用户名: 密码: 验证码:
济阳和临清坳陷深层天然气成因鉴别与生成模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
济阳和临清坳陷深层天然气来源多、成因复杂,包括煤成气、油型气和混源气等。其中煤成气又包括一次生烃和二次生烃形成的,高成熟油型气则存在源岩热解成因和原油裂解成因。不同成因类型天然气的鉴别,不仅是勘探中急需解决的实际问题,也是油气地质及地球化学研究前沿的科学问题。为此,综合利用天然气地质和地球化学理论与方法,剖析了研究区深层天然气的成因类型,提出了煤岩一次与二次及源岩热解与原油裂解生成天然气的鉴别指标,建立了天然气的生成模式。
     以烃源岩特征分析为基础,将天然气三元地球化学示踪体系与成藏地质背景分析相结合,阐明了深层天然气的成因类型。结果表明:孤北-渤南地区天然气由西向东从油型气逐渐过渡到煤成气,渤南洼陷发育Es4上自生自储的高成熟油型气,孤北潜山第三、四排山主要为C-P来源的煤成气,二者之间由油型气与煤成气按不同比例混合而成;临清坳陷东部深层主要产出煤成气,其中高古4井天然气由C-P煤系源岩于成熟阶段所生成,伴生油具有相似的成因,梁古1井则以无机成因CO2为主;民丰地区Es4产出的天然气主要由该段第一套膏盐层中烃源岩所生成,成熟度(Ro)介于1.0~1.6%之间,还混有深部来源的无机CO2。
     通过开展煤岩一次和二次生烃模拟实验,考察生成气态烃的组成与产率特征,结合生烃动力学的分析,查明了两种成因煤成气的差别,提出了二者的鉴别指标,并利用已知成因煤成气进行了验证。研究发现:煤岩一次生成天然气iC4/nC4值大于0.9、n(C6+C7)/i(C6+C7)值小于0.95、nC6/(2-MC6+3-MC6)值小于1.6、nC5/(2-MC5+3-MC5)值小于1.0、甲苯/苯值大于1.25,而煤岩二次生成天然气正好相反。孤北潜山和高古4井煤成气均为二次成因。
     通过开展源岩热解和原油裂解生气模拟实验与生烃动力学的分析,并与相同成因天然气进行对比,查明了二者的差别,建立了两种成因天然气的鉴别方法:源岩热解气ln(CC5/nC6)值和ln(CC5/nC5)值分别小于-1和-2,(MCC5+CC6)/nC6值和CC6/nC5值则分别要低于0.8和0.1,(CC5+MCC5+CC6)/(nC5+nC6)值和(MCC5+CC6+MCC6)/(nC6+nC7)值小于0.5和1.0,DMCC5/CC5值和甲苯/苯值高于0.6和1.1;原油裂解气正好相反。民丰地区天然气以源岩热解气为主,原油裂解气为辅。
     在系统分析气源岩分布特征、生烃演化历程的基础上,结合生烃动力学的地质应用,将煤成气生成模式划分为5种类型:①隆起区-中晚期不生烃,②凸起区-晚期不生烃,③低凸起-晚期成熟高熟生烃,④斜坡带-晚期成熟高熟生烃,⑤深洼带-晚期过熟生烃;还建立了源岩热解和原油裂解生气模式。其中,斜坡带-晚期成熟高熟生烃是最为有利的煤成气生成模式,临清坳陷南部和北部洼陷带、惠民南坡、沾化罗家斜坡带、车西东部斜坡带、埕东凸起北斜坡等是最优越的二次生烃区。东营凹陷北带、渤南洼陷以及潍北凹陷陡坡带等地区则是高成熟油型气形成的有利区带。
Genesis of natural gas in deep-burial sequences such as Forth Member of the Shahejie Formation and Carboniferous-Permian buried below 4000m in the Jiyang and Linqing Super-depressions is rather complicated, which consist of coal-derived gas, oil-type gas and mixed-gas. The coal-derived gases are generated in primary burial history (primary gas for short) and in reburial history (secondary gas for short) of the Carboniferous-Permian in studied areas. The oil-type gases include kerogen-degraded gas and oil-cracked gas. Investigation on the generation plays an important role in natural gas exploration. The author studied genesis of the natural gases found in Gubei, Minfeng and East Linqing areas, selected special indexes for identification between the primary gas and secondary gas, as well as between kerogen-generated gas and oil-cracked gas, by comprehensive geological and geochemical analysis in the studied areas. Furthermore, generating models are established for the different genetic types of gases based on investigations on the gas source rock evolution and the gas generation kinetic modeling.
