用户名: 密码: 验证码:
疏松砂岩高压挤压砾石充填理论及工程应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
疏松砂岩油藏在我国分布范围广、储量大,出砂是疏松砂岩油藏开采中经常遇到的难题之一。在国内外各油田生产中均广泛存在着出砂问题,而油井出砂已成为目前制约油田稳产上产的重要因素之一。目前各油田针对油井出砂问题较多采用的工艺方法是高压挤压充填技术。但长期以来疏松砂岩高压挤压理论体系未能得到有效建立,理论与实际应用的脱节,导致工艺技术和施工参数不甚合理,影响了高压挤压防砂技术的进一步发展。
     文章从疏松砂岩的岩石特性以及施工工艺角度分析了影响高压挤压砾石充填效果的各种可能因素。在此基础上,认为高压挤压充填压实过程为高压浆液挤压目标岩层使它发生弹塑性变形,然后携砂液占领这些空隙,达到近井压实充填的目的。随着施工压力的不断增大,塑性区内的岩层持续被压实,当压实到一定程度,携砂液无法挤入到岩层的孔隙中去时,携砂液积聚的能量会快速增加,当目标岩层附近井底压力增大到一定程度,岩体就会开始沿一定方向发生启裂。
     文章在对砾石在携砂液中运动进行力学分析的基础上,借鉴泥沙运动力学的成果,研究了高压挤压过程中砾石的运移规律。
     针对目前高压砾石充填后近井地带形态认识不清以及现有理论没有考虑井底岩层压实的情况,首次根据摩尔-库仑准则和平面应变轴对称问题的基本理论,推导得出了疏松砂岩高压挤压时近井地带的应力场、应变场和位移场等参数同压实区半径之间的关系,并通过算例分析了疏松砂岩岩体的内摩擦角、杨氏模量等参数对高压挤压结果的影响。
     以离散元理论为基础,利用二维颗粒流模拟软件PFC2D,针对疏松砂岩油藏,进行了数值模拟。模拟结果显示:当施加均匀地应力时,井眼产生均匀扩张现象,近井砾石充填体形状近似为圆形,井眼周围目标层被压密压实,岩层孔隙明显减小;模型被施加非均匀地应力时,井眼亦产生扩张现象,但其扩张沿最小地应力方向幅度较大,沿最大地应力方向较小,近井砾石充填体形状为近似椭圆形,井眼周围目标层被压密压实。模拟结果还显示,胶结强度不同的地层在高压挤压后,其地层形态差别较大。胶结较强的疏松砂岩地层,高压挤压后地层的形态接近于低渗油藏,胶结弱的疏松砂岩地层,高压挤压后井眼周围岩层被压散,沿最大主应力方向地层会出现数条裂缝。
     为正确确定地层软硬程度,为高压挤压砾石充填技术提供理论指导,本文首次提出疏松砂岩挤压模量概念,并在挤压模量计算公式推导的基础上提出疏松砂岩岩层挤压指数概念。
     采用推导的挤压模量计算公式对胜利油田防砂中心提供的具有完整测井资料的多口施工井进行编程计算,将各施工井挤压模量等相关参数加权平均后进行拟合得到两组拟合公式。研究了施工参数和地应力等因素对单位油层管外填砂量的影响,在此基础上对前面所拟合的公式进行了修正。
     文章最后对高压挤压施工过程中,套管最薄弱位置—射孔段的强度利用有限元法进行了分析研究,认为射孔孔密和相位相同时,随着孔径的增大,套管抗压强度降低;孔径和相位相同时,随着孔密的增大,套管抗压强度降低;孔密和孔径相同时,当相位在90度至180度区间内时,套管内的应力随着相位的增大而增大;当套管内施加内压时,套管射孔段的应力状况得到改善。
     根据推导得出的理论模型,开发了高压挤压充填优化设计软件。
Loose sand reservoirs are suffering from sand production seriousely, which are distributed widely all around our country. Sand production problem can be found in many oil fields home and abroad and it is one of the important factor that confine the oil fields production increase. High pressure gravel packing is a popular sand control technology used by many oil fields at present. However, the theoretical system about high pressure gravel packing is not established effectively in a long period, disjunction of theory and practice, leads to the technology and construction parameters are not so reasonable, and the further development of high pressure gravel packing is blocked.
     The thesis analyzed the factors influencing the effect of high pressure gravel packing from the angle of the character of loose sand and the construction technology. Above this, the procedure of high pressure gravel packing could be described by the following words. Near well-bore area was compacted under grout pressure, elastoplastic deformation took place, and the gravels in carrier fluid filled the space, so the purpose for compacting and packing the near well-bore area was achieved. With the increasing of construction pressure, the stratum in the plastic area is compacted continuancely until carrier fluid could not be pushed into the space of the stratum, and the energy of carrier fluid gathered rapidly at this time, fractures emerging in certain directions when the pressure around aim stratum reached a certain degree.
