley PJ, Kaplan S. Molecular genetics of photosynthetic membrane biosynthesis in Rhodobacter sphaeroides[J]. Microbiol Rev, 1988;52(1):50–69.
    [90] Mino Yang,Ritesh Agarwal, Graham R. Fleming. The mechanism of energy transfer in the antenna of photosynthetic purple bacteria[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2001,142:107-119.
    [91] Q. Xu, M.R. Gunner, Trapping conformational intermediate states in the reaction center protein from photosynthetic bacteria[J], Biochemistry , 2001,40:3232–3241.
    [92] Golz WJ, Rusch KA, Malone RF. Modeling the major limitations on nitrification in floating-bead filters[J]. Aquacult Eng, 1999;20:43-61.
    [93] Vyacheslav L, Eliosov B, Argaman Y. Feasibility study of complete nitrogen removal from domestic wastewater by consequent nitrification–denitrification using immobilized nitrifiers in gel beads[J].Water Environ Res, 2000;72:40-49.
    [94] Chandran K, Smets BF. Applicability of two-step models in estimating nitrificationkinetics from batch respirograms under different relative dynamics of ammonia and nitrite oxidation[J]. Biotechnol Bioeng, 2000,70(1):54-64.
    [95]施巧琴.酶工程[M].北京:科学出版社,2005年.
    [96]山跟恒夫.生化反应工程[M].西安:西北大学出版社,1992年.
    [97] C. Webb. The roll of cell immobilization of in fermentation technology[J]. Aust. J. Biotechnol, 1989,3:50-62.
    [98] A. Laca, C. Quirós, L. A. García, M. Díaz. Modelling and description of internal profiles in immobilized cells systems[J], Biochemical Engineering Journal, 1998, (1) :225-232.
    [99]周华,姜岷,欧阳平凯.固定化细胞成型机械的研究综述[J].工业微生物, 1998,28(3):43-45.
    [100] Wu KJ, Chang JS. Batch and continuous fermentative production of hydrogen with anaerobic sludge entrapped in a composite polymeric matrix[J]. Process Biochem, 2007;42:279–284.
    [101]王建龙著.生物固定化技术与水污染控制[M].北京:科学出版社, 2002:2-6.
    [102] Nath S, Chand S, Mass transfer and biochemical reaction in immobilized cell packed bed reactor: correlation of experiment with theory[J], J Chem Tech Biotechnol, 1996,66:286–292.
    [103] Ken-Jer Wu, Jo-Shu Chang. Batch and continuous fermentative production of hydrogen with anaerobic sludge entrapped in a composite polymeric matrix[J], Process Biochemistry, 2007,42: 279–284.
    [104] Shu-Yii Wu, Chi-Neng Lin, Jian-Sheng Chang, Jo-Shu Chang. Biohydrogen production with anaerobic sludge immobilized by ethylene-vinyl acetate copolymer[J], International Journal of Hydrogen Energy, 2005,30:1375– 1381.
    [105] Narendra Kumar, Debabrata Das. Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrices. Enzyme and Microbial Technology, 2001,29:280–287.
    [106] Mitsuyoshi Ishikawa, ShoheiYamamura,Yuzuru Takamura. Development of a compact high-density microbial hydrogen reactor for portable bio-fuel cell system[J], International Journal of Hydrogen Energy, 2006,31:1484– 1489.
    [107] Chi-Neng Lin, Shu-YiiWu, Jo-Shu Chang. Fermentative hydrogen production with a draft tube fluidized bed reactor containing silicone-gel-immobilized anaerobic sludge[J], International Journal of Hydrogen Energy, 2006,31: 2200– 2210.
    [108] Nitai Basak, Debabrata Das. The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production: the present state of the art[J], World J MicrobiolBiotechnol, 2007,23:31–42.
    [109] Dejan Bezbradica, Bojana Obradovic, Ida Leskosek-Cukalovic, et al. Immobilization of yeast cells in PVA particles for beer fermentation[J]. Process Biochemistry, 2007,42: 1348–1351.
    [110]韩庆祥,钱新民,王宇新,许平.固定化光合细菌处理催化裂化与加氢废水[J].化工环保,1998,18(2):67-73.
    [111]徐向阳,俞秀娥,郑平,冯孝善.固定化光合细菌利用有机物产氢的研究[J].生物工程学报,1994,10(4):362-368.
