用户名: 密码: 验证码:
气流床煤气化炉数值模拟及颗粒—涡团作用建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为系统地采用数值方法研究气流床煤气化炉的运行特性,本文基于简化PDF方法对气流床煤气化炉建立三维数值模型,并对一台Texaco气化炉和清华大学分级气化炉进行了数值计算。通过对主要子模型进行评估、对预测结果同测试值进行比较、以及定量分析采用单组分简化PDF模型带来的误差,完成了对三维模型的模型验证和数值计算检验(Validation and Verification)。针对雷诺时均法(RANS)在耦合湍流-颗粒运动、湍流-化学反应时存在的理论欠缺,本文采用低维度湍流模型结合RANS方法解决这一困难,为此在一维湍流模型(ODT)基础上提出一种颗粒-涡团作用模型,模拟了平面自由射流中颗粒在亚尺度网格下的扩散过程。全文主要结论如下。
     (1)选取六面体贴体网格以及1/4炉体作为计算域能够达到节省计算时间和保证计算精度的最优效果;在三维复杂网格情况下,RSM模型受网格质量影响较大,Realizable k-ε模型适合用于对气流床煤气化炉冷态流场的计算。
     (2)基于单组分简化PDF方法的三维数学模型合理预测了一台Texaco气化炉和清华大学分级气化炉的出口组分及运行特性。气化炉中碳转化率>80%的区域内,简化PDF模型由于平衡假定、预设PDF形状以及煤气化过程中各元素均匀释放假定所造成的计算误差在10%以内。
     (3)ODT模型可再现平面自由射流的自相似性以及雷诺应力Reuu和Revv的分布特性,能够准确预测射流半宽及轴向速度衰减;预测结果显示涡团集中分布在射流剪切层上,涡团发生概率最大点的分布同射流半宽分布相吻合。
     (4)对颗粒在平面自由射流中扩散过程的计算结果表明,颗粒在扩散过程中会发生团聚现象;粒径与颗粒扩散程度成反比,小颗粒的质量流率在近喷嘴处为Gaussian分布,大颗粒质量流率在近喷嘴处呈现双峰分布,接近充分发展段才为Gaussian分布。这是因为模型中考虑了射流卷吸作用以及涡团扰动两种影响颗粒扩散的机理,在近喷嘴处射流卷吸作用对大颗粒运动起决定性作用。
     (5)受颗粒自身惯量和涡团作用的影响,St≈1的颗粒对涡团作用最为敏感。
In order to make a systematic analysis for the performance of entrained flow coal gasifiers using numerical method, a three-dimensional numerical model for coal gasification process was developed based on presumed PDF (Probability Density Function) method. Numerical simulations applied this model, were carried out for a Texaco gasifier and a staged entrained flow gasifier of Tsinghua University. Validation and verification were carried out, which included the comparison between predicted results and the industrial measurements; the analysis of the reliability of the sub-models in the code; and a quantitative error estimation of the presumed PDF model. Due to the limitation of RANS (Reynolds Averaged N-S equation) method in solving turbulence-particle motion and turbulence-reaction coupling problems, a methodology was proposed based on the combination of RANS method and low dimensional turbulence model. A new particle-eddy interaction model with two-way coupling for particles and gas phase was developed and integrated into the ODT (One Dimensional Turbulence) model. A simulation case was also performed for a particle laden planar jet. The conclusions were drawn as follows.
     (1) Optimistic performance of the computational cost and accuracy of the results was obtained by using combination of a hexahedron body-fitted mesh and the calculation domain of 1/4th gasifier. The Reynolds Stress Model (RSM) is highly sensitive to mesh quality when adopting three dimensional body fitted mesh. The Realizable k-εmodel is a good fit for the simulation of the cold flow field of the entrained flow gasifiers.
     (2) Simulations were carried out for a Texaco gasifier and a staged entrained flow coal gasifier by using the proposed three-dimensional model. A good agreement at the outlet of the gasifiers was achieved for temperature and the composition of the synthesis gas between the simulation results and industrial measurements. A reasonable trend of gasification performance was also observed when adjusting the operation parameters. In this 3-D model, the principal error was introduced by the three assumptions made in the one stream presumed PDF method, which are equilibrium assumption,βPDF assumption, and the assumption of the same release speed of all species during coal gasification process. However, the error is no more than 10% when coal conversion is larger than 80%.