     Based on the mechanics analysis of gravel moving in the carrier fluid, the thesis applies to the result of sediment movement, studied the migration mechanism of gravel during high pressure packing.
     Considering the fact that the configuration of near well-bore area after the construction was not understood rather clearly and the present mathematical model of frac-packing did not consider the near well-bore area might be compacted, firstly based on the Mohr-Coulomb criterion and the basic theory of plane strain axisymmetric problem, developed the relationship between the radius of compacted area and the stress, strain and displacement of near well-bore area, and the influence of rock parameters such as internal friction angel and young modulus was studied by some examples.
     On the basis of discrete element theory, numerical stimulation for loose sand reservoir was carried out by the software PFC2D, and some conclusions were attained. The results provided some recognitions about the near well-bore area configuration. The well bore had a uniform extension under uniform in-situ stress, the packed area was a proximate circle, the target stratum was compacted, and the porosity decreased significantly. It still had an extension under nonuniform in-situ stress, and the extension magnitude in the minimum stress direction was bigger compared with the maximum stress direction. In addition, different cementation strength made different near well-bore configuration after construction. The configuration of the loose sand reservoir with high cementation strength approximated to the low permeability reservoirs, but as to the weak consolidation reservoir, the rock near well bore was compacted with some fractures in the maximum stress direction.
     In order to determine the hardness of the stratum and provide theoretical guidance to high pressure gravel packing technology, rock compaction modulus was proposed creatively which was defined as the ratio of compression stress to compression strain under vertical restraint condition. On the basis of the deduction of compaction modulus, the concept of rock compressibility was put forward.
     With the deduced formulas, several oil wells offered by ShengLi oil field sandcontrol center with complete logging data were calculated. Two fitting formulas are attained according to some parameters such as compaction modulus, and some corrections to the fitting formulas were performed according to construction parameters and in-situ stress condition.
     Perforation section as the weak part of casing during high pressure gravel packing, was simulated through finite element method. With fixed perforation phase angel and density, the compressive strength decrease with the perforation diameter increase. With fixed perforation phase angel and diameter, the compressive strength decrease with the perforation density. With fixed perforation phase diameter and density, the casing stress increased with the perforation phase angel when the phase angel was located between 90 and 180 degree. Stress condition in the casing perforation improves when internal pressure is applied in the casing.
     An optimum design software for high pressure gravel packing was developed based on the theoretical model.
引文
[1]于燕.高压砾石一次充填防砂工艺技术[J].石油地质与工程,2006,20(5):79-81
    [2]马代鑫.高压砾石充填防砂工艺参数优化设计[J].石油钻采工艺,2007,29(3):53-58