    [112]徐向阳,俞秀娥,郑平,陈蔚,冯孝善.固定化光合细菌产氢过程的基质利用动力学[J].生物工程学报,1995,11(1):51-57.
    [113] Arzu Y. Dursun, Ozlem Tepe. Internal mass transfer effect on biodegradation of phenol by Ca-alginate immobilized Ralstonia eutropha[J]. Journal of Hazardous Materials B, 2005,126:105–111.
    [114] Stefano F. Simoni, Anke Sch?fer, Hauke Harms, et al. Factors affecting mass transfer limited biodegradation in saturated porous media[J]. Journal of Contaminant Hydrology, 2001,50: 99–120.
    [115] Tsuey-Ping Chung, Hsiu-Ya Tseng, Ruey-Shin Juang. Mass transfer effect and intermediate detection for phenol degradation in immobilized Pseudomonas putida systems[J]. Process Biochemistry, 2003,38: 1497-1507.
    [116] I. Banerjee, Jayant M. Modak, K. Bandopadhyay, et al. Mathematical model for evaluation of mass transfer limitations in phenol biodegradation by immobilized Pseudomonas putida[J]. Journal of Biotechnology, 2001,87: 211–223.
    [117] E. van Zessen, J. Tramper, A. Rinzema, H.H. Beeftink. Fluidized-bed and packed-bed characteristics of gel beads[J]. Chemical Engineering Journal, 2005,115:103–111.
    [118] Y. Kourkoutas, A. Bekatorou, I.M. Banat, et al. Immobilization technologies and support materials suitable inalcohol beverages production: a review[J]. Food Microbiology, 2004,21: 377–397.
    [119]戚以政,汪叔雄.生化反应动力学与反应器[M].北京:化学工业出版社2005年, 87-96.
    [120] Amir Masoud, Morteza Sohrabi, Farzaneh Vahabzadeh, et al. hydrodynamic and mass transfer characterization of a down flow jet loop bioreactor[J]. Biochemical Engineering Journal, 2001,8:241-250.
    [121] F. Benyahia, R.polomarkaki. Mass transfer and kinetic studies under no cell growth conditions in nitrification using alginate gel immobilized Nitrosomonas[J]. ProcessBiochemistry, 2005,40:1251-1262.
    [122] Hunt A P and Parry J D. The Effect of Substratum Roughness and River Flow Rate on the Development of a Freshwater Biofilm Community[J]. Biofouling. 1998, 124: 287 -303.
    [123] Thomas C Voice ,Zhao J ,Shi J ,et al. Biological activated carbon in fluidized bed reactor for the treatment of groundwater contaminated with volatile aromatic hydrocarbons[J]. Wat Res,1992,22(11): 43-57.
    [124]蔡建安,李俊,钟松英.三相流化床中混合载体的协同作用[J].环境科学, 1995.16(6):50-52.
    [125] Heijnen J J ,VanLoosdrecht M C M ,Mulder A, et al. Formation of biofilms in a biofilm air-lift suspension reactor[J] . Water Sci Technol. 1992 ,26(5): 647-654.
    [126]周平,汪诚文,吴晓磊等.内循环生物流化床处理石化废水的中试实验[J].环境科学, 1997 .18 (1) :26-29.
    [127] Atkinson B, Towler.H.W. The significance of microbial film in fermenters[J]. Advanced Biochemical Engeering, 1974,3:221-277.
    [128] Zhang T C, Bishop P L.Density, porosity, and pore structure of biofilms[J]. Water Research, 1994,28(11):2267-2277.
    [129]刘雨,赵庆良,郑兴灿.生物膜法污水处理技术[M].中国建筑工业出版社,2000年.
    [130]陈洪章.生物过程工程与设备[M].北京:化学工业出版社, 2004年.
    [131] Yoshiharu Miura, Toru Akano, Kiyomi Fukatsu, et al, Stable sustained hydrogen production by biophotolysis in natural day/night cycle, Energy Concers Mgmt, 1997,38:533-537.
    [132] N.R. Mathews, P.J. Sebastian, X. Mathew, V. Agarwal, Photoelectrochemical characterization of porous Si, International Journal of Hydrogen Energy, 2003,28:629-632.