     (3) A numerical simulation was conducted for a turbulent planar jet with ODT model. The self-similarity of the planar jet and the distributive characteristics of Reuu and Revv were successfully repeated. A good agreement was achieved between the simulation and measurements of the jet half width and the decay of axial velocity at the center line. The result showed that most of eddies lied in the shear layer of the jet. The distribution of the points which has the highest probability of eddy formation on each ODT line agreed well with the spreading profile of jet half width.
     (4) The result of the particle laden jet showed that the agglomeration of particles occurred during particle dispersion in the planar jet. Particle diameter had an important negative effect on particle dispersion. The mass flux of micro particles showed an obvious Gaussian distribution near the nozzle, while that of macro particles had a bimodal distribution near the nozzle and the Gaussian distribution far from the nozzle. The analysis of the results revealed that two mechanisms had effect on the particle dispersion in the jet flow: one is the engulfment of the macro flow, and the other is eddy interaction. The engulfment of the macro flow dominated the macro particle dispersion near the nozzle.
     (5) Particle dispersion was affected by its inertia and the intensity of eddy interaction, which made those particles with St of roughly 1 the most sensitive to the eddy interaction.
引文
[1] Osamu Shinada, Akira Yamada, Y. Koyama. The development of advanced energy technologies in Japan IGCC: A key technology for the 21st century. Energy Conversion & Management, 2002, 43:1221-1233.
    [2]赵勇平.国外4座大型IGCC电站的煤气化工艺.中国电力, 1999, 8:60-65.
    [3]陈家仁.加压气流床煤气化工艺的发展现状及存在问题.煤化工, 2006.6, 22:1-7.
    [4]武利军,周静,刘璐.煤气化技术进展.洁净煤技术, 2002, 8:31-34.
    [5]许令奇,陈迎.德士古气化装置运行总结.中氮肥, 2002, 6:12-15.
    [6]夏鲲鹏,陈汉平,王贤华,等.气流床煤气化技术的现状及发展.煤炭转化, 2005, 28:69-73.
    [7]李健,付少华,蒋小川.德士古水煤浆加压气化装置应用技术总结.氮肥设计, 1996, 34:56-58.
    [8]谭可荣.新型水煤浆气化技术的开发及应用.煤炭转化, 2001, 24(1):36-39.
    [9]清华大学热能系.非熔渣-熔渣两段式煤气化技术情况汇报. (课题编号):2002AA529050.
    [10] W. C. Reynolds. The element potential method for chemical equilibrium analysis:Implementation in the interactive program STANJAN [R]. Department of mechanical engineering, Stanford University, 1986
    [11] Q. Ni, A. Williams. A simulation study on the performance of an entrained flow coal gasifier. Fuel, 1995, 74(1):102-110.
    [12] P. Ruprecht, W. Schafer, P. Wallacet. A computer model of entrained coal gasification. Fuel, 1988, 67:739-742.
    [13]项友谦.煤气化过程的模型和模拟优化操作.煤炭转化, 2002, 25(4):60-64.
    [14]王金花,夏德宏,章杰.影响水煤浆气化产物的因素分析.冶金能源, 2003, 22(5):21-24.
    [15] C. Y. Wen, T. Z. chuang. Entrainment Coal Gasification Modeling. Ind. Eng. Chem. Process Des. Dev., 1979, 18(4):684-695.
    [16] R. Govind, J. Shah. Modeling and simulation of an entrained flow coal gasifier. AICHE Journal, 1984, 30(1):79-92.
    [17] G. S. Liu, H. R. Rezaei. Modeling of a pressurized entrained flow coal gasifier:the effect of reaction kinetics and char structure. Fuel, 2000, 79:1767-1779.
    [18]王天骄.德士古气化炉模型研究[硕士学位论文]. 2001年5月
    [19] D. Vamvuka, T. Edward, Woodburn, et al. Modeling of an Entrained Flow Coal Gasifier. Fuel, 1995, 74(10):1452-1460.
    [20] L. D. Smoot, P. J.Smith. Coal combustion and gasification. Plenum Press, New York and London, 1985.
    [21] L. D. Smoot. A decade of combustion research. Prog. Energy Combust. Sci., 1997, 23:203-232.
    [22] L. D. Smoot. International research centers' activities in coal combustion. Prog. Energy Combust. Sci., 1998, 24:409-501.
    [23] P. J. Smith, T. H. Fletcher, L. D. Smoot. Model for pulverized coal-fired reactors. 18th Symp.(Int)Combust., Pittsburgh, 1981:1285-1298.