     On the bases of the analysis of source rocks characteristics, the ternary geochemical-tracing system of natural gas and research achievement of geologic condition of gas pools were used in order to clarify the geochemical characteristics and genesis of deep natural gas. The result shows that the natural gas in Gubei-Bonan area shifts from oil-typed gas to coal-derived gas from west to east. Natural gas in Bonan deep sag is high-matured oil-type gas originated from Es4 source rocks in Bonan sag, and gas in Gubei buried hill is mainly composed of coal-derived gas generated by C-P source rocks. Gases found between the two zones are mixtures with different proportions of coal-derived and oil-type gas. Oil and gas produced from C-P sandstones are generated from the same sequence in east part of the Linqing depression. Gas found in the Well Gaogu-4 is generated from C-P coal source rocks at mature stage, and the associated oil is generated in similar process. In the Minfeng area of the Dongying depression, gas and light oil produced from Es4 sandstones are generated from Es4 source rock, mixing with the inorganic CO2.
     In addition to geological and geochemical investigation on the coal-derived gas generation, a series of thermal stimulation experiments and analysis on gas-generation kinetics are conducted on primary gas generation and secondary gas generation from coals. It is the first discover that there are differences in the gasous hydrocarbon compositions between the primary and secondary generated gases. Therefore, the indexes are proposed for identifying the primary gas and secondary gas and are verified by the genesis-known natural gases. The primary gas is characteristics of iC4/nC4 > 0.9, n(C6+C7)/i(C6+C7) < 0.95, nC6/(2-MC6+3-MC6) < 1.6, nC5/(2-MC5+3-MC5) <1.0 and methal-benzol/benzol < 1.25, and the opposite is the secondary gas. It concludes that the natural gas reserved in the Gubei buried-hill and produced from the Well Gaogu-4 is the secondary gas from C-P coal sequence.
     Thermal stimulation experiments and analysis on hydrocarbon-generation kinetics are also conducted on source rocks and crude oils to find the composition parameters to distinguish the kerogen-degraded gas and oil-cracked gas. It shows that the kerogen-degraded gas represents as ln(CC5/nC6) < -1, ln(CC5/nC5) < -2,(MCC5+CC6)/nC6 < 0.8, CC6/nC5 < 0.1,(CC5+MCC5+CC6)/(nC5+nC6) < 0.5, (MCC5+CC6+MCC6)/(nC6+nC7) <1.0,DMCC5/CC5 > 0.6 and methal-benzol/benzol >1.1, in contrast, the oil-cracked gas. Therefore, it is believed that the natural gas produced from the Minfeng area is mainly sourced from kerogen-degraded gas, others from oil-cracked gas.
     Investigation of distributions and burial histories of the gas source rocks, as well as the geologic application of gas-generation kinetics parameters, the coal-derived gas generation models from C-P source rocks are established as five types: (1) the up-rise no-gas generating model; (2) the up-left primary generating and no secondary generating model; (3) the buried up-left secondary high-generating model; (4) the depression-slope secondary high-generating model and (5) the deep sag over-matured generating model. The author believe that the forth model is the best for natural gas generation and accumulation, the third and fifth are good for gas generation and accumulation. The south and north areas of the East Linqing, the south slope of the Huimin depression, the Luojia slope of the Zhanhua depression, the east slope of the Chexi depression and the north slope of the Chengdong structure are best favorable for coal-derived gas generation and accumulation. The north slope of the Dongying depression, the Bonan area and the steep-slope of the Weibei structure is perspective for exploration of high-matured kerogen-derived gas and oil-cracked gas.
引文
[1]戴金星,秦胜飞,陶士振,等.中国天然气工业发展趋势及其地学理论重要进展[J].天然气地球科学,2005,16(2):127-142.
    [2]王庭斌.中国大中型气田分布的地质特征及主控因素[J].石油勘探与开发,2005,32(4):1-8.
    [3]戴金星,陈践发,钟宁宁,等.中国大气田及其气源[M].北京:科学出版社,2003.
    [4]徐永昌.天然气成因理论及应用[M].北京:科学出版社,1994.
    [5] Tissot B P, Welt D H. Petroleum formation and occurrence[M]. New York: springer-verlag, 1984.
    [6] Schoell M. The hydrogen and carbon isotopic composition of methane from natural gases of various origins[J]. Geochim Cosmochim Acta, 1980, 44(5): 649-661.
    [7] Schoell M. Genetic characteristics of natural gases[J]. AAPG Bulletin, 1983, 67(12): 2225-2238.