    [133] E. Molina Grima, F.G. Acièn Fernández, F. García Camacho, Photobioreactors: light regime, mass transfer, and scaleup[J]. Journal of Biotechnology 1999,70:231–247.
    [134] Toshihiko Kondo, TatsukiWakayama, Jun Miyake. Efficient hydrogen production using a multi-layered photobioreactor and a photosynthetic bacterium mutant with reduced pigment. International Journal of Hydrogen Energy, 2006,31:1522– 1526.
    [135] Daniel KJ, Laurendeau NM, Incropera FP. Prediction of radiation absorption and scattering in turbid water bodies[J]. J Heat Trans,1979,101:63–67.
    [136] Kim BW, Chang HN, Kim IK, Lee KS. Growth kinetics of the photosynthetic bacterium Chlorobium thiosulfatophilum in a fed-batch reactor[J]. Biotechnol Bioeng 1992,40:583–92.
    [137] Cornet JF, Dussap CG, Dubertret G. A structured model for simulation of cultures of the cyanobacterium Spirulina platensis in photobioreactors: I. Coupling between light transfer and growth kinetics[J]. Biotechnol Bioeng 1992,40:817–25.
    [138] Cornet JF, Dussap CG, Cluzel P, Dubertret G. A structured model for simulation of cultures of the cyanobacterium Spirulina platensis in photobioreactors: II. Identification of kinetic parameters under light and mineral limitations[J]. Biotechnol Bioeng, 1992,40:826–34.
    [139] Cornet JF, Dussap CG, Gross JB, Binois C, Lasseur C. A simplified monodimensional approach for modeling coupling between radiant light transfer and growth kinetics in photobioreactors[J]. Chem Eng Sci, 1995,50:1489–500.
    [140] Merzlyak MN, Naqvi KR. On recording the true absorption spectrum and scattering spectrum of a turbid sample: application to cell suspensions of cyanobacterium Anabaena variabilis[J]. Journal Photochem Photobiol B, 2000,58:123–129.
    [141] Pottier L, Pruvost J, Deremetz J, Cornet JF, Legrand J, Dussap CG. A fully predictive model for one-dimensional light attenuation by Chlamydomonas reinhardtii in a torous photobioreactor[J]. Biotechnology and Bioengineering, 2005,91:569–582.
    [142] Halil Berberoglu, JuanYin, Laurent Pilon. Light transfer in bubble sparged photobioreactors forH2 production andCO2 mitigation[J]. International Journal of Hydrogen Energy, 2007,32:2273– 2285.
    [143] J.C. Merchuk,X. Wu. Modeling of photobioreactors: Application to bubble column simulation[J]. Journal of Applied Phycology, 2003,15:163–169.
    [144] Basar Uyar, Inci Eroglu, Meral Yücel, Ufuk Gündüz and Lemi Türker. Effect of light intensity, wavelength and illumination protocol on hydrogen production in photobioreactors[J]. International Journal of Hydrogen Energy, In Press, Available online, 17 August 2007.
    [145] Habibollah Younesi, Ghasem Najafpour, Ku Syahidah Ku Ismail, et al. Biohydrogen production in a continuous stirred tank bioreactor from synthesis gas by anaerobic photosynthetic bacterium: Rhodopirillum rubrum[J]. Bioresource Technology, In Press, Available online 19 June 2007.
    [146] Tomohisa Katsuda, Takeshi Arimoto, Koichi Igarashi, et al. Light intensity distribution in the externally illuminated cylindrical photo-bioreactor and its application to hydrogen production by Rhodobacter capsulatus[J]. Biochemical Engineering Journal, 2000,5:157–164.
    [147] M. Berenguel, F. Rodrguez, F.G. Acien, J.L. Garc. Model predictive control of pH intubular photobioreactors[J]. Journal of Process Control, 2004,14: 377–387.
    [148] Tao You, Stanley M. Barnett. Effect of light quality on production of extracellular polysaccharides and growth rate of Porphyridium cruentum[J], Biochemical Engineering Journal, 2004,19:251–258.
    [149] Katarzyna Chojnacka, Andrzej Noworyta. Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures[J], Enzyme and Microbial Technology, 2004,34 :461–465.
    [150]曾文炉,李浩然,蔡昭铃,欧阳藩.螺旋藻细胞培养与光能利用的关系.植物资源与环境学报, 2001,10(3):7– 10.