    [3]王奎生,田仲强.油井机械防砂工艺技术与装备的发展水平[J].石油机械,2000,28(12):49-52
    [4]万仁溥,罗英俊.防砂技术手册(第七分册)[M].北京:石油工业出版社,1991:158-200
    [5]万仁溥.采油工程手册[M].北京:石油工业出版社,1991:68-98
    [6]张琪.采油工程原理与设计[M].东营:石油大学出版社,2002:62-69
    [7]邓金根,王金凤,闫建华等.弱固结砂岩气藏水力压裂裂缝延伸规律研究[J].岩土力学,2002,23(1):72-74
    [8] Fletcher P A, Montgomery C T, Ramos G G. Using fracturing a technique for controlling formation failure[J]. Porter Journal of Petroleum Technology, 1996, 48(2):117-121
    [9] Hannach R R, Park E I. Combination fracturing/gravel packing completion technique on the amberjack, Mississippi Canyon 109 Fie1d. Kou C H. The Proceeding of SPE Annual Technical Conference and Exhibitions Houston: U. S. A, 1994, 262-266
    [10] Grubert. Evolution of a Hybrid Frac-Gravel Pack Completion: Monopod Platform. Trading Bay Field, Cook Inlet, Alaska. SPE 19401
    [11] L.P. Roodhart, P.A. Fokker, D.R. Davins. Frac and Pack Stimulation: Application, Design, and Field Experience From the Gulf of Mexico to Borneo. SPE 26564
    [12] M.Bai, R.H.Morales, R.Suaresz-Rivera.Modeling Fracture Tip Screen out and Application for Fracture Height Growth Control. SPE 84218
    [13] Yong Fan, Michael J. Fracture Dimensions in Frac&pack Stimulation. SPE 30469
    [14] Yong Fan,Michael J. Economides. Fractureing Fluid Leak off And Net Pressure 125Behavior in Frac&Pack Stimulation. SPE 29988,1995
    [15] C.H.Yew, M.J.Ma,A.D.Hil1.A Sudy of Fluid Leak off in Hydraulic Fracture Propagation. SPE 64786, 2000
    [16] James N. Montagna,R.J.Saucier, Pete Kelly. An Innovative Technique for Damage By-Pass in Gravel Packed Completions Using Tip Screen-out Fracture Prepacks. SPE 30102
    [17] Mathur, A.K., Ning, Marcinew. Hydraulic fracture stimulation of high-permeability formations paper. SPE 30652,1995
    [18] R.R. Hannah, E.I. Park, R.E. Walsh. A Field Study of a Combination Fracturing/Gravel Packing Completion Technique on the Amberjack, Mississippi Can 109 Field. SPE 26562
    [19] Y. Fan, B.D. Marple, P.P.Valka. Evolution of Frac-and-Packed Completion in the Eugene Island. SPE 63107
    [20] R.H.Morales and W.D.Norman, S.A.AIi.Optirnum Fractures in High-Permeability Reservoirs. SPE 63008
    [21] T.M. Aggour. Optimization Strategies for Hydraulic Fractures in High Permeability Reservoirs. SPE 63131
    [22] P.Valk, R.E.Oligney,T.A.Schraufnagal. Slopes Analysis of Frac&Pack Bottom hole Treating Pressures. SPE 31116
    [23] Jeffrey E. Smith, Bruce R. Meyer, R. Henry. Fracture Pressure Slope Analysis for TSO's in High-Permeability Formations, SPE 63174,2000
    [24] G.Petit, R.Dusterhoft.Frac and Pack Stimulation: Application and field Experience from Hylia Gabon, West Africa. SPE 3011
    [25] W.S.White, R.H.Morales, H.GRiodan. Improved Frac-Packing Method for long-Heterogeneous Intervals: SPE 58765,2000
    [26]郭建春,赵金洲,庞长渝等.高渗油层压裂充填裂缝模拟评价研究[J].钻采工艺,2002,25(1):51-53
    [27]王鸿勋.水力压裂原理[M].北京:石油工业出版社,1987:120-160
    [28] Tamir Aggour. Optimization Strategies for Hydraulic Fractures in Hight Permeability Reservoirs. SPE 63 131
    [29] D.M.Talbot, K.A.hemke,Crestar, T.H. Leshchyshyn.Nowsco-Fracture/BJ Services Ltd Stimulation Fracture Height Control Above Water or DepletedZones..SPE 60318,2000
    [30]张晓春,杨挺青,谬协兴.岩石裂纹演化及其力学特性的研究进展[J].力学进展,1999,29(1):97-104
    [31]谢和平,朱哲明,范天佑.脆性岩石断裂破坏机理的边界配位法分析[J].力学学报,1998,30(2):238-244
    [32]黄荣樽.水力压裂缝的起裂和扩展[J].石油勘探与开发,1981,8(5):62-74
    [33]颜子.水力压裂裂缝延伸三维数学模型的研究及应用[D].成都:西南石油学院,2002
    [34]刘翔鹗.水力压裂裂缝形态和破裂压力的研究[J].石油勘探与开发,1983,11(4):20-23