    [8] MacDonald G. The many origins of natural gas[J]. Journal of Petroleum Geology, 1983, 5: 341-362.
    [9]徐永昌,沈平,刘文汇,等.一种新的天然气成因类型—生物-热催化过渡带气[J].中国科学(B辑),1990,20(9):975-980.
    [10]戴金星,裴锡古,戚厚发.中国天然气地质学(卷一)[M].北京:石油工业出版社,1992.
    [11]刘文汇,徐永昌.天然气成因类型及判别标志[J].沉积学报,1996,14(1):110-116.
    [12]宋岩,徐永昌.天然气成因类型及其鉴别[J].石油勘探与开发,2005,32(4):24-29.
    [13]戴金星.中国煤成气研究二十年的重大进展[J].石油勘探与开发,1999,26(3):1-10.
    [14]赵文智,王红军,王兆云,等.天然气地质基础研究中的几项新进展及其勘探意义[J].自然科学进展,2006,16(4):393-399.
    [15]包茨.天然气地质学[M].北京:科学出版社,1988.
    [16]沈平,徐永昌,王先彬,等.气源岩和天然气地球化学特征及成气机理研究[M].兰州:甘肃科学技术出版社,1991.
    [17] Stahl W. Carbon and nitrogen isotopes in hydrocarbon research and exploration[J]. Chemical Geology, 1977, 20: 121-149.
    [18] Faber E, Stahl W. Gaseous hydrocarbons of unkown origin found while drilling[J]. Org Geochem, 1987, 13(10): 875-879.
    [19] Berner U, Faber E. Maturity related mixing model for methane, ethane and propane, based on carbon isotopes[J]. Advances in Organic Geochemistry, 1987, 13: 67-72.
    [20] Berner U, Faber E. Empirical carbon isotope/maturity relationships for gases from algal kerogens and terrigenous organic matter, based on dry, open-system pyrolysis[J]. Org Geochem, 1996, 24(10): 947-955.
    [21] Whiticar M J. Correlation of natural gases with their sources[A]. The Petroleum System from Source to Trap[C]. Edited by Leslie B, Magoon and Wallance G Don. AAPG Memoir 60, 1994: 261-284.
    [22]沈平,申歧祥,王先彬,等.气态烃同位素组成特征及煤系气判识[J].中国科学(B辑),1987,17(6):647-656.
    [23]戴金星,戚厚发.我国煤成烃气的δ13C-Ro关系[J].科学通报,1989,34(9):690-692.
    [24]陈安定,张文正,徐永昌.沉积岩成烃热模拟试验产物的同位素特征及其应用[J].中国科学(B辑),1993,23(2):209-217.
    [25] Gaveau B, Letolle R, Monthioux M. Evaluation of kinetic parameters from 13C isotopic effect during coal pyrolysis[J]. Fuel, 1987, 66: 228-231.
    [26] Clayton C. Carbon isotope fractionation during natural gas generation from kerogen[J]. Mar Petrol Geol, 1991, 8: 232-240.
    [27] Lorant F, Prinzhofer A, Behar F, et al. Carbon isotopic and molecular constrains on the formation and the expulsion of thermogenic hydrocarbon gases[J]. Chemical Geology(Isotope Geoscience), 1998, 147: 249-264.
    [28] Tang Y, Perry J K, Jenden P D, et al. Mathematical modeling of stable carbon isotope ratios in natural gases[J]. Geochimical et Cosmochimica Acta, 2000, 64(15): 2673-2687.
    [29]刘文汇,徐永昌.煤型气碳同位素演化二阶段分馏模式及机理[J].地球化学,l999,28(4): 359-365.
    [30]徐永昌,沈平,刘文汇,等.天然气中稀有气体地球化学[M].北京:科学出版社,1998.
    [31]徐永昌.天然气中的幔源稀有气体[J].地学前缘,1996,3(3-4):63-70.
    [32]刘文汇,徐永昌.天然气中氦、氩同位素组成的意义[J].科学通报,1993,38(9):818-821.
    [33] Lupton J. Terrestrial inert gases: Isotopic tracer studies and clues to primordial components in the mantle[J]. Annual Review Earth Plant Science, 1983, 11(5): 371-414.
    [34]徐永昌,王先彬,吴仁铭,等.天然气中稀有气体同位素[J].地球化学,1979,8(4):271-282.
    [35]许怀先,陈丽华,万玉金,等.石油地质实验测试技术与应用[M].北京:石油工业出版社,2001.