    [151]康瑞娟,蔡昭铃,施定基.光强在鱼腥藻7120培养液中的衰减及其对藻细胞生长的影响[J].化工冶金,2000,21(4):384-387.
    [152] Halil Berberoglu, JuanYin, Laurent Pilon. Light transfer in bubble sparged photobioreactors forH2 production andCO2 mitigation[J]. International Journal of Hydrogen Energy, 2007,32:2273– 2285.
    [153] Merzlyak MN, Naqvi KR. On recording the true absorption spectrum and scattering spectrum of a turbid sample: application to cell suspensions of cyanobacterium Anabaena variabilis[J]. J Photochem Photobiol B, 2000,58:123–129.
    [154] C.U. Ugwu, J.C. Ogbonna, H. Tanaka. Characterization of light utilization and biomass yields of Chlorella sorokiniana in inclined outdoor tubular photobioreactors equipped with static mixers[J]. Process Biochemistry, 2005,40:3406–3411.
    [155] Roger W. Babcock Jr1, Jos Maldaand JoAnn C. Radway. Hydrodynamics and mass transfer in a tubular airlift photobioreactor[J]. Journal of Applied Phycology, 2002,14:169–184.
    [156] E. Sierra, F.G. Acién, J.M. Fernández, J.L. García, C. González, E. Molina. Characterization of a flat plate photobioreactor for the production of microalgae[J], Chemical Engineering Journal, 2007,xxx: xxx–xxx.
    [157]张军合,张全国,尤希凤等.环流型光生物反应器光合产氢运行条件的研究[J].农业环境科学学报, 2005,24(6):1217- 1220.
    [158]程桂林,程丽华,周成旭等.生物反应器脱除空气中CO2的模型研究.生物工程学报, 2006,22(5):821-828.
    [159] Zhen-Peng Zhang, Joo-Hwa Tay, Kuan-Yeow Show, et al. Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor[J]. International Journal of Hydrogen Energy, 2007,32:185-191.
    [160] F. Gòdia, J. Albiol , J.L. Montesinos, et al, MELISSA: a loop of interconnectedbioreactors to develop life support in Space[J]. Journal of Biotechnology, 2002,99:319-330.
    [161] F. Benyahiaa, R. Polomarkakib, Mass transfer and kinetic studies under no cell growth conditions in nitrification using alginate gel immobilized Nitrosomonas[J], Process Biochemistry, 2005,40:1251–1262.
    [162] Ken-Jer Wu, Chiung-Fei Chang, Jo-Shu Chang. Simultaneous production of biohydrogen and bioethanol with fluidized-bed and packed-bed bioreactors containing immobilized anaerobic sludge[J]. Process Biochemistry, 2007,42:1165–1171.
    [163] Kataoka N, Miya A, Kiriyama K. Studies on hydrogen production by continuous culture system of hydrogen producing anaerobic bacteria[J]. Water Sci Technol, 1997;36:41–47.
    [164] Lay JJ. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen[J]. Biotechnol Bioeng, 2000;68:269–278.
    [165] Lin CY, Chang RC. Hydrogen production during the anaerobic acidogenic conversion of glucose[J]. J Chem Technol Biotechnol, 1999;74:498–500.
    [166] Majizat A, Mitsunori Y, Mitsunori W, Michimasa N, Jun’ichiro M. Hydrogen gas production from glucose and its microbial kinetics in anaerobic systems[J]. Water Sci Technol, 1997;36:279–286.
    [167] Chang FY, Lin CY. Biohydrogen production using an up-flow anaerobic sludge blanket reactor[J]. Inter J Hydrogen Energy, 2004;29:33–39.
    [168] Jeison D, Chamy R. Comparison of the behaviour of expanded granular sludge bed (EGSB) and upflow anaerobic sludge blanket (UASB) reactors in dilute and concentrated wastewater treatment[J]. Water Sci Technol 1999;40:91–97.
    [169] Hwu CS, van Lier JB, Lettinga G. Physicochemical and biological performance of expanded granular sludge bed reactors treating long-chain fatty acids[J]. Process Biochem 1998;33(1):75–81.
    [170] Francese A, Cordoba P, Duran J, Sineriz F. High upflow velocity and organic loading rate improves granulation in upflow anaerobic sludge blanket reactors[J].World J Microbiol Biotechnol, 1998;14(3):337–341.