    [24] T. H. Fletcher. A two-dimensional model for coal gasification and combustion. [PH. D. Thesis]. Brigham Young University, 1983
    [25]贺阿特,冯宵,董绍平,等.德士古渣油气化炉的数值模拟.高校化学工程学报, 2001, 12:526-531.
    [26]林高平.水煤浆气化炉内冷态流场研究. [博士学位论文],西安交通大学, 2001
    [27]叶正才.受限射流气化炉内混合过程的研究. [博士学位论文],上海:华东理工大学, 1997
    [28] D. F. Fletcher, B. S. Haynes, F. C. Christo, et al. A CFD Based Combustion Model of An Entrained Flow Biomass Gasifier. Applied Mathematical Modelling, 2000, 24:165-182.
    [29] D. F. Fletcher, B. S. Haynes, F. C. Christo, et al. Computational Fluid Dynamics Modeling of an Entrained Flow Biomass Gasifier. Applied Mathematical Modelling, 1998, 22:747-757.
    [30] X. j. Liu, W. Zhang, T. J. Park. Modelling coal gasification in an entrained flow gasifier. Combustion theory and modeling, 2001, 5:595-608.
    [31]刘向军,朴泰俊.德士古气化炉内气化过程的数值研究.动力工程, 2002, 5:1932-1935.
    [32] Y. C. Choi, X. Y. Li, T. J. Park, et al. Numerical study on the coal gasification characteristics in an entrained flow coal gasifier. Fuel, 2001, 80:2193-2201.
    [33] C. X Chen, Masayuki Horio, T. Kojima. Numerical simulation of entrained flow coal gasifiers. Part II: effects of operating conditions on gasifier performance. Chemical engineering science, 2000, 55:3875-3883.
    [34] C. X. Chen, Masayuki Horio, T. Kojima. Use of numerical modeling in the design and scale-up of entrained flow coal gasifiers. Fuel, 2001, 80:1513-1523.
    [35] C. X. Chen, M. Horio, T. Kojima. Numerical simulation of entrained flow coal gasifiers. Part I: modeling of coal gasification in an entrained flow gasifier. Chemical engineering science, 2000, 55:3861-3874.
    [36] C. X. Chen, M. Takahiro, K. Hidehiro, et al. On the scaling-up of a two-stage air blown entrained flow coal gasifier. Canadian Journal of Chemical Engineering, 1999, 77:745-750.
    [37] H. Liu, C. X. Chen, K. et. al. Theoretical simulation of entrained flow IGCC gasifiers: Effect of mixture fraction fluctuation on reaction owing to turbulent flow. Energy and fuels, 2002, 16:1280-1286.
    [38] H. Liu. Interaction between a turbulent flow and reaction under various conditions in oxygen blown HYCOL gasifiers. Developments in Chemical Engineering and Mineral Processing, 2003, 11:557-577.
    [39] W. Vicente, S. Ochoa, J. Aguillon, et al. An Eulerian model for the simulation of an entrained flow coal gasifier. Applied thermal engineering, 2003, 23:1993-2008.
    [40] M. J. Bockelie, M. K. Denison, Zumao Chen, et al. CFD modeling for entrained flow gasifiers in vision 21 systems. http://www.reaction-eng.com, 2003
    [41]于海龙,赵翔,周志军,等.煤浆浓度对水煤浆气化影响的数值模拟.中国动力工程学报, 2005, 25:217-220.
    [42]于海龙,赵翔,周志军,等.碳氧原子比和水煤浆质量分数对水煤浆气化影响的数值模拟.燃料化学学报, 2004, 32:390-394.
    [43]于海龙,赵翔,周志军,等.氧煤比对水煤浆气化影响的数值模拟.煤炭学报, 2004, 29:606-610.
    [44] H. Watanabe, M. Otaka. Numerical Simulation of Coal Gasification in Entrained Flow Coal Gasifier. Fuel, 2006, 85:1935-1943.
    [45] J. M. Beer, N. A. Chigier, K. B. Lee. Modeling of Double Concentric Burning Jets. 9th symposium(International)on Combustion, Pittsburgh, 1963:892-900.
    [46] M. W. Thring, M. P. Newby. Combustion Length of Enclosed Turbulent Jet Flames. 4th symposium(International)on Combustion. Pittsburgh, 1953:789-796.
    [47]于遵宏,于建国,沈才大.德士古气化炉气化过程剖析(II)—冷态速度分布测试.大氮肥, 1994, 1:46-50.