    [36] Leythaeuser D, Schaefer R, Cornford C, et al. Generation and migration of light hydrocarbon (C2~C7)in sedimentary basins[J]. Organic Geochemistry, 1979, 1(4): 191-214.
    [37] Snowdon L, Powell T. Immature oil and condensate-modification of hydrocarbon generation model for terrestrial organic matter[J]. AAPG, 1982, 66(6): 775-788.
    [38] Thompson K F. Light hydrocarbons in subsurface sediments[J]. Geochim Cosmochim Acta, 1979, 43: 627-647.
    [39] Thompson K F. Value of light hydrocarbon on the study of petroleum generation[J]. Geochim Cosmochim Acta, 1983, 47: 303-316.
    [40]胡惕麟,戈葆雄,张义纲,等.源岩吸附烃和天然气轻烃指纹参数的开发和应用[J].石油实验地质,1990,12(4):375-393.
    [41]廖永胜.罐装岩屑轻烃和碳同位素在油气勘探中的应用[A].天然气地质研究论文集[C].北京:石油工业出版社,1989:138-144.
    [42]秦建中,郭树之,王东良.苏桥煤型气田地化特征及其对比[J].天然气工业,1991,11(5):21-26.
    [43]沈平,陈践发,彭韵硕.轻烃中C6族组成和芴系化合物与沉积环境的关系[J].沉积学报,1992,10(3):68-75.
    [44]徐永昌,沈平,陈践发,等.凝析油的地球化学特征[J].中国科学(B辑),1988,6:643-650.
    [45]张义纲.天然气的生成与聚集[M].南京:海河大学出版社,1991.
    [46]刘文汇,陈孟晋,关平,等.天然气成藏过程的三元地球化学示踪体系[J].中国科学(D辑),2007,37(7):908-915.
    [47]秦勇,朱炎铭,范炳恒,等.沉积有机质二次生烃理论及其应用[M].北京:地质出版社,2001.
    [48]张厚福,方朝亮,高先志,等.石油地质学[M].北京:石油工业出版社,1999.
    [49]胡宗全.华北东部地区叠合特征与古生界生烃史[J].现代地质,2006,20(4):585-591.
    [50]郑礼全,李贤庆,钟宁宁.华北地区上古生界煤系有机质热演化与二次生烃探讨[J].中国煤田地质,2001,13(4):16-19.
    [51]梁生正,谢恭俭,马郡,等.华北石炭-二叠系残留盆地天然气勘探方向[J].天然气工业,1998,18(6):16-20.
    [52]蒋有录.渤海湾盆地天然气聚集带特征及形成条件[J].石油大学学报(自然科学版),1999,23(5):9-13.
    [53]任战利,冯建辉,崔军平,等.东濮凹陷杜桥白地区天然气藏的成藏期次[J].石油与天然气地质,2002,23(4):376-381.
    [54]刘丽,任战利.东濮凹陷热演化史研究[J].石油勘探与开发,2007,34(4):419-423.
    [55]朱炎铭,王晓辉,张聪,等.东濮凹陷石炭-二叠系煤系烃源岩的生烃演化[J].石油学报,2007,28(6):27-31.
    [56]许化政,周新科.文留地区石炭-二叠纪煤系生烃史及生烃潜力[J].石油与天然气地质,2004,25(4):400-407.
    [57]廖前进,于学敏,何咏梅,等.大港探区上古生界煤系烃源岩特征及资源潜力[J].天然气地球科学,2003,14(4):250-253.
    [58]朱炎铭,秦勇,范炳恒,等.黄骅坳陷深层古生界烃源岩的生烃演化[J].地质科学,2001,36(4):435-443.
    [59]朱炎铭,秦勇,范炳恒,等.黄骅坳陷歧古1井古生界烃源岩的二次生烃演化[J].地质学报,2001,75(3):426-431.
    [60]朱炎铭,秦勇,范炳恒,等.武清凹陷石炭-二叠系烃源岩的二次生烃评价[J].地球科学,2004,29(1):77-84.
    [61]任战利.鄂尔多斯盆地热演化史与油气关系的研究[J].石油学报,1996,17(1):17-24.
    [62]任战利,张盛,高胜利,等.鄂尔多斯盆地构造热演化史及其成藏成矿意义[J].中国科学(D辑),2007,37(增刊):23-32.
    [63]高瑞祺,赵政璋.中国油气新区勘探(第二卷)—中国陆上天然气勘探[M].北京:石油工业出版社,2001.