    [171] Kato MT, Field JA, Versteeg P, Lettinga G. Feasibility of expanded granular sludge bed reactors for the anaerobic treatment of low-strength soluble wastewaters[J]. Biotechnol Bioeng, 1994;44(4):469–79.
    [172] Kuo-Shing Lee,Yung-Chung Lo, Ping-Jei Lin, Jo-Shu Chang. Improving biohydrogen production in a carrier-induced granular sludge bed by altering physical configuration and agitation pattern of the bioreactor[J]. International Journal of Hydrogen Energy,2006,31:1648–1657.
    [173] Jenna Ditzig, Hong Liu, Bruce E. Logan. Production of hydrogen from domesticwastewater using a bioelectrochemically assisted microbial reactor (BEAMR) [J]. International Journal of Hydrogen Energy, 2007,32:2296– 2304.
    [174] Mitsuyoshi Ishikawa, ShoheiYamamura,Yuzuru Takamura. Development of a compact high-density microbial hydrogen reactor for portable bio-fuel cell system[J], International Journal of Hydrogen Energy, 2006,31:1484– 1489.
    [175]张元兴,许学书.生物反应器工程[M].上海:华东理工大学出版社, 2001年.
    [176] R. B.博德, W. E.斯图沃特, E. N.莱特富特著.传递现象[M].北京:化学工业出版社, 2004年, pp508-509.
    [177] Deliang H, Yann B, Jean PM, John CW. Kinetic analysis of photosynthetic growth and photohydrogen production of two strains of Rhodobacter Capsulatus[J]. Enzyme and Microbial Technology, 2006,38: 253 ~ 259.
    [178] L. Rosso, J. R. Lobry, S. Bajard, J. P. Flandrots. Convenient model to describe the combined effects if temperature and pH on microbial growth, Applied and Environmental Microbiology, 1995,61(2):610-616
    [179]孙勇,谢数涛,杨泽民,许忠能.一株富含类胡萝卜素光合细菌的分离鉴定[J].暨南大学学报自然科学版, 2006, 27(1): 145- 150.
    [180]王绍校,杨惠芳,黄志勇,曹文伟,刘志培.嗜盐光合细菌的分离鉴定及其营养成分分析[J].应用与环境生物学报, 2003, 9(3): 298 -301.
    [181]王西俜,刘之慧,詹毅,郭学敏,刘惠.净化有机废水的光合细菌S1和S2菌株的分离鉴定[J].太阳能学报,1993, 14(1): 43- 47.
    [182]张明,史家梁.光合细菌的光产氢机理研究进展[J].应用与环境生物学报, 1999, 5(suppl): 25-29.
    [183]周洪波,刘飞飞,邱冠周.一株光合细菌的分离鉴定及污水处理能力研究[J].生态环境, 2006, 15(5): 901- 904.
    [184] R. E布坎南, N. E吉本斯等编著[M].中国科学院微生物研究所《伯杰细菌鉴定手册》翻译组译.百杰细菌鉴定手册,北京:科学技术出版社, 1984年.
    [185]张龙翔,张庭芳,李令媛.生化实验方法和技术[M].北京:高等教育出版社, 2003. 1-3
    [186]曾丹苓,敖越,朱克雄等.工程热力学[M].北京:高等教育出版社, 1994年.
    [187]宋心琦,周福添,刘剑波.光化学-原理?技术?应用[M],北京:高等教育出版社, 2001,11-97.
    [188]郭立俊,马国宏,邹永龙等.紫细菌反应中心中的超快能量传递过程[J],生物化学与生物物理学报, 2001,33(5):573-576.
    [189]吴佩琮.微生物生长代谢过程的能量衡算[J],食品与发酵工业, 1982,(3):75-82.
    [190]伦世仪.生化工程[M].北京:中国轻工业出版社, 2002年.
    [191]李清彪,陈洪芳.固定化细胞及其载体中组分扩散性质研究[J].离子交换与吸附,1992, 8(4): 355-361.
    [192] Hoekema S ,Bijmans M ,Janssen M, et al. A pneumatically agitated at panel photobioreactor with gas recirculation: anaerobic photoheterotrophic cultivation of a purple non-sulfur bacterium[J]. International Journal of Hydrogen Energy, 2002,27(11):1331-1 338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700