    [48]于遵宏,沈才大,王辅臣,等.水煤浆气化炉气化过程的三区模型.燃料化学学报, 1993, 21:90-95.
    [49]王辅臣,于广锁,龚欣.射流携带床气化炉内宏观混合过程研究(I-III).化工学报, 1997, 48:193-207, 336-346.
    [50] R. W. Bilger. Reaction rates in diffusion flames. Combustion and Flame, 1978, 30:277-283.
    [51] B. F. Magnussen, B. H. Hjertager. On Mathematical Modeling of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion. 16th Symposium(International)on Combustion, The Combustion Institude, Pittsburgh, 1977:719-729.
    [52] D. B. Spalding. Development of the Eddy-Break-Up Model of Turbulent Combustion. 16th Symposium(International)on Combustion, The Combustion Institude, Pittsburgh, 1977:1657-1663.
    [53]周向阳,郑楚光,马毓义.大型炉膛燃烧过程的数值模拟.华中理工大学学报, 1994, 22:11-15.
    [54]刘向军.四角切向燃烧煤粉锅炉炉内燃烧过程的数值研究. [博士学位论文].清华大学, 1997
    [55]郑昌浩.非正交贴体坐标系模拟燃烧室内煤粉燃烧全过程. [博士学位论文],清华大学, 2002
    [56] M. M. Rogers, R. D. Moser. Direct Simulation of a self-similar turbulent mixing layer. Phys. Fluids, 1998, 10:246-265.
    [57] A. R. Kerstein, W. T.Ashurst, S. Wunsch, et al. One-dimensional Turbulence: Vector Formulation and Application to Free Shear Flows. J. Fluid Mech., 2001, 447:85-109.
    [58] Rawat Rajesh, Spini Jennifer, P. J. Smith. A New LES Pool Fire Simulation Tool. Proceedings of the Heat Transfer Division: Combustion and Energy Systems, 2001, 4:125-128.
    [59] T. Poinsot, D. Veynante. Theoretical and Numerical Combustion[M]. R.T. Edwards Inc, 2001:132-135.
    [60]周力行(著),陈文芳,林文漪(译).湍流气粒两相流动和燃烧的理论与数值模拟.科学出版社, 1994
    [61] M. A. Leschziner, W.Rodi. Computation of Strongly Swirling Axisymmertric Free Jets. AIAA Journal, 1984, 22:1742-1747.
    [62] K. C. Chang, W. D. Hsieh, C. S. Chen. A modified Low-Reynolds-Number Turbulence Model Applicable to Recirculating Flow in Pipe Expansion. J. of Fluids Engineering, 1995, 117:417-423.
    [63] O. S. A. Yakhot V. Renormalization Group Analysis of Turbulence:I. Basic Theory. J.Sci.Comput, 1986, 1:3-13.
    [64] TSAN-HSing Shih, W. W. Liou, A. Shabbir, et al. A New k-εEddy Viscosity Model For High Reynolds Number Turbulent Flows. Computers Fluids, 1995, 24:227-238.
    [65] T. Echekki, A. R. Kerstein, T. D. Dreeben. One-Dimensional Turbulence Simulation of Turbulent Jet Diffusion Flames: Model Formulation and Illustrative Applications. Combustion and Flame, 2001, 125:1083-1105.
    [66] A. J. Ricks. A Spatially-Developing One-Dimensional Turbulence(ODT)Model to Study Soot Distributions in Meter-Scale Buoyant Turbulent Flames. Phd Thesis, Purdue University, Feb. 2006
    [67]蒋勇,邱榕,董刚,等.基于一维全尺度湍流模型的氢气射流扩散火焰结构数值模拟.燃烧科学与技术, 2006, 12:401-407.
    [68]张健,周力行.气固两相流中颗粒轨道运动方程的一组分析解.燃烧科学与技术, 2000, 3:226-229.
    [69] C. T. Crowe, M. P. Sharma, D. E. Stock. The Particle-Source-In Cell(PSI-CELL)Model for Gas-Droplet Flows. Journal of Fluids Engineering, 1977, 6:325-332.
    [70] M. P. Sharma, C. T. Crowe. Application of Computer Modeling in the Design of a Multiphase Flow Metering System. Journal of Fluids Engineering, 1989, 111:184-190.
    [71]李云.气化炉激冷室下降管内气固两相湍流流动和传热数学模拟及分析. [博士学位论文],西安交通大学, 1999.5
    [72]郭印诚,向明燕,徐春明.石油化工燃油加热炉中液雾燃烧的数学模型.燃料化学学报, 2000, 6:210-215.