    [35]宋友贵,纪朝风,李怀文.压裂充填综合防砂技术的研究与应用[J].石油钻探技术,1999,27(2):45-47
    [36]智勤功,谢金川,吴琼.疏松砂岩油藏压裂防砂一体化技术[J]石油钻采工艺,2007,29(2):57-60
    [37]刘鹏,马英文,张亮,压裂充填技术在疏松地层中的应用[J].石油钻采工艺.2006,28(04):57-59
    [38]谢桂学.周边脱砂压裂技术研究[D].成都:西南石油学院,2001
    [39] Gidley著,蒋闻译.水力压裂技术新发展[M].北京:石油工业出版社,1995:218-296
    [40]张琪,王杰祥.油水井增产增注技术[M].东营:中国石油大学出版社2007:200-278
    [41]罗天雨,郭建春,赵金洲等.充填防砂井表皮系数研究[J].西南石油学院学报,2005,27(4):34-36
    [42] J.Economdes, Larry T.Watters : petroleum well construction, 1998
    [43] B.R.Stewart, M.E.Mullen and R.C.Ellis. Economic Justification for Fracturing Moderate to High Permeability Formations in Sand Control Environments. SPE 30470
    [44] R.L.Kirby, S.W. Asbill, J.W. Ely. Screenless Frac Pack Completions Utilizing Resin Coated Sand in the Gulf of Mexico. SPE 30467
    [45] Robert C. Burton, Stephen Rester, Eric R. Davis. Comparison of Numerical andAnalytical Inflow Performance Modeling of Gravel packed and Frac-Packed Wells. SPE 31102
    [46]曲占庆,张琪,董长银等.压裂充填防砂井产能预测方法[J].石油钻采工艺,2003,25(5):51-53
    [47] Mc Larty, De Bonis .Gulf coast section SPE production operations study group”technical highlights form a series of frac pack treatment, paper SPE 30471, 1995
    [48]何满潮.软岩的概念、分类及支护对策[J].峰煤科技,1992,2:51-53
    [49]何满潮,王同良.软岩的概念及其分类[M].北京:煤炭工业出版社,1999,37-47
    [50]何满潮,景海河,孙晓明.软岩工程力学[M].北京:科学出版社,2002:20-44
    [51]钱宁,万兆惠.泥沙运动力学[M].北京:科学出版社,1983:84-145
    [52]林建忠.流-固两相拟序涡流及稳定性[M].北京:清华大学出版社,2003:7-21
    [53]倪晋仁,王光谦,张红武.固液两相流基本理论及最新应用[M].北京:科学出版社,1991:17-25
    [54]佟庆理.两相流动理论基础[M].北京:冶金工业出版社,1982:88-136
    [55]强永和.封隔高压一次充填防砂机理研究[D].东营:石油大学,2004
    [56]刘大有.两相流体动力学[M].北京:高等教育出版社,1993:55-69
    [57] G.W.戈威尔,K.阿济兹.复杂混合物在管道中的流动(下册)[M].北京:石油工业出版社,1986:362-440
    [58]李军,陈勉,柳贡慧.套管、水泥环及井壁围岩组合体的弹塑性分析[J].石油学报,2005 26(6):100-103.
    [59]殷有泉,蔡永恩,陈朝伟.非均匀地应力场中套管载荷的理论解[J].石油学报,2006,27(4):133-138.
    [61]刘鸿文.材料力学(上)[M].北京:高等教育出版社,1992:284-332
    [62]王金龙,闫相祯,杨秀娟.疏松砂岩地层套管应力变化三维仿真分析[J].岩石力学与工程学报.2005,24(6):1906-1910.
    [63] COLLINS I F, STIMPSON J R. Similarity solutions for drained and un-drainedcavity expansions in soils [J]. Geotechnique, 1994, 44(1):21–34.
    [64]王幼青.挤土桩水平向挤土位移分析.哈尔滨工业大学学报[J],2003,35(4):472-475
    [65]宋恪兴,马兆斌,毕升.水力压裂裂缝形态与方位的研究应用[J].河南石油,1996,10(5): 30-33
    [66]周健,廖雄华,池永.土的室内平面应变试验的颗粒流模拟[J].同济大学学报,2002,30(9):1042-1050
    [67]刘文白,周健.上拔荷载作用下扩展基础的颗粒流数值模拟[J].水利学报,2004,30(12):69-76.
    [68]廖红建,王铁行.岩土工程数值分析[M].北京:机械工业出版社,2006:178-199
    [69] Itasca Consulting Group, Inc. PFC2D particle flow code in 2 Dimensions: theory and background [M]. Minneapolis, Minnesota, 1999.
    [70]朱焕春.PFC及其在矿山崩落开采研究中的应用[J].2006,25(9):1927-1931
    [71]刘向军,刘诗琼.测井原理及工程应用[M].北京:石油工业出版社,2006: 106-121
    [72]楼一珊,金业权.岩石力学与石油工程[M].北京:石油工业出版社,2006:94-102
    [73]李金柱,李双林.岩石力学参数的计算及应用[J].测井技术,2003,27(增刊):15-18
    [74]路保平,鲍洪志.上拔荷载作用下扩展基础的颗粒流数值模拟[J].石油钻探技术,2005,33(5):44-46
    [75]丁鹏,闫相祯.高压注水管柱受力分析[J].石油钻探技术,2005,33(6):47-49
    [76]王仲茂,卢万恒,胡江明.油田油水井套管损坏的机理及防治[M].北京:石油工业出版社,2006:94-102
    [77]王仲茂,卢万恒,胡江明.油田油水井套管损坏的机理及防治[M].北京:石油工业出版社,2006:1-21
    [78]李志明,殷有泉.油水井套管外挤力计算及其力学基础[M].北京:石油工业出版社,2006:1-27
    [79]刘合.油田套管破坏防治技术[M].北京:石油工业出版社,2003:1-22
    [80]朱伯芳.有限单元原理与应用[M].北京:中国水利水电出版社,1998:1-31
    [81]王以法.人工智能钻井系统展望[J].石油钻探技术,2000,28(2):36-38
    [82]范兴沃,李相方,关文龙.防砂工艺决策专家系统开发及应用[J].钻采工艺,2002,25(4):49-51
    [83]武波.专家系统[M].北京:北京理工大学出版社,2001.49-56
    [84]钟诗胜.工程方案设计中的模糊理论与技术[M].哈尔滨:哈尔滨工业大学出版社,2000:45-53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700