    [64]王涛.中国深盆气田[M].北京:石油工业出版社,2002.
    [65]刑卫新,汤达祯,马新海,等.塔里木盆地东北缘孔雀河地区烃源岩演化特征及成藏条件研究[J].天然气地球科学,2007,18(1):57-61.
    [66] Liu L F, Wang W H, Li S Y. The thermal modeling of secondary generation of hydrocarbon[J]. Scientia Geologica Sinica, 1996, 5(3): 345-348.
    [67]刘洛夫,王伟华,李术元.干酪根二次生烃热模拟实验研究[J].沉积学报,1995,13(增刊):147-184.
    [68]宫色,李剑,张英,等.煤的二次生烃机理探讨[J].石油实验地质,2002,24(6):541-544.
    [69]张润合,赵宗举,贺小苏,等.淮南煤矿山西组煤样的二次生烃模拟研究[J].石油勘探与开发,2004,31(4):25-28.
    [70]冉启贵.华北地区上古生界煤岩成烃及二次成烃研究[J].天然气地球科学,1995,6(3):13-17.
    [71]曾凡刚.华北地区下古生界海相碳酸盐岩二次生烃作用机理研究[J].地质地球化学,1998,26(3):40-46.
    [72]关德师,王兆云,秦勇,等.二次生烃迟滞性定量评价方法及其在渤海湾盆地中的应用[J].沉积学报,2003,21(3):533-538.
    [73]秦勇,张有生,朱炎铭,等.煤中有机质二次生烃迟滞性及其反应动力学机制[J].地球科学,2000,25(3):278-282.
    [74]邹艳荣,杨起,刘大锰.华北晚古生代煤二次生烃的动力学模式[J].地球科学,1999,24(2):189-192.
    [75]卢双舫,钟宁宁,薛海涛,等.碳酸盐岩有机质二次生烃的化学动力学研究及其意义[J].中国科学(D辑),2007,37(2):178-184.
    [76]傅家谟,秦匡宗.干酪根地球化学[M].广州:广东科技出版社,1995.
    [77] Liu D M, Yang Q, Tang D Z. Reaction kinetics of coalification in Ordos Basin, China[A]. In: Yang Q. Geology of fossil fuel-coal[C]. The Netherlands: Utrech, 1997: 147-159.
    [78] Teichmuller M, Teichmuller R. Statch’s textbook of coal petrology[M]. Berlin: Springer-Verlag, 1982.
    [79]张有生,秦勇,刘焕杰,等.沉积有机质二次生烃热模拟实验研究[J].地球化学,2002,31(3):273-282.
    [80]朱光有,赵文智,梁英波,等.中国海相沉积盆地富气机理与天然气的成因探讨[J].科学通报,2007,52(增刊I):46-57.
    [81]王云鹏,田静.原油裂解气的形成、鉴别与运移研究综述[J].天然气地球科学,2007,18(2):235-244.
    [82] Horsfield B, Schenk H J, Mills N, et al. Closed-system programmed-temperature pyrolysis for simulating the conversion of oil to gas in a deep petroleum reservoir[J]. Organic Geochemistry, 1992, 19, 191-204.
    [83] Schenk H J, Di Primo R, Horsfield B. The conversion of oil into gas in petroleum reservoirs. Part 1: omparative kinetic investigation of gas generation from crude oils of lacustrine, marine and fluviodeltaic origin by programmedtemperature closed-system pyrolysis[J]. Organic Geochemistry, 1997, 26, 467-481.
    [84] Ungerer P, Behar F, Villalba M, et al. Kinetic modelling of oil cracking[J]. Organic Geochemistry, 1988, 13, 857-868.
    [85] Bjoroy M, Williams JA, Dolcater DL, et al. Variation in hydrocarbon distribution in artificially matured oils[J]. Organic Geochemistry, 1988, 13, 901-913.
    [86] Behar F, Kressmann S, Rudkiewicz L, et al. Experimental simulation in a confined system and kinetic modeling of kerogen and oil cracking[J]. Organic Geochemistry, 1992, 19(1/2/3): 173-189.
    [87] Hill R J, Tang Yong-chun, Kaplanc I R. Insights into oil cracking based on laboratory experiments[J]. Organic Geochemistry, 2003, 34: 1651-1672.
    [88]田辉,王招明,肖中尧,等.原油裂解成气动力学模拟及其意义[J].科学通报,2006,51(15):1821-1827.
    [89]胡国艺,李志生,罗霞,等.两种热模拟体系下有机质生气特征对比[J].沉积学报,2004,22(4):718-723.