    [73]李力,李荣先,周力行, et al.三维湍流回流气相和煤粉燃烧辐射传热离散坐标模型和热流模型比较.燃烧科学与技术, 2000, 6:19-23.
    [74] S. G. Budilarto. An experimental study on effects of fluid aerodynamics and particle size distribution in particle-laden jet flows. PhD Thesis, Department of Mechanical Engineering, Purdue University, Aug. 2003
    [75]刘明候,陈义良,易蔚卿.颗粒轨道模型对煤粉湍流燃烧计算结果影响的研究.燃烧科学与技术, 1999, 5:14-20.
    [76] J. S. Shuen, L. D. Chen, G. M. Feath. Evaluation of a Stochastic Model of Particle Dispersion in a Turbulent Round Jet. AIChE Journal, 1983, 29:167-170.
    [77]张健, S.Nieh.强旋流气-固两相流动的颗粒随机轨道法模拟.力学学报, 1994, 26:657-663.
    [78] S. Yuu, N. Yasukouchi. Particle Turbulent Diffusion in a Dust Laden Round Jet. AICHE Journal, 1978, 24:509-519.
    [79]岑可法,樊建人[著].工程气固多相流动的理论及计算.浙江大学出版社, 1990
    [80] S. E. Elghobashi. On predicting Particle-Laden Trubulent Flows. 7th Workshop on Two-Phase Flow Predictions, Erlangen, FRG, 1994
    [81]孙保民,徐旭常.多相流随机轨道数值模拟的概率统计方法.工程热物理学报, 1995, 16:358-362.
    [82] L. L. Baxter, P. J. Smith. Turbulent Dispersion of Particles: The STP Model. Energy & Fuels, 1993, 7:852-859.
    [83] F. C. Lockwood, N. G. Shah. A New Radiaiton Solution Method for Incorporation in General Combustion Prediction Procedures. 18th Symposium ( International ) on Combustion, Pittsburgh, 1981:1405-1414.
    [84] W. A. Fiveland. Discrete Ordinate Methods for Radiative Heat Transfer in Isotropicallyand Anisotropically Scattering Media. Journal of Heat Transfer, 1987, 109:809-812.
    [85] W. A. Fiveland. Three-Dimensional Radiative Heat-Transfer Solutions by the Discrete-Ordinates Method. J.ThermalPhysics, 1988, 2:309-316.
    [86] B. R. Adams. Computational Evaluation of Mechanisms Affecting Radiation in Gas and Coal Fired Industrial Furnaces. PHd Thesis, University of Utah, Dec. 1993
    [87] J. S. Truelove. Discrete-Ordinate Solutions of the Radiation Transport Equation. Transactions of the ASME, 1987, 109:1048-1051.
    [88] J. C. Chai, G. Parthasarathy. Finit Volume Radiative Heat Transfer Procedure for Irregular Geometries. Journal of Thermophysics and Heat Transfer, 1995, 9:410-415.
    [89] J. C. Chai, H. S.Lee. Finit Volume Method for Radiation Heat Transfer. Journal of Heat Transfer, 1994, 8:419-425.
    [90] L. D. Smoot. Fundamentals of Coal Combustion/ for Clean and Efficient Use. NewYork:Elsvier, 1993:196-235.
    [91]刘旭光,李保庆.煤热解模型的研究方向.煤炭转化, 1998, 21:42-46.
    [92] K. H. V. Heek, H. J. muhlen. Progress in the Kinetics of Coal and Char Gasification. Chem.Eng. Technology, 1987, 10:411-419.
    [93] G. S. Liu, S. Niksa. Coal Conversion Submodels for Design Applications at Elevated Pressures. Part II. Char Gasification. Progress in energy and combustion science, 2004, 30:679-717.
    [94] S. Niksa, G. S. Liu, R. H. Hurt. Coal Conversion Submodels for Design Applications at Elevated Pressures. Part I. Devolatilization and Char Oxidation. Progress in energy and combustion science, 2003, 29:425-477.
    [95] M. Schmal, J. Luiz, F. Monteiro. Kinetics of Coal Gasification. American Chemical Society, 1982, 21:256-266.
    [96] S. K. Bhatia, D. D. Perlmutter. A Random Pore Model for Fluid-Solid Reactions:I. Isothermal, Kinetic Control. AIChE Journal, 1980, 26:379-386.
    [97] G. S. Liu, A. G. Tate, G. W. Bryant, et al. Mathematical Modeling of Coal Char Reactivity with CO2 at High Pressures and Temperatures. Fuel, 2000, 79:1145-1154.
    [98] R. H. Hurt, J. M. Calo. Semi-Global intrinsic kinetics for Char Combustion Modeling. Combustion and Flame, 2001, 125:1138-1149.
    [99] S. E. Elghobashi, W. M. Pun. A Theoretical and Experimental Study of Turbulent Diffusion Flames in Cylindrical Furnaces. 15th Symposium(International)on Combustion, 1975:1353-1364.
    [100] R. W. Bilger. Conditional Moment Closure for Turbulent Reacting Flow. Phys. Fluids, 1993, 5:437-441.
    [101] D. B. Spalding. Mixing and Chemical Reaction in Steady Confined Turbulent Falmes. 13th Symposium ( Int ) on Combustion, The Combustion Institude, Pittsburgh, 1971:649-657.
    [102] S. Byggstoyl, B. F. Magnussen. A Model for Flame Extinction in Turbulent Flows. 4th Symp. Turbulent Shear Flows,Karlsruhe, Germany, Sep. 1983:1023-1038.
    [103] I. S. Ertesvag, B. F. Magnussen. The Eddy Dissipation Turbulent Energy Cascade Model. Combustion science and technology, 2001, 159:213-236.
    [104] O. F. Rodeny. Computational Models for Turbulent Reacting Flows[M]. Cambridge University Press, 2003
    [105] Anders Brink, Christian Mueller, Pia Kilpinen, et al. Possibilities and limitions of the Eddy Break-Up model. Combustion and Flame, 2000, 123:275-279.
    [106] C. P. Singh, D. N. Saraf. Simulation of high-temperature water-gas shift reactors. Ind. Eng. Chem. Process Des. Dev., 1977, 16:313-319.
    [107]张会强,陈兴隆,周力行,等.湍流燃烧数值模拟研究的综述.力学进展, 1999, 29:567-575.
    [108] B. Ranganath, T. Echekki. One-dimensional turbulence-based closure for turbulent non-premixed flames. Progress in Computational Fluid Dynamics, 2006, 6:409-418.
    [109]韩志明.一类新型清洁燃煤动力装置建模研究. [博士学位论文],清华大学, 1999
    [110] M. Seggiani. Modelling and Simulation of Time Varying Slag Flow in a Preflo Entrained-Flow Gasifier. Fuel, 1998, 77:1611-1621.
    [111]熊源泉,刘前鑫,章名耀.煤的加压热解实验研究.燃烧科学与技术, 1997, 3:135-142.
    [112]熊源泉,刘前鑫,章名耀.加压条件下煤热解反应动力学的试验研究.动力工程, 1999, 19:77-81.
    [113] T. F. Wall, G. S. Liu, H. W. Wu, et al. The Effects of Pressure on Coal Reactions During Pulverised Coal Combustion and Gasification. Progress in energy and combustion science, 2002, 28:405-433.
    [114] C. R. Monson, G. J. Germane, L. D. Smoot, et al. Char Oxidation at Elevated Pressures. Combustion and Flame, 1995, 100:669-683.
    [115]王明敏.煤焦加压气化动力学热重实验研究. [博士学位论文],北京,清华大学, 2007.4
    [116] D. G. Roberts, D. J. Harris. Char Gasification with O2, CO2, and H2O: Effects of Pressure on Intrinsic Reaction Kinetics. Energy & Fuels, 2000, 14:483-489.
    [117] D. P. Aeschliman, W. L. Oberkampf, F. G. Blottner. A Proposed Methodology for Computational Fluid Dynamics Code Verification, Calibration, and Validation. International congress on instrumentation in aerospace simulation facilities, 1995, 13:1-27.
    [118] W. L. Oberkampf, T. G. Trucano. Verification and Validation in Computational Fluid Dynamics. Prog. Aero. Sci, 2002, 38:209-272.
    [119]张建胜,胡文斌,岳光溪,等.分级气流床气化炉模型研究.化学工程, 2007, 3:14-18.
    [120] J. M. Beer, N. A. Chigier(著),陈熙(译).燃烧空气动力学.科学出版社, 1979
    [121]董志勇.射流力学.科学出版社, 2005
    [122] G. S. Yu, Z. j. Zhou, Q. a. Qu, et al. Experimental Studying and Stochastic Modeling of Residence Time Distribution in Jet-Entrained Gasifier. Chemical Engineering and Processing, 2001, 41:595-600.