    [90]熊永强,耿安松,张海祖,等.油型气的形成机理及其源岩生烃潜力恢复[J].天然气工业,2004,24(2):11-13.
    [91]王振平,付晓泰,卢双舫,等.原油裂解成气模拟实验、产物特征及其意义[J].天然气工业,2001,21(3):12-15.
    [92]李术元,郭邵辉,沈润梅.沥青质催化降解特征及动力学研究[J].沉积学报,2001,19(1):137-141.
    [93] Mango F D, Hightower J W. The catalytic decomposition of petroleum into natural gas[J]. Geochimca et Cosmochimica Acta, 1997, 61(24): 5347-5350.
    [94] Pepper A S, Dodd T A. Simple kinetic models of petroleum formation. Part II: oil-gas cracking[J]. Marine and Petroleum Geology, 1995,12, 321-340.
    [95]冯子辉,迟元林,杜洪文,等.原油在储层介质中的加水裂解生气模拟实验[J].沉积学报,2002,20(3):505-509.
    [96]卢双舫.有机质成烃动力学理论及其应用[M].北京:石油工业出版社,1996.
    [97]刘金钟,唐永春.用干酪根生烃动力学实验预测甲烷生成量之一例[J].科学通报,1998,43(11):1187-1191.
    [98]赵孟军,卢双舫.原油二次裂解气—天然气重要的生成途径[J].地质论评,2000,46(6):645-650.
    [99]田春志,卢双舫,李启明,等.塔里木盆地原油高压条件下裂解成气的化学动力学模型及其意义[J].沉积学报,2002,20(3):488-492.
    [100]王云鹏,赵长毅,王兆云,等.利用生烃动力学方法确定海相有机质的主生气期及其初步应用[J].石油勘探与开发,2005,32(4):153-158.
    [101]赵文智,王兆云,张水昌,等.油裂解生气是海相气源灶高效成气的重要途径[J].科学通报,2006,51(5):589-595.
    [102]卢双舫,薛海涛,钟宁宁,等.石油保存下限的化学动力学研究[J].石油勘探与开发,2002,29(6):1-3.
    [103] Tian H, Xiao X M, Wilkinsc R W, et al. Gas sources of the YN2 gas pool in the Tarim Basin Evidence from gas generation and methane carbon isotope fractionation kinetics of source rocks and crude oils[J]. Marine and Petroleum Geology, 2007, 24: 29-41.
    [104]刘文汇,张建勇,范明,等.叠合盆地天然气的重要来源—分散可溶有机质[J].石油实验地质,2007,29(1):1-6.
    [105]卢双舫,李吉君,薛海涛,等.油成甲烷碳同位素分馏的化学动力学及其初步应用[J].吉林大学学报(地球科学版),2006,36(5):825-829.
    [106]田辉,肖贤明,李贤庆,等.海相干酪根与原油裂解气甲烷生成及碳同位素分馏的差异研究[J].地球化学,2007,36(1):71-77.
    [107]赵文智,王兆云,张水昌,等.有机质“接力生气”模式的提出及其在勘探中的应用[J].石油勘探与开发,2005,32(2):1-7.
    [108] Behar F, Vandenbroucke M, Teermann S C, et al. Experimental simulation of gas generation from coals and a marine kerogen[J]. Chemical Geology, 1995, 126(3/4): 247-260.
    [109] Behar F, Vandenbroucke M, Tang Y, et al. Thermal cracking of kerogen in open and closed systems: determination of kinetic parameters and stoichiometric coefficients for oil and gas generation[J]. Organic Geochemistry, 1997, 26(5/6): 321-339.
    [110] Prinzhofer A A, Huc A Y. Genetic and post-genetic molecular and isotopic fractionations in natural gas[J]. Chemical Geology, 1995, 126: 281-290.
    [111] Prinzhofer A, Battani A. Gas isotopes Tracing: an important tool for hydrocarbon exploration[J]. Oil and Gas Science and Technology-Rev, IFP, 2003, 58(2): 299-311.
    [112] Alain A. Genetic and post-genetic molecular and isotopic fractionations in natural gas[J]. Chemical Geology, 1995, 126(3/4): 281-290.
    [113]胡国艺,肖中尧,罗霞,等.两种裂解气中轻烃组成差异性及其应用[J].天然气工业,2005,25(9):23-25.
    [114]王国林.塔里木盆地台盆区天然气成藏条件分析[D].成都:西南石油大学,2005.
    [115]赵孟军,曾凡刚,秦胜飞,等.塔里木发现和证实两种裂解气[J].天然气工业,2001,21(1):35-39.