    [123]张建胜,吴玉新,岳光溪等.二次气流对分级气化炉内三维速度分布的影响.燃烧科学与技术, 2007, 13:131-135.
    [124] J. S. Zhang, W. B. Hu, Y. X. Wu, et al. Experimental Measurement on The Spray Particles of Triple Channel Nozzle. The 4th International Symposium on Measurement Techniques for Multiphase Flows, Hangzhou, 2004:82-86.
    [125] B. E. Launder, D. B. Spalding. The Numerical Computation of Turbulent Flows. Computer Methods in Applied Mechanics and Engineering, 1974, 3:269-289.
    [126]吴玉新,张建胜,岳光溪,等.水煤浆气化炉三通道喷嘴气相流场的数值模拟.清华大学学报(自然科学版), 2006, 46:691-695.
    [127]吴玉新,张建胜,岳光溪,等.用于Texaco气化炉同轴射流计算的不同湍流模型的比较.化工学报, 2007, 58:537-543.
    [128] P. Spalart, S. Allmaras. A one-equation turbulence model foraerodynamic flows[R]. Technical Report AIAA-92-0439, 1992
    [129]何枫,谢俊石,郝鹏飞.应用S-A模型的自由射流和冲击射流数值模拟.推进技术, 2001, 22:43-46.
    [130]贺阿特.德士古渣油气化炉的数值模拟. [硕士学位论文],西安交通大学, 2002.5
    [131]郭婷婷,李少华,徐忠.横向紊动射流的数值与实验研究进展.力学进展, 2005, 35:211-220.
    [132]吴玉新,张建胜,岳光溪,等.简化PDF模型对Texaco气化炉的三维数值模拟.化工学报, 2007, 58:2369-2374.
    [133]张妮,曾凡桂,降文萍.中国典型动力煤种热解动力学分析.太原理工大学学报, 2005, 36:549-552.
    [134] K. E. Benfell. Assessment of char morphology in high pressure pyrolysis and combustion. PhD Thesis, Department of Geology, The University of Newcastle, Australia, 2001
    [135] I. W. Smith. The Combustion rates of Coal Chars: A Review. 19th Symposium International on Combustion, The Combustion Institute, Pittsburgh, 1982:1045-1065.
    [136] R. Siegel, J. R. Howell. Thermal Radiation Transfer. Hemisphere Publishing Corporation,Washington D.C., 1992
    [137] Reaction Design. Chemkin_Theory, Thermodynamic Expressions. pp:22-30. 2004
    [138]陈政.淮南煤用于德士古水煤浆加压气化技术研究.安徽化工, 2006, 12:31-33.
    [139]文芳.煤焦CO2气化反应动力学研究.洁净煤技术, 2003, 9:36-39.
    [140] H. J. Muhlen, K. H. Heek, H. Juntgen. Kinetic studies of steam gasification of char in the presence of H2, CO2 and CO. Fuel, 1985, 64:944-949.
    [141]文芳.热重法研究煤焦H2O气化反应动力学.煤炭学报, 2004, 29:350-353.
    [142]王志刚,禚玉群,陈昌和,等.四角切圆锅炉流场伪扩散效应网格的研究.中国电机工程学报, 2007, 27:22-27.
    [143]黎军.德士古水煤浆气化工艺概况.安徽化工, 2001, 109:46-49.
    [144]王利君.德士古气化炉工艺烧嘴损坏原因分析.炼油与化工, 2006, 17:37-39.
    [145]王旭宾.德士古煤气化工艺烧嘴的探讨.上海化工, 2000, 11:15-18.
    [146] FLUENT INC. FLUENT 6.1 Documentation, 6.4.1. www.fluentusers.com. 2000
    [147] W. Polifke, K. Dobbeling, T. Scattelmayer, et al. A NOx prediction scheme for lean-premixed gas turbine combustion based on detailed chemical kinetics. Journal of engineering for gas turbines and power, 1996, 118:765-772.
    [148] W. P. Jones, R. P. Lindstedt. Global reaction schemes for hydrocarbon combustion. Combustion and Flame, 1988, 73:233-249.
    [149]罗孝良,戴元声.化学反应速度常数手册.四川科学技术出版社, 1985:66.
    [150] C. K. Westbrook, F. L. Dryer. Simplified reaction mechanisms for the oxidation of hydrocarbon fues in flames. Combustion science and technology, 1981, 27:31-43.