    [116]王红军,周兴熙.塔里木盆地典型海相成因天然气藏成藏模式[J].石油学报,2001,22(1):14-18.
    [117]陈世加,马力宇,付晓文,等.塔里木盆地海相腐泥型天然气的成因判识[J].石油与天然气地质,2001,22(2):100-101.
    [118]陈世加,付晓文,马力宇,等.干酪根裂解气和原油裂解气的成因判识方法[J].石油实验地质,2002,24(4):364-366.
    [119]赵孟军,张水昌,廖志勤.原油裂解气在天然气勘探中的意义[J].石油勘探与开发,2001,28(4):47-49.
    [120]候读杰,赵增迎,唐友军,等.柯克亚地区原油裂解气的地质—地球化学特征[J].天然气地球科学,2004,15(2):137-141.
    [121]秦胜飞,贾承造,李梅.和田河气田天然气东西部差异及原因[J].石油勘探与开发,2002,29(5):16-18.
    [122]秦胜飞,李梅,戴金星,等.塔里木盆地和田河气田天然气裂解类型[J].石油与天然气地质,2005,26(4):455-460.
    [123]尹长河,王廷栋,王顺玉,等.威远、资阳震旦系干酪根与油裂解气的差别[J].沉积学报,2001,19(1):156-160.
    [124]谢增业,魏国齐,李剑,等.川东北飞仙关组鲕滩储层沥青与天然气成藏过程[J].天然气工业,2004,24(12):17-19.
    [125]赵孟军,张水昌,赵陵,等.南盘江盆地古油藏沥青、天然气的地球化学特征及成因[J].中国科学(D辑),2007,37(2):167-177.
    [126]张淑品,赵孟军,张水昌,等.南盘江盆地秧1井天然气地球化学特征及成因分析[J].天然气地球科学,2005,16(6):797-803.
    [127]赵孟军,张水昌,赵陵,等.南盘江坳陷天然气地球化学特征及新认识[J].天然气工业,2007,27(2):23-28.
    [128]马立元,张晓宝,胡勇,等.天然气初次裂解与二次裂解作用判识[J].天然气工业,2003,23(5):8-11.
    [129]朱俊章,施和生,庞雄,等.珠江口盆地番禺低隆起天然气成因和气源分析[J].天然气地球科学,2005,16(4):456-459.
    [130]李美俊,王铁冠,刘菊,等.北部湾盆地福山凹陷天然气成因与来源[J].天然气地球科学,2007,18(2):260-265.
    [131]张林晔,李钜源,李政,等.济阳坳陷煤系烃源岩评价[R].东营:胜利油田有限公司地质科学研究院,2003
    [132]李政.济阳坳陷石炭系-二叠系烃源岩的生烃演化[J].石油学报,2006,27(4):29-35.
    [133]李荣西,廖永胜,周义.济阳坳陷石炭-二叠系热演化与生烃阶段[J].地球学报,2001,22(1):85-90.
    [134]李荣西,张锡云,金奎励.用镜质体反射率重建沉积盆地构造演化特征[J].矿物学报,2001,21(4):705-709.
    [135]于岚.临清坳陷东部石炭-二叠系煤系烃源岩特征及生烃史[J].新疆石油天然气,2006,2(3):16-21.
    [136]赵青芳,耿安松,熊永强,等.惠民凹陷上古生界烃源岩的生烃动力学研究[J].矿物岩石地球化学通报,2007,26(2):191-196.
    [137]李孝军,李文涛,张海君.济阳坳陷裂解气成藏分析及勘探方向[J].油气地质与采收率,2005,12(1):42-43.
    [138]金强,荣启宏,万丛礼.无机与有机混合成因的天然气藏[J].矿物岩石,1999,19(3): 41-45.
    [139] Zhu Guang-you, Jin Qiang, Zhang Shui-chang, et al. Character and genetic types of shallow gas pools in Jiyang depression[J]. Organic Geochemistry, 2005, 36(11): 1650-1663.
    [140]张林晔.济阳坳陷天然气的判识标志[J].石油实验地质,1991,13(4): 355-369.
    [141]向奎,樊庆真,骆光华.应用多元信息综合分析法进行气源追踪—以济阳坳陷深层气气源追踪为例[J].石油实验地质,1998,20(3):261-266.
    [142]尹长河,陈洁,孙锡文,等.渤南洼陷孤西深洼带的煤成气[J].油气地质与采收率,2002,9(4):42-44.
    [143]杜玉民,陈永红,林玉祥,等.惠民凹陷南坡曲古1井煤成气藏研究[J].天然气工业,2003,23(5):12-15.
    [144]李钜源,李政,李剑,等.临南地区煤成气藏成因分析[J].石油大学学报(自然科学版),2004,28(3):13-16.
    [145]宋明水,张学才.济阳坳陷渤南洼陷深层天然气的地球化学特征及成因探讨[J].天然气地球科学,2004,15(6):646-649.
    [146]姜平,王建华,翟卫红.临清坳陷德古2井油气成藏时期分析[J].西南石油学院学报,2006,28(1):23-25.
    [147]胡宗全,周新科,张玉兰,等.济阳坳陷前第三系油气勘探前景[J].石油与天然气地质,2005,26(5):655-660.
    [148]李红梅.孤北斜坡带煤成气成藏条件分析[J].天然气工业,2006,26(2):23-25.
    [149]彭传圣.济阳坳陷孤北低潜山煤成气成藏条件及特征[J].中国海洋大学学报,2005,35(4):670-676.
    [150]徐刚,王军,苏朝光,等.渤深6潜山带油气藏特征的研究[J].石油物探,2004,43(5):479-481.
    [151] Tilley B, Muehlenbachs K. Gas maturity and alteration systematics across the Western Canda Sedimentary Basin from four mud gas isotopic depth profiles[J]. Organic Geochemistry, 2006, 37(12): 1857-1868.
    [152]黄汝昌.中国低熟油及凝析气藏形成与分布规律[M].北京:石油工业出版社,1997.
    [153]朱光有,金强,高志卫,等.沾化凹陷复式生烃系统对油气成藏的控制作用[J].海洋地质与第四纪地质,2004,24(1):105-112.
    [154]宫秀梅,金之钧,曾溅辉,等.渤南洼陷深层油气成藏特征及主控因素[J].石油与天然气地质,2005,26(4):473-479.
    [155]蒋有录.渤海湾盆地盖层对天然气富集的影响初探[J].地质论评,1999,45(1):26-31.
    [156]王圣柱,梁毅,钱克兵,等.东营凹陷南斜坡深层成藏特征及主控因素分析[J].沉积学报,2007,25(3):474-481.
    [157] Brocks J. J., Buick R., Logan G. A., et al. Composition and syngeneity of molecular fossils from the 2.78 to 2.45 billion-year-old Mount Bruce Supergroup, Pilbara Craton, Western Australia[J]. Geochimica et Cosmochimica Acta, 2003, 67(22): 4289-4319.
    [158] Brocks J. J., Love G. D., Snape C. E., et al. Release of bound aromatic hydrocarbons from late Archean and Mesoproterozoic kerogens via hydropyrolysis. Geochim Cosmochim Acta, 2003, 67(8): 1521-1530.
    [159]帅燕华,邹艳荣,彭平安.塔里木盆地库车坳陷煤成气甲烷碳同位素动力学研究及其成藏意义[J].地球化学,2003,32(5):469-475.
    [160]高喜龙,肖贤明,刘中云,等.用开放体系的热解方法对烃源岩生烃动力学的研究:以东营凹陷某生油岩为例[J].地球化学,2003,32(5):485-490.
    [161] Ungerer P. State of the art of research in kinetic modeling of oil formation and expulsion[J]. Organic Geochemistry, 1990, 16(1-3): 1-25.
    [162]宗国洪,肖焕钦,李常宝,等.济阳坳陷构造演化及其大地构造意义[J].高校地质学报,1999,5(3):275-282.
    [163]常国贞,毕彩芹,林红梅.低潜山反转构造演化、成藏体系与勘探—以胜利油区孤北低潜山为例[J].断块油气田,2002,9(5):19-23.
    [164]陈洁,董冬,邱明文.济阳坳陷内的负反转构造及其石油地质意义[J].石油实验地质,1999,21(3):201-206.
    [165]宋国奇,柳忠泉.临清坳陷东部构造样式及成藏条件分析[J].石油实验地质,1997,19(4):323-327.
    [166]付明希,胡圣标,汪集旸.华北东部中生代热体制转换及其构造意义[J].中国科学(D辑),2004,34(6):514-520.
    [167]蒋有录,熊继辉.临清坳陷东部地温及有机质热演化特征[J].石油大学学报(自然科学版),1997,21(1):6-10.
    [168]邱楠生,苏向光,李兆影,等.济阳坳陷新生代构造热演化历史研究[J].地球物理学报,2006,49(4):1127-1135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700