    [151] J. A. Mulholland, R. K. Srivasta, J. O. L. Wendt, et al. Trajectory and incineration of rogue droplets in a turbulent diffusion flame. Combustion and Flame, 1991, 86:297-310.
    [152] Tarek Echekki, A. R. Kerstein, T. D. Dreeben. 'One-Dimensional Turbulence' simulation of turbulent jet diffusion flames: model formulation and illustrative applications. Combustion and Flame, 2001, 125:1083-1105.
    [153] S. B. Pope. Turbulent Flows[M]. Cambridge University Press, 2000:96-158.
    [154] A. R. Kerstein. A Linear-Eddy model of turbulent scalar transport and mixing. Combustion science and technology, 1988, 60:391-421.
    [155] Scott Wunsch, A. R. Kerstein. A model for layer formation in stably stratified turbulence. Physics of Fluids, 2001, 13:702-712.
    [156] J. R. Schmidt. Stochastic model for prediction of individual particle trajectories in one dimensional turbulent flows. PhD Thesis, Department of Chemical and Environmental Engineering, the University of Arizona, 2004
    [157] W. T. Ashurst, A. R. Kerstein. One-Dimensional Turbulence: Variable-density formulationand application to mixing layers. Physics of Fluids, 2005, 17:025107.
    [158] A. R. Kerstein. One-Dimensional Turbulence: Model Formulation and Application to Homogeneous Turbulence, Shear Flows, and Buoyant Stratified Flows. J. Fluid Mech., 1999, 392:277-334.
    [159] A. R. Kerstein, T. D. Dreeben. Prediction of turbulent free shear flow statistics using a simple stochastic model. Physics of Fluids, 2000, 12:418-424.
    [160] J. R. Schmidt, O. L. Wendt, A. R. Kerstein. A novel method for the prediction of particle-laden turbulent channel flow using the one dimensional turbulence model. 4th international conference on heat transfer, fluid mechanics and thermodynamics, Cairo, Egypt, 2005:SJ10.
    [161] S. E. Elgobashi, G. C. Truesdell. Direct simulation of particle dispersion in a decaying isotropic turbulence. J. Fluid Mech., 1992, 242:655-700.
    [162] S. E. Elgobashi. On predicting particle-laden turbulent flow. Appl. Sci. Res., 1994, 52:302-329.
    [163]范全林,张会强,郭印诚,等.宽粒径分布气粒两相圆湍射流特性研究.燃烧科学与技术, 1999, 5:416-421.
    [164] Q. L. Fan, X. L. Wang, H. Q. Zhang, et al. Large eddy simulation of a horizontal particle-laden turbulent planar jet. Computational Mechanics, 2001, 27:128-137.
    [165] J. K. Eaton, J. R. Fessler. Preferential concentration of particles by turbulence. Int. J. Multiphase flow, 1994, 20:169-209.
    [166] E. K. Longmire, J. K. Eaton. Structure of a particle-laden round jet. J. Fluid Mech., 1992, 236:217-257.
    [167]罗坤,樊建人,岑可法.转捩射流中涡结构与颗粒扩散的直接模拟.工程热物理学报, 2006, 27:607-610.
    [168] C. T. Crowe, J. N. Chung, T. R. Troutt. Particle mixing in free shear flows. Progress in energy and combustion science, 1988, 14:171-194.
    [169]李伟锋,代正华,刘海峰,等.颗粒加入方式对平面射流中颗粒弥散影响的离散涡模拟.燃烧科学与技术, 2005, 11:355-360.
    [170] J. N. Chung, T. R. Troutt. Simulation of particle dispersion in an axisymmetric jet. Journal of fluid mechanics, 1988, 186:199-222.
    [171]由长福,祈海鹰,徐旭常.煤粉颗粒所受Magnus力的数值模拟.工程热物理学报, 2001, 22:625-628.
    [172] L. J. S. Bradbury, J. Riley. The spread of turbulent plane jet issuing into a parallel moving airstream. J. Fluid Mech., 1967, 27:381-394.
    [173] H. J. Sheen, B. H. Jou, Y. T. Lee. Effect of particle size on a two-phase turbulent jet. Exp. Thermal and fluid science, 1994, 8:315-327.
    [174] E. N. Jones. An experimental investigation of particle size distribution effects in Dilute-Phase Gas solid flow. Phd Thesis, Purdue University, 2001
    [175] UC Berkeley. GRI-Mech home page. http://www.me.berkeley.edu/gri-mech/